5 research outputs found

    Extension of 0.18µm standard CMOS technology operating range to the microwave and millimetre-wave regime

    Get PDF
    There is an increasing interest in building millimetre-wave circuits on standard digital complementary metal oxide semiconductor (CMOS) technology for applications such as wireless local area networks (WLAN), automotive radar and remote sensing. This stems from the existing low cost, well-developed, high yield infrastructure for mass production. The overall aim of this thesis is to extend the operating range of 0.18um standard logic CMOS technology to millimetre-wave regime. To this end, microwave and millimetre-wave design, optimisation and modelling methodologies for active and passive devices and low noise circuit implementation are described. As part of the evaluation, new systematic and modular ways of making high performance passive and active devices such as spiral inductors, slow-wave coplanar waveguide (CPW) transmission lines, comb capacitors and NMOS transistors are proposed, designed, simulated, fabricated, modelled and analysed. Small-signal and noise de-embedding techniques are developed and verified up to 110 GHz, providing an increased accuracy in the device model, leading to a robust design at millimetre-wave frequencies. Reduced substrate losses resulting in increased quality factor are presented for optimised spiral inductor designs, featuring patterned floating shield (PFS), enabling improved matching network and a reduced chip area. Based on the proposed shielded slow-wave CPW, both the line attenuation and structure length are decreased, resulting in a more compact and simplified circuit design. An optimised transistor design, aimed at reducing the layout parasitic effects, was realised. The optimisation led to a significant improvement in the gain and noise performance of the transistor, extending its operation beyond the cut-off frequency (ft). By combining all the optimised components, low noise amplifiers (LNAs) operating at 25 GHz and 40 GHz were implemented and compared. These LNAs demonstrate state-of-the-art performance, with the 40 GHz LNA exhibiting the highest gain and lowest noise performance of any LNA reported using 0.18um CMOS technology. On the other hand, the 25 GHz LNA showed a comparable performance to other reported results in literature using several topologies implemented in CMOS technology. These findings will provide a framework for expansion to smaller CMOS technology nodes with the view of extending to sub millimetre-wave frequencies

    Analyse et caractérisation des couplages substrat et de la connectique dans les circuits 3D : Vers des modèles compacts

    Get PDF
    The 3D integration is the most promising technological solution to track the level of integration dictated by Moore's Law (see more than Moore, Moore versus more). It leads to important research for a dozen years. It can superimpose different circuits and components in one box. Its main advantage is to allow a combination of heterogeneous and highly specialized technologies for the establishment of a complete system, while maintaining a high level of performance with very short connections between the different circuits. The objective of this work is to provide consistent modeling via crossing, and / or contacts in the substrate, with various degrees of finesse / precision to allow the high-level designer to manage and especially to optimize the partitioning between the different strata. This modelization involves the development of multiple views at different levels of abstraction: the physical model to "high level" model. This would allow to address various issues faced in the design process: - The physical model using an electromagnetic simulation based on 2D or 3D ( finite element solver ) is used to optimize the via (materials, dimensions etc..) It determines the electrical performance of the via, including high frequency. Electromagnetic simulations also quantify the coupling between adjacent via. - The analytical compact of via their coupling model, based on a description of transmission line or Green cores is used for the simulations at the block level and Spice type simulations. Analytical models are often validated against measurements and / or physical models.L’intégration 3D est la solution technologique la plus prometteuse pour suivre le niveau d’intégration dictée par la loi de Moore (cf. more than Moore, versus more Moore). Elle entraine des travaux de recherche importants depuis une douzaine d’années. Elle permet de superposer différents circuits et composants dans un seul boitier. Son principal avantage est de permettre une association de technologies hétérogènes et très spécialisées pour la constitution d’un système complet, tout en préservant un très haut niveau de performance grâce à des connexions très courtes entre ces différents circuits. L’objectif de ce travail est de fournir des modélisations cohérentes de via traversant, ou/et de contacts dans le substrat, avec plusieurs degrés de finesse/précision, pour permettre au concepteur de haut niveau de gérer et surtout d’optimiser le partitionnement entre les différentes strates. Cette modélisation passe par le développement de plusieurs vues à différents niveaux d’abstraction: du modèle physique au modèle « haut niveau ». Elle devait permettre de répondre à différentes questions rencontrées dans le processus de conception :- le modèle physique de via basé sur une simulation électromagnétique 2D ou 3D (solveur « éléments finis ») est utilisé pour optimiser l’architecture du via (matériaux, dimensions etc.) Il permet de déterminer les performances électriques des via, notamment en haute fréquence. Les simulations électromagnétiques permettent également de quantifier le couplage entre via adjacents. - le modèle compact analytique de via et de leur couplage, basé sur une description de type ligne de transmission ou noyaux de Green, est utilisé pour les simulations au niveau bloc, ainsi que des simulations de type Spice. Les modèles analytiques sont souvent validés par rapport à des mesures et/ou des modèles physiques

    Accurate characterisation of Resonant Tunnelling Diodes for high-frequency applications

    Get PDF
    Recent scientific advancements regarding the generation and detection of terahertz (THz) radiation have led to a rapid increase in research interest in this frequency band in the context of its numerous potential applications including high-speed wireless communications, biomedical diagnostics, security screening and material science. Various proposed solutions have been investigated in the effort to bridge this relatively unexplored region of the electromagnetic spectrum, and thus exploit its untapped potential. Among them, the resonant tunnelling diode (RTD) has been demonstrated as the fastest electronic device with its room temperature operation extending into the THz range. The RTD exhibits a negative differential resistance (NDR) region in its I-V characteristics, with this feature being key to its capabilities. Even though the unique capabilities of RTD devices have been experimentally proven in the realisation of compact NDR oscillators and detectors, with fundamental frequencies of about 2 THz, and high-sensitivity detectors up to 0.83 THz, the reliable design procedures and methodologies of RTD-based circuits are yet to be fully developed. In this regard, significant effort has been devoted primarily to the accurate theoretical description of the high-frequency behaviour of RTDs, using various small-signal equivalent circuit models. However, many of these models have had either limited or no experimental validation, and so a robust and reliable RTD device model is desirable. The aim of this thesis is to describe a systematic approach regarding the design, fabrication and characterisation of RTD devices, providing a universal methodology to accurately determine their radio-frequency (RF) behaviour, and so this way enable a consistent integrated circuit design procedure for high-frequency circuits. A significant challenge in the modelling of RTD devices is represented by the presence of parasitic bias oscillations within the NDR region. This has been identified as one of the main restricting factors with regards to the accurate high-frequency characterisation of this operating region. The common approach to overcoming this limitation is through a stabilising technique comprising of an external shunt-resistor network. This approach has been successfully demonstrated to suppress bias oscillations in RTD-based circuits which require operation within the NDR region. However, the introduction of the additional circuit component associated with this method increases the complexity of the de-embedding procedure of the extrinsic parasitic elements, rendering the overall device characterisation generally difficult at high-frequencies. In this work, a novel on-wafer bond-pad and shunt resistor network de-embedding technique was developed in order to facilitate the characterisation of RTDs throughout the complete bias range, without limitation to device sizing or frequency, under a stable operating regime. The procedure was demonstrated to accurately determine the circuit high-frequency behaviour of the RTD device from S-parameter measurements up to 110 GHz. The universal nature of this procedure allows it to be easily adapted to accommodate higher complexity stabilising networks configuration or different bond-pad geometries. Furthermore, the de-embedding method has also enabled the development of a novel quasi-analytical procedure for high accuracy extraction of the device equivalent circuit parameters, which is expected to provide a strong experimental foundation for the further establishment of a universal RTD RF model. The applicability of the developed high-frequency model, which can be easily scaled for various device sizes, together with the measured RTD I-V characteristics was further demonstrated in the development of a non-linear model, which was integrated in a commercial simulator, the Advanced Design Systems (ADS) software from Keysight Technologies. From an application perspective, the model was used in the design of an RTD as a square-law detector for high-frequency data transmission systems. The simulated detector performance was validated experimentally using an RTD-based transmitter in the W-band (75 – 110 GHz) up to 4 Gbps (error free transmission: BER < 10-10 in a waveguide connection), and in the Ka-band (26.5 – 50 GHz) up to 2.4 Gbps (error free transmission in a wireless data link), which demonstrated the accuracy of the developed RTD modelling approach. Lastly, a sensitivity analysis of the RTD-based detector within the Ka-band showed a superior RTD performance over commercially available solutions, with a peak (corrected) detector responsivity of 13.48 kV/W, which is a factor of >6 better compared to commercially available Schottky barrier diode (SBD) detectors

    Metamaterial

    Get PDF
    In-depth analysis of the theory, properties and description of the most potential technological applications of metamaterials for the realization of novel devices such as subwavelength lenses, invisibility cloaks, dipole and reflector antennas, high frequency telecommunications, new designs of bandpass filters, absorbers and concentrators of EM waves etc. In order to create a new devices it is necessary to know the main electrodynamical characteristics of metamaterial structures on the basis of which the device is supposed to be created. The electromagnetic wave scattering surfaces built with metamaterials are primarily based on the ability of metamaterials to control the surrounded electromagnetic fields by varying their permeability and permittivity characteristics. The book covers some solutions for microwave wavelength scales as well as exploitation of nanoscale EM wavelength such as visible specter using recent advances of nanotechnology, for instance in the field of nanowires, nanopolymers, carbon nanotubes and graphene. Metamaterial is suitable for scholars from extremely large scientific domain and therefore given to engineers, scientists, graduates and other interested professionals from photonics to nanoscience and from material science to antenna engineering as a comprehensive reference on this artificial materials of tomorrow

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation
    corecore