29,543 research outputs found

    Unified Mechanical Erosion Model for Multi-phase Mass Flows

    Full text link
    Erosion poses a great challenge in multi-phase mass flows as it drastically changes flow behavior and deposition pattern by dramatically increasing their masses, adversely affecting population and civil structures. There exists no mechanically-explained, unified multi-phase erosion model. We constitute a novel, unified and comprehensive mechanical erosion rates for solid and fluid phases and demonstrate their richness and urgency. This is achieved by seminally introducing interacting stresses across erosion-interface. Shear resistances from the bed against shear stresses from the landslide are based on consistent physical principles. Proposed multi-phase interactive shear structures are mechanically superior and dynamically flexible. Total erosion rate is the sum of solid and fluid erosion rates which are mechanically extensive and compact. Erosion rates consistently take solid and fluid fractions from the bed and customarily supply to solid and fluid components in the flow. This overcomes severe limitations inherited by existing models. For the first time, we physically correctly construct composite, intricate erosion velocities of particle and fluid from the bed and architect the complete net momentum productions that include all interactions between solids and fluids in the landslide and bed. We invent stress correction, erosive-shear-velocity, super-erosion-drift and erosion-matrix characterizing complex erosion processes. By embedding well constrained extensive erosion velocities, unified erosion rates and net momentum productions including erosion-induced inertia into mass and momentum balances, we develop a novel, mechanically-explained, comprehensive multi-phase model for erosive mass flows. As new model covers a broad spectrum of natural processes it offers great opportunities for practitioners in solving technical, engineering problems related to erosive multi-phase mass flows

    Transition from viscous to inertial regime in dense suspensions

    Full text link
    Non-Brownian suspensions present a transition from Newtonian behavior in the zero-shear limit to a shear thickening behaviour at a large shear rate, none of which is clearly understood so far. Here, we carry out numerical simulations of such an athermal dense suspension under shear, at an imposed confining pressure. This set-up is conceptually identical to the recent experiments of Boyer and co-workers [Phys. Rev. Lett. 107,188301 (2011)]. Varying the interstitial fluid viscosities, we recover the Newtonian and Bagnoldian regimes and show that they correspond to a dissipation dominated by viscous and contact forces respectively. We show that the two rheological regimes can be unified as a function of a single dimensionless number, by adding the contributions to the dissipation at a given volume fraction.Comment: 4 pages, 3 figure

    Unified Superfluid Dark Sector

    Full text link
    We present a novel theory of a unified dark sector, where late-time cosmic acceleration emerges from the dark matter superfluid framework. The system is described by a superfluid mixture consisting of two distinguishable states with a small energy gap, such as the ground state and an excited state of dark matter. Given their contact in the superfluid, interaction between those states can happen, converting one state into the other. This long range interaction within the superfluid couples the two superfluid phonon species through a cosine potential motivated by Josephson/Rabi interactions. As a consequence of this potential, a new dynamics of late-time accelerated expansion emerges in this system, without the need of dark energy, coming from a universe containing only this two-state DM superfluid. Because the superfluid species are non-relativistic, their sound speeds remain suitably small throughout the evolution. We calculate the expansion history and growth of linear perturbations, and compare the results to Λ\LambdaCDM cosmology. For the fiducial parameters studied here, the predicted expansion and growth function are close to those of Λ\LambdaCDM, but the difference in the predicted growth rate is significant at late times. The present theory nicely complements the recent proposal of dark matter superfluidity to explain the empirical success of MOdified Newtonian Dynamics (MOND) on galactic scales, thus offering a unified framework for dark matter, dark energy, and MOND phenomenology.Comment: 27 pages, 4 figures. v2: Version accepted in JCA

    Diffusion-Based Coarse Graining in Hybrid Continuum-Discrete Solvers: Applications in CFD-DEM

    Full text link
    In this work, a coarse-graining method previously proposed by the authors in a companion paper based on solving diffusion equations is applied to CFD-DEM simulations, where coarse graining is used to obtain solid volume fraction, particle phase velocity, and fluid-particle interaction forces. By examining the conservation requirements, the variables to solve diffusion equations for in CFD-DEM simulations are identified. The algorithm is then implemented into a CFD-DEM solver based on OpenFOAM and LAMMPS, the former being a general-purpose, three-dimensional CFD solver based on unstructured meshes. Numerical simulations are performed for a fluidized bed by using the CFD-DEM solver with the diffusion-based coarse-graining algorithm. Converged results are obtained on successively refined meshes, even for meshes with cell sizes comparable to or smaller than the particle diameter. This is a critical advantage of the proposed method over many existing coarse-graining methods, and would be particularly valuable when small cells are required in part of the CFD mesh to resolve certain flow features such as boundary layers in wall bounded flows and shear layers in jets and wakes. Moreover, we demonstrate that the overhead computational costs incurred by the proposed coarse-graining procedure are a small portion of the total costs in typical CFD-DEM simulations as long as the number of particles per cell is reasonably large, although admittedly the computational overhead of the coarse graining often exceeds that of the CFD solver. Other advantages of the present algorithm include more robust and physically realistic results, flexibility and easy implementation in almost any CFD solvers, and clear physical interpretation of the computational parameter needed in the algorithm. In summary, the diffusion-based method is a theoretically elegant and practically viable option for CFD-DEM simulations

    Dynamical neutrino masses in the generalized Chaplygin gas scenario with mass varying CDM

    Full text link
    Neutrinos coupled to an underlying scalar field in the scenario for unification of mass varying dark matter and cosmon-{\em like} dark energy is examined. In the presence of a tiny component of mass varying neutrinos, the conditions for the present cosmic acceleration and for the stability issue are reproduced. It is assumed that {\em sterile} neutrinos behave like mass varying dark matter coupled to mass varying {\em active} neutrinos through the {\em seesaw} mechanism, in a kind of {\em mixed} dark matter sector. The crucial point is that the dark matter mass may also exhibit a dynamical behavior driven by the scalar field. The scalar field mediates the nontrivial coupling between the mixed dark matter and the dark energy responsible for the accelerated expansion of the universe. The equation of state of perturbations reproduce the generalized Chaplygin gas (GCG) cosmology so that all the effective results from the GCG paradigm are maintained, being perturbatively modified by neutrinos.Comment: 19 pages, 5 figure
    • …
    corecore