We present a novel theory of a unified dark sector, where late-time cosmic
acceleration emerges from the dark matter superfluid framework. The system is
described by a superfluid mixture consisting of two distinguishable states with
a small energy gap, such as the ground state and an excited state of dark
matter. Given their contact in the superfluid, interaction between those states
can happen, converting one state into the other. This long range interaction
within the superfluid couples the two superfluid phonon species through a
cosine potential motivated by Josephson/Rabi interactions. As a consequence of
this potential, a new dynamics of late-time accelerated expansion emerges in
this system, without the need of dark energy, coming from a universe containing
only this two-state DM superfluid. Because the superfluid species are
non-relativistic, their sound speeds remain suitably small throughout the
evolution. We calculate the expansion history and growth of linear
perturbations, and compare the results to ΛCDM cosmology. For the
fiducial parameters studied here, the predicted expansion and growth function
are close to those of ΛCDM, but the difference in the predicted growth
rate is significant at late times. The present theory nicely complements the
recent proposal of dark matter superfluidity to explain the empirical success
of MOdified Newtonian Dynamics (MOND) on galactic scales, thus offering a
unified framework for dark matter, dark energy, and MOND phenomenology.Comment: 27 pages, 4 figures. v2: Version accepted in JCA