11,405 research outputs found

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Efficient Identification of Equivalences in Dynamic Graphs and Pedigree Structures

    Full text link
    We propose a new framework for designing test and query functions for complex structures that vary across a given parameter such as genetic marker position. The operations we are interested in include equality testing, set operations, isolating unique states, duplication counting, or finding equivalence classes under identifiability constraints. A motivating application is locating equivalence classes in identity-by-descent (IBD) graphs, graph structures in pedigree analysis that change over genetic marker location. The nodes of these graphs are unlabeled and identified only by their connecting edges, a constraint easily handled by our approach. The general framework introduced is powerful enough to build a range of testing functions for IBD graphs, dynamic populations, and other structures using a minimal set of operations. The theoretical and algorithmic properties of our approach are analyzed and proved. Computational results on several simulations demonstrate the effectiveness of our approach.Comment: Code for paper available at http://www.stat.washington.edu/~hoytak/code/hashreduc

    Proceedings of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015)

    Full text link
    The goal of the DSLDI workshop is to bring together researchers and practitioners interested in sharing ideas on how DSLs should be designed, implemented, supported by tools, and applied in realistic application contexts. We are both interested in discovering how already known domains such as graph processing or machine learning can be best supported by DSLs, but also in exploring new domains that could be targeted by DSLs. More generally, we are interested in building a community that can drive forward the development of modern DSLs. These informal post-proceedings contain the submitted talk abstracts to the 3rd DSLDI workshop (DSLDI'15), and a summary of the panel discussion on Language Composition
    • …
    corecore