1,940 research outputs found

    Machine learning for automatic analysis of affective behaviour

    Get PDF
    The automated analysis of affect has been gaining rapidly increasing attention by researchers over the past two decades, as it constitutes a fundamental step towards achieving next-generation computing technologies and integrating them into everyday life (e.g. via affect-aware, user-adaptive interfaces, medical imaging, health assessment, ambient intelligence etc.). The work presented in this thesis focuses on several fundamental problems manifesting in the course towards the achievement of reliable, accurate and robust affect sensing systems. In more detail, the motivation behind this work lies in recent developments in the field, namely (i) the creation of large, audiovisual databases for affect analysis in the so-called ''Big-Data`` era, along with (ii) the need to deploy systems under demanding, real-world conditions. These developments led to the requirement for the analysis of emotion expressions continuously in time, instead of merely processing static images, thus unveiling the wide range of temporal dynamics related to human behaviour to researchers. The latter entails another deviation from the traditional line of research in the field: instead of focusing on predicting posed, discrete basic emotions (happiness, surprise etc.), it became necessary to focus on spontaneous, naturalistic expressions captured under settings more proximal to real-world conditions, utilising more expressive emotion descriptions than a set of discrete labels. To this end, the main motivation of this thesis is to deal with challenges arising from the adoption of continuous dimensional emotion descriptions under naturalistic scenarios, considered to capture a much wider spectrum of expressive variability than basic emotions, and most importantly model emotional states which are commonly expressed by humans in their everyday life. In the first part of this thesis, we attempt to demystify the quite unexplored problem of predicting continuous emotional dimensions. This work is amongst the first to explore the problem of predicting emotion dimensions via multi-modal fusion, utilising facial expressions, auditory cues and shoulder gestures. A major contribution of the work presented in this thesis lies in proposing the utilisation of various relationships exhibited by emotion dimensions in order to improve the prediction accuracy of machine learning methods - an idea which has been taken on by other researchers in the field since. In order to experimentally evaluate this, we extend methods such as the Long Short-Term Memory Neural Networks (LSTM), the Relevance Vector Machine (RVM) and Canonical Correlation Analysis (CCA) in order to exploit output relationships in learning. As it is shown, this increases the accuracy of machine learning models applied to this task. The annotation of continuous dimensional emotions is a tedious task, highly prone to the influence of various types of noise. Performed real-time by several annotators (usually experts), the annotation process can be heavily biased by factors such as subjective interpretations of the emotional states observed, the inherent ambiguity of labels related to human behaviour, the varying reaction lags exhibited by each annotator as well as other factors such as input device noise and annotation errors. In effect, the annotations manifest a strong spatio-temporal annotator-specific bias. Failing to properly deal with annotation bias and noise leads to an inaccurate ground truth, and therefore to ill-generalisable machine learning models. This deems the proper fusion of multiple annotations, and the inference of a clean, corrected version of the ``ground truth'' as one of the most significant challenges in the area. A highly important contribution of this thesis lies in the introduction of Dynamic Probabilistic Canonical Correlation Analysis (DPCCA), a method aimed at fusing noisy continuous annotations. By adopting a private-shared space model, we isolate the individual characteristics that are annotator-specific and not shared, while most importantly we model the common, underlying annotation which is shared by annotators (i.e., the derived ground truth). By further learning temporal dynamics and incorporating a time-warping process, we are able to derive a clean version of the ground truth given multiple annotations, eliminating temporal discrepancies and other nuisances. The integration of the temporal alignment process within the proposed private-shared space model deems DPCCA suitable for the problem of temporally aligning human behaviour; that is, given temporally unsynchronised sequences (e.g., videos of two persons smiling), the goal is to generate the temporally synchronised sequences (e.g., the smile apex should co-occur in the videos). Temporal alignment is an important problem for many applications where multiple datasets need to be aligned in time. Furthermore, it is particularly suitable for the analysis of facial expressions, where the activation of facial muscles (Action Units) typically follows a set of predefined temporal phases. A highly challenging scenario is when the observations are perturbed by gross, non-Gaussian noise (e.g., occlusions), as is often the case when analysing data acquired under real-world conditions. To account for non-Gaussian noise, a robust variant of Canonical Correlation Analysis (RCCA) for robust fusion and temporal alignment is proposed. The model captures the shared, low-rank subspace of the observations, isolating the gross noise in a sparse noise term. RCCA is amongst the first robust variants of CCA proposed in literature, and as we show in related experiments outperforms other, state-of-the-art methods for related tasks such as the fusion of multiple modalities under gross noise. Beyond private-shared space models, Component Analysis (CA) is an integral component of most computer vision systems, particularly in terms of reducing the usually high-dimensional input spaces in a meaningful manner pertaining to the task-at-hand (e.g., prediction, clustering). A final, significant contribution of this thesis lies in proposing the first unifying framework for probabilistic component analysis. The proposed framework covers most well-known CA methods, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Locality Preserving Projections (LPP) and Slow Feature Analysis (SFA), providing further theoretical insights into the workings of CA. Moreover, the proposed framework is highly flexible, enabling novel CA methods to be generated by simply manipulating the connectivity of latent variables (i.e. the latent neighbourhood). As shown experimentally, methods derived via the proposed framework outperform other equivalents in several problems related to affect sensing and facial expression analysis, while providing advantages such as reduced complexity and explicit variance modelling.Open Acces

    A Spatio-Temporal Probabilistic Framework for Dividing and Predicting Facial Action Units

    Get PDF
    This thesis proposed a probabilistic approach to divide the Facial Action Units (AUs) based on the physiological relations and their strengths among the facial muscle groups. The physiological relations and their strengths were captured using a Static Bayesian Network (SBN) from given databases. A data driven spatio-temporal probabilistic scoring function was introduced to divide the AUs into : (i) frequently occurred and strongly connected AUs (FSAUs) and (ii) infrequently occurred and weakly connected AUs (IWAUs). In addition, a Dynamic Bayesian Network (DBN) based predictive mechanism was implemented to predict the IWAUs from FSAUs. The combined spatio-temporal modeling enabled a framework to predict a full set of AUs in real-time. Empirical analyses were performed to illustrate the efficacy and utility of the proposed approach. Four different datasets of varying degrees of complexity and diversity were used for performance validation and perturbation analysis. Empirical results suggest that the IWAUs can be robustly predicted from the FSAUs in real-time and was found to be robust against noise

    Gaussian processes for modeling of facial expressions

    Get PDF
    Automated analysis of facial expressions has been gaining significant attention over the past years. This stems from the fact that it constitutes the primal step toward developing some of the next-generation computer technologies that can make an impact in many domains, ranging from medical imaging and health assessment to marketing and education. No matter the target application, the need to deploy systems under demanding, real-world conditions that can generalize well across the population is urgent. Hence, careful consideration of numerous factors has to be taken prior to designing such a system. The work presented in this thesis focuses on tackling two important problems in automated analysis of facial expressions: (i) view-invariant facial expression analysis; (ii) modeling of the structural patterns in the face, in terms of well coordinated facial muscle movements. Driven by the necessity for efficient and accurate inference mechanisms we explore machine learning techniques based on the probabilistic framework of Gaussian processes (GPs). Our ultimate goal is to design powerful models that can efficiently handle imagery with spontaneously displayed facial expressions, and explain in detail the complex configurations behind the human face in real-world situations. To effectively decouple the head pose and expression in the presence of large out-of-plane head rotations we introduce a manifold learning approach based on multi-view learning strategies. Contrary to the majority of existing methods that typically treat the numerous poses as individual problems, in this model we first learn a discriminative manifold shared by multiple views of a facial expression. Subsequently, we perform facial expression classification in the expression manifold. Hence, the pose normalization problem is solved by aligning the facial expressions from different poses in a common latent space. We demonstrate that the recovered manifold can efficiently generalize to various poses and expressions even from a small amount of training data, while also being largely robust to corrupted image features due to illumination variations. State-of-the-art performance is achieved in the task of facial expression classification of basic emotions. The methods that we propose for learning the structure in the configuration of the muscle movements represent some of the first attempts in the field of analysis and intensity estimation of facial expressions. In these models, we extend our multi-view approach to exploit relationships not only in the input features but also in the multi-output labels. The structure of the outputs is imposed into the recovered manifold either from heuristically defined hard constraints, or in an auto-encoded manner, where the structure is learned automatically from the input data. The resulting models are proven to be robust to data with imbalanced expression categories, due to our proposed Bayesian learning of the target manifold. We also propose a novel regression approach based on product of GP experts where we take into account people's individual expressiveness in order to adapt the learned models on each subject. We demonstrate the superior performance of our proposed models on the task of facial expression recognition and intensity estimation.Open Acces

    Exploiting Semantic Embedding And Visual Feature For Facial Action Unit Detection

    Get PDF
    Recent study on detecting facial action units (AU) has utilized auxiliary information (i.e., facial landmarks, relationship among AUs and expressions, web facial images, etc.), in order to improve the AU detection performance. As of now, no semantic information of AUs has yet been explored for such a task. As a matter of fact, AU semantic descriptions provide much more information than the binary AU labels alone, thus we propose to exploit the Semantic Embedding and Visual feature (SEV-Net) for AU detection. More specifically, AU semantic embeddings are obtained through both Intra-AU and Inter-AU attention modules, where the Intra-AU attention module captures the relation among words within each sentence that describes individual AU, and the Inter-AU attention module focuses on the relation among those sentences. The learned AU semantic embeddings are then used as guidance for the generation of attention maps through a cross-modality attention network. The generated cross-modality attention maps are further used as weights for the aggregated feature. Our proposed method is unique in that the semantic features are exploited as the first of this kind. The approach has been evaluated on three public AU-coded facial expression databases and has achieved a superior performance than the state-of-the-art peer methods

    Automatic analysis of facial actions: a survey

    Get PDF
    As one of the most comprehensive and objective ways to describe facial expressions, the Facial Action Coding System (FACS) has recently received significant attention. Over the past 30 years, extensive research has been conducted by psychologists and neuroscientists on various aspects of facial expression analysis using FACS. Automating FACS coding would make this research faster and more widely applicable, opening up new avenues to understanding how we communicate through facial expressions. Such an automated process can also potentially increase the reliability, precision and temporal resolution of coding. This paper provides a comprehensive survey of research into machine analysis of facial actions. We systematically review all components of such systems: pre-processing, feature extraction and machine coding of facial actions. In addition, the existing FACS-coded facial expression databases are summarised. Finally, challenges that have to be addressed to make automatic facial action analysis applicable in real-life situations are extensively discussed. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the future of machine recognition of facial actions: what are the challenges and opportunities that researchers in the field face

    Affective Human-Humanoid Interaction Through Cognitive Architecture

    Get PDF
    • …
    corecore