41 research outputs found

    Unified reconstruction and motion estimation in cardiac perfusion MRI

    Get PDF
    ABSTRACT We introduce a novel unifying approach to jointly estimate the motion and the dynamic images in first pass cardiac perfusion MR imaging. We formulate the recovery as an energy minimization scheme using a unified objective function that combines data consistency, spatial smoothness, motion and contrast dynamics penalties. We introduce a variable splitting strategy to simplify the objective function into multiple sub problems, which are solved using simple algorithms. These sub-problems are solved in an iterative manner using efficient continuation strategies. Preliminary validation using a numerical phantom and in-vivo perfusion data demonstrate the utility of the proposed scheme in recovering the perfusion images from considerably under-sampled data

    Analysis of first pass myocardial perfusion imaging with magnetic resonance

    Get PDF
    Early diagnosis and localisation of myocardial perfusion defects is an important step in the treatment of coronary artery disease. Thus far, coronary angiography is the conventional standard investigation for patients with known or suspected coronary artery disease and it provides information about the presence and location of coronary stenoses. In recent years, the development of myocardial perfusion CMR has extended the role of MR in the evaluation of ischaemic heart disease beyond the situations where there have already been gross myocardial changes such as acute infarction or scarring. The ability to non-invasively evaluate cardiac perfusion abnormalities before pathologic effects occur, or as follow-up to therapy, is important to the management of patients with coronary artery disease. Whilst limited multi-slice 2D CMR perfusion studies are gaining increased clinical usage for quantifying gross ischaemic burden, research is now directed towards complete 3D coverage of the myocardium for accurate localisation of the extent of possible defects. In 3D myocardial perfusion imaging, a complete volumetric data set has to be acquired for each cardiac cycle in order to study the first pass of the contrast bolus. This normally requires a relatively large acquisition window within each cardiac cycle to ensure a comprehensive coverage of the myocardium and reasonably high resolution of the images. With multi-slice imaging, long axis cardiac motion during this large acquisition window can cause the myocardium imaged in different cross- sections to be mis-registered, i.e., some part of the myocardium may be imaged more than twice whereas other parts may be missed out completely. This type of mis-registration is difficult to correct for by using post-processing techniques. The purpose of this thesis is to investigate techniques for tracking through plane motion during 3D myocardial perfusion imaging, and a novel technique for extracting intrinsic relationships between 3D cardiac deformation due to respiration and multiple ID real-time measurable surface intensity traces is developed. Despite the fact that these surface intensity traces can be strongly coupled with each other but poorly correlated with respiratory induced cardiac deformation, we demonstrate how they can be used to accurately predict cardiac motion through the extraction of latent variables of both the input and output of the model. The proposed method allows cross-modality reconstruction of patient specific models for dense motion field prediction, which after initial modelling can be use in real-time prospective motion tracking or correction. In CMR, new imaging sequences have significantly reduced the acquisition window whilst maintaining the desired spatial resolution. Further improvements in perfusion imaging will require the application of parallel imaging techniques or making full use of the information content of the 驴-space data. With this thesis, we have proposed RR-UNFOLD and RR-RIGR for significantly reducing the amount of data that is required to reconstruct the perfusion image series. The methods use prospective diaphragmatic navigator echoes to ensure UNFOLD and RIGR are carried out on a series of images that are spatially registered. An adaptive real-time re-binning algorithm is developed for the creation of static image sub-series related to different levels of respiratory motion. Issues concerning temporal smoothing of tracer kinetic signals and residual motion artefact are discussed, and we have provided a critical comparison of the relative merit and potential pitfalls of the two techniques. In addition to the technical and theoretical descriptions of the new methods developed, we have also provided in this thesis a detailed literature review of the current state-of-the-art in myocardial perfusion imaging and some of the key technical challenges involved. Issues concerning the basic background of myocardial ischaemia and its functional significance are discussed. Practical solutions to motion tracking during imaging, predictive motion modelling, tracer kinetic modelling, RR-UNFOLD and RR-RIGR are discussed, all with validation using patient and normal subject data to demonstrate both the strength and potential clinical value of the proposed techniques.Open acces

    A unifying model of perfusion and motion applied to reconstruction of sparsely sampled free-breathing myocardial perfusion mri

    No full text
    ABSTRACT The clinical potential of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is currently limited by respiratory induced motion of the heart. This paper presents a unifying model of perfusion and motion in which respiratory motion becomes an integral part of myocardial perfusion quantification. Hence, the need for tedious manual motion correction prior to perfusion quantification is avoided. In addition, we demonstrate that the proposed framework facilitates the process of reconstructing DCE-MRI from sparsely sampled data in the presence of respiratory motion. The paper focuses primarily on the underlying theory of the proposed framework, but shows in vivo results of respiratory motion correction and simulation results of reconstructing sparsely sampled data

    Effect of intravenous morphine bolus on respiratory drive in ICU patients

    Get PDF

    Feasibility of improving risk stratification in the inherited cardiac conditions

    Get PDF
    Fatal ventricular arrhythmias can occur in patients with Hypertrophic Cardiomyopathy, Brugada Syndrome and rarely in patients with normal cardiac investigations. Despite very different pathogeneses, we hypothesised that a common electrophysiological substrate precipitates these arrhythmias and could be used as a marker for risk stratification. In Chapter 3 of this thesis, we found that fewer than half the cardiac arrest survivors with Brugada Syndrome would have been offered prophylactic defibrillators based on current risk scoring, highlighting the need for better risk stratification. Our group previously used a commercially available 252-electrode vest which constructs ventricular electrograms onto a CT image of the heart to show exercise related differences in high-risk patients. In Chapter 4, we applied this method to Brugada patients, but could not reproduce prior results. Further investigation revealed periodic changes in activation patterns after exercise that could explain this discrepancy. An alternative matrix approach was developed to overcome this problem. Exercise induced conduction heterogeneity differentiated Brugada patients from unaffected controls, but not those surviving cardiac arrest. However, if considered alongside spontaneous type 1 ECG and syncope, inducible conduction heterogeneity markedly improved identification of Brugada cardiac arrest survivors. In Chapter 5 the method was shown to differentiate idiopathic ventricular fibrillation patients from those fully recovered from acute ischaemic cardiac arrest, implying a permanent electrophysiological abnormality. In Chapter 8, we showed prolonged mean local activation times and activation-recovery intervals in hypertrophic cardiomyopathy cardiac arrest survivors compared to those without previous ventricular arrhythmia. These metrics were combined into both logistic regression and support vector machine models to strongly differentiate the groups. We concluded that electrophysiological changes could identify cardiac arrest survivors in various cardiac conditions, but a single factor common pathway was not established. Prospective studies are required to determine if using these parameters could enhance current risk stratification for sudden death.Open Acces

    Life Sciences Program Tasks and Bibliography

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web pag

    Life Sciences Program Tasks and Bibliography for FY 1997

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page
    corecore