2,255 research outputs found

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Impact of IIoT and Lean bundles configurations on proactive work behaviors

    Get PDF
    This thesis investigates the impact of IIoT and Lean bundles configurations on team proactivity, that is calculated as a mean of individual proactivity values. It is divided in four chapters: in the first chapter an introduction to Industry 4.0 and a description of its main technologies is performed, the second chapter is characterized by a literature review on the integration between Industry 4.0 an Lean Production, the third chapter consists on a description of the Qualitative Comparative Analysis approach and the last chapter discusses the results of the analysis

    Supply Chain

    Get PDF
    Traditionally supply chain management has meant factories, assembly lines, warehouses, transportation vehicles, and time sheets. Modern supply chain management is a highly complex, multidimensional problem set with virtually endless number of variables for optimization. An Internet enabled supply chain may have just-in-time delivery, precise inventory visibility, and up-to-the-minute distribution-tracking capabilities. Technology advances have enabled supply chains to become strategic weapons that can help avoid disasters, lower costs, and make money. From internal enterprise processes to external business transactions with suppliers, transporters, channels and end-users marks the wide range of challenges researchers have to handle. The aim of this book is at revealing and illustrating this diversity in terms of scientific and theoretical fundamentals, prevailing concepts as well as current practical applications

    Transforming Multidisciplinary Customer Requirements to Product Design Specifications

    Get PDF
    With the increasing of complexity of complex mechatronic products, it is necessary to involve multidisciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers’ requirements. A new synthesized multidisciplinary customer requirements modeling method is provided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with different team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product

    DEFINING AND EVALUATING AGILE CONSTRUCTION MANAGEMENT FOR REDUCING TIME DELAYS IN CONSTRUCTION

    Get PDF
    Both competitive market forces and growing societal needs have triggered the demand for rapid delivery of construction projects, or at a minimum, for projects completed on schedule. However, schedule delays are common and recurring in construction, inevitably resulting in rework, cost overruns and legal claims. As projects become increasingly complicated, delays arise in a more unpredictable manner. The initial motivation for this research is to explore a systematic flexibility to deal with delays caused by complex changes in construction and meanwhile enhance the overall project performance. Accordingly, agile construction management is proposed in terms of a conceptual framework. Derived from agile theories in other engineering disciplines, agile management is an integrated method that allows projects thrive in a fluid environment by applying agile enablers (approaches) throughout the project lifecycle. Since agility and relevant theories are emerging in construction, the proposed agile ideas and enablers are verified by qualitative interviews with construction professionals. With ultimate goal of reducing delays, a case study is conducted investigating how much delays could be reduced if the agile enablers were used

    Lean Thinking For Lead-Time Reduction And Efficient Knowledge Creation In Product Development

    Get PDF
    There are many distinct differences between manufacturing process and Product Development (PD) process, so lean tools have to be customized to deliver results in the later domain. The main focus of this dissertation is to extend them to manage and improve the PD process in order to develop the product faster while improving or at least maintaining the level of performance and quality. For aforesaid purpose, value stream mapping (VSM) method is used to explore the wastes, inefficiencies, non-valued added steps in a single, definable process out of complete PD process. Besides numerous intangible benefits, VSM framework will help the development team to reduce the lead-time by over 50%. Next, a set of ten lean tools and methods is proposed in order to support and improve efficiency of the knowledge creation (KC) process. The approach establishes a KC framework in PD environment, and systematically demonstrates how these lean tools and methods conceptually fit into and play a significant role in enhancing the performance of KC process. Following this, each of them is analysed and appropriately positioned in a SECI (socialization-externalization-combination-internalization) mode depending on the best fit. Quick and correct KC at the right time aids in further improving the development lead-time and product quality. Such successful innovation is often associated with adoption and execution of all SECI modes within any PD phase. This dissertation attempts to argue with this general notion and to distinguish different PD phases\u27 affinity corresponding to distinct SECI mode. In this regard, an extended Fuzzy Analytic Hierarchy Process (EFAHP) approach to determine the ranking in which any PD phase is influenced from SECI modes is proposed. In the EFAHP approach, the complex problem of KC is first itemized into a simple hierarchical structure for pairwise comparisons. Next, a triangular fuzzy number concept is applied to capture the inherent vagueness in linguistic terms of a decision-maker. This dissertation recommends mapping the triangular fuzzy numbers (TFNs) with normal distributions about X-axis when the pessimistic value of one TFN is less than the optimistic value of other TFN (t23 ≤ t11). This allows us to develop a mathematical formulation to estimate the degree of possibility of two criteria as opposed to zero resulted by the use of the current technique in the literature. In order to demonstrate the applicability and usefulness of the proposed EFAHP in ranking the SECI modes, an empirical study of development phase is considered. After stringent analysis, we found that the combination mode was the mode that highly influenced the development phase

    Integration of e-business strategy for multi-lifecycle production systems

    Get PDF
    Internet use has grown exponentially on the last few years becoming a global communication and business resource. Internet-based business, or e-Business will truly affect every sector of the economy in ways that today we can only imagine. The manufacturing sector will be at the forefront of this change. This doctoral dissertation provides a scientific framework and a set of novel decision support tools for evaluating, modeling, and optimizing the overall performance of e-Business integrated multi-lifecycle production systems. The characteristics of this framework include environmental lifecycle study, environmental performance metrics, hyper-network model of integrated e-supply chain networks, fuzzy multi-objective optimization method, discrete-event simulation approach, and scalable enterprise environmental management system design. The dissertation research reveals that integration of e-Business strategy into production systems can alter current industry practices along a pathway towards sustainability, enhancing resource productivity, improving cost efficiencies and reducing lifecycle environmental impacts. The following research challenges and scholarly accomplishments have been addressed in this dissertation: Identification and analysis of environmental impacts of e-Business. A pioneering environmental lifecycle study on the impact of e-Business is conducted, and fuzzy decision theory is further applied to evaluate e-Business scenarios in order to overcome data uncertainty and information gaps; Understanding, evaluation, and development of environmental performance metrics. Major environmental performance metrics are compared and evaluated. A universal target-based performance metric, developed jointly with a team of industry and university researchers, is evaluated, implemented, and utilized in the methodology framework; Generic framework of integrated e-supply chain network. The framework is based on the most recent research on large complex supply chain network model, but extended to integrate demanufacturers, recyclers, and resellers as supply chain partners. Moreover, The e-Business information network is modeled as a overlaid hypernetwork layer for the supply chain; Fuzzy multi-objective optimization theory and discrete-event simulation methods. The solution methods deal with overall system parameter trade-offs, partner selections, and sustainable decision-making; Architecture design for scalable enterprise environmental management system. This novel system is designed and deployed using knowledge-based ontology theory, and XML techniques within an agent-based structure. The implementation model and system prototype are also provided. The new methodology and framework have the potential of being widely used in system analysis, design and implementation of e-Business enabled engineering systems

    An Integrated Framework to Assess ‘Leanness’ Performance in Distribution Centres

    Get PDF
    The theory behind lean philosophy is to create more value with less. Effective lean management enables organisations to exceed customer expectations while reducing costs. Despite the fact that numerous practices and approaches are used in the process of implementing lean philosophy and reducing waste within supply chain systems, little effort has been directed into assessing the leanness level of distribution and its impact on overall performance. Given the vital role of distribution units within supply chains, this research aims to develop a comprehensive lean assessment framework that integrates a selected set of statistical, analytical, and mathematical techniques in order to assess the ‘leanness’ level in the distribution business. Due to the limited number of published articles in the area of lean distribution, there are no clear definitions of the underlying factors and practices. Therefore, the primary phase of the proposed framework addresses the identification of lean distribution dimensional structure and practices. The other two phases of the framework discuss the development of a structured model for lean distribution and address the process to find a quantitative lean index for benchmarking lean implementation in distribution centres. Integrating the three phases provides the decision makers with an indicator of performance, subject to applying various lean practices. Incorporating the findings of a survey that sent to 700 distribution businesses in Ireland along with value stream mapping, modelling, simulation, and data envelopment analysis, has given the framework strength in the assessment of leanness. Research outcomes show that lean distribution consists of five key dimensions; workforce management, item replenishment, customers, transportation, and process quality. Lean practices associated with these dimensions are mainly focused on enhancing the communication channels with customers, simplifying the distribution networks structure, people participating in problem solving and a continuous improvement process, and increasing the reliability and efficiency of the distribution operations. The final output of the framework is two key leanness indices; one is set to measure the tactical leanness level, while the second index represents the leanness at the operational level. Both indices can effectively be used in evaluating the lean implementation process and conducting a benchmarking process based on the leanness level
    • …
    corecore