38 research outputs found

    A unified approach to combinatorial key predistribution schemes for sensor networks

    Get PDF
    There have been numerous recent proposals for key predistribution schemes for wireless sensor networks based on various types of combinatorial structures such as designs and codes. Many of these schemes have very similar properties and are analysed in a similar manner. We seek to provide a unified framework to study these kinds of schemes. To do so, we define a new, general class of designs, termed “partially balanced t-designs”, that is sufficiently general that it encompasses almost all of the designs that have been proposed for combinatorial key predistribution schemes. However, this new class of designs still has sufficient structure that we are able to derive general formulas for the metrics of the resulting key predistribution schemes. These metrics can be evaluated for a particular scheme simply by substituting appropriate parameters of the underlying combinatorial structure into our general formulas. We also compare various classes of schemes based on different designs, and point out that some existing proposed schemes are in fact identical, even though their descriptions may seem different. We believe that our general framework should facilitate the analysis of proposals for combinatorial key predistribution schemes and their comparison with existing schemes, and also allow researchers to easily evaluate which scheme or schemes present the best combination of performance metrics for a given application scenario

    A hierarchical key pre-distribution scheme for fog networks

    Get PDF
    Security in fog computing is multi-faceted, and one particular challenge is establishing a secure communication channel between fog nodes and end devices. This emphasizes the importance of designing efficient and secret key distribution scheme to facilitate fog nodes and end devices to establish secure communication channels. Existing secure key distribution schemes designed for hierarchical networks may be deployable in fog computing, but they incur high computational and communication overheads and thus consume significant memory. In this paper, we propose a novel hierarchical key pre-distribution scheme based on “Residual Design” for fog networks. The proposed key distribution scheme is designed to minimize storage overhead and memory consumption, while increasing network scalability. The scheme is also designed to be secure against node capture attacks. We demonstrate that in an equal-size network, our scheme achieves around 84% improvement in terms of node storage overhead, and around 96% improvement in terms of network scalability. Our research paves the way for building an efficient key management framework for secure communication within the hierarchical network of fog nodes and end devices. KEYWORDS: Fog Computing, Key distribution, Hierarchical Networks

    A hierarchical key pre-distribution scheme for fog networks

    Get PDF
    Security in fog computing is multi-faceted, and one particular challenge is establishing a secure communication channel between fog nodes and end devices. This emphasizes the importance of designing efficient and secret key distribution scheme to facilitate fog nodes and end devices to establish secure communication channels. Existing secure key distribution schemes designed for hierarchical networks may be deployable in fog computing, but they incur high computational and communication overheads and thus consume significant memory. In this paper, we propose a novel hierarchical key pre-distribution scheme based on “Residual Design” for fog networks. The proposed key distribution scheme is designed to minimize storage overhead and memory consumption, while increasing network scalability. The scheme is also designed to be secure against node capture attacks. We demonstrate that in an equal-size network, our scheme achieves around 84% improvement in terms of node storage overhead, and around 96% improvement in terms of network scalability. Our research paves the way for building an efficient key management framework for secure communication within the hierarchical network of fog nodes and end devices. KEYWORDS: Fog Computing, Key distribution, Hierarchical Networks

    Broadcast-enhanced key predistribution schemes

    Get PDF
    We present a formalisation of a category of schemes that we refer to as broadcast-enhanced key predistribution schemes (BEKPSs). These schemes are suitable for networks with access to a trusted base station and an authenticated broadcast channel. We demonstrate that the access to these extra resources allows for the creation of BEKPSs with advantages over key predistribution schemes such as flexibility and more efficient revocation. There are many possible ways to implement BEKPSs, and we propose a framework for describing and analysing them. In their paper “From Key Predistribution to Key Redistribution,” CichoƄ et al. [2010] propose a scheme for “redistributing” keys to a wireless sensor network using a broadcast channel after an initial key predistribution. We classify this as a BEKPS and analyse it in that context. We provide simpler proofs of some results from their paper, give a precise analysis of the resilience of their scheme, and discuss possible modifications. We then study two scenarios where BEKPSs may be particularly desirable and propose a suitable family of BEKPSs for each case. We demonstrate that they are practical and efficient to implement, and our analysis shows their effectiveness in achieving suitable trade-offs between the conflicting priorities in resource-constrained networks

    Hash Chains Sensornet: A Key Predistribution Scheme for Distributed Sensor Networks Using Nets and Hash Chains

    Get PDF
    Key management is an essential functionality for a security protocol; particularly for implementations to low cost devices of a distributed sensor networks (DSN)–a prototype of Internet of Things (IoT). Constraints in resources of the constituent devices of a low cost IoT (sensors of DSN) restricts implementations of computationally heavy public key cryptosystems. This led to adaptation of the novel key predistribution technique in symmetric key platform to efficiently tackle the problem of key management for these resource starved networks. Initial proposals use random graphs, later key predistribution schemes (KPS) exploit combinatorial approaches to assure essential design properties. Combinatorial designs like a (v, b, r, k)– configuration which forms a ”–CID are effective schemes to design KPS. A net in a vector space is a set of cosets of certain kind of subspaces called partial spread. A ”(v, b, r, k)–CID can be formed from a net. In this paper, we propose a key predistribution scheme for DSN, named as Sensornet, using a net. We observe that any deterministic KPS suffer from “smart attack” and hence devise a generic method to eliminate it. Resilience of a KPS can be improved by clever Hash Chains technique introduced by Bechkit et al. We improve our Sensornet to achieve Hash Chains Sensornet (HC(Sensornet)) by the applications of these two generic methods. Effectiveness of Sensornet and HC(Sensornet) in term of crucial metrics in comparison to other prominent schemes has been theoretically established

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    On the Role of Expander Graphs in Key Predistribution Schemes for Wireless Sensor Networks

    Get PDF
    Providing security for a wireless sensor network composed of small sensor nodes with limited battery power and memory can be a non-trivial task. A variety of key predistribution schemes have been proposed which allocate symmetric keys to the sensor nodes before deployment. In this paper we examine the role of expander graphs in key predistribution schemes for wireless sensor networks. Roughly speaking, a graph has good expansion if every `small\u27 subset of vertices has a `large\u27 neighbourhood, and intuitively, expansion is a desirable property for graphs of networks. It has been claimed that good expansion in the product graph is necessary for `optimal\u27 networks. We demonstrate flaws in this claim, argue instead that good expansion is desirable in the intersection graph, and discuss how this can be achieved. We then consider key predistribution schemes based on expander graph constructions and compare them to other schemes in the literature. Finally, we propose the use of expansion and other graph-theoretical techniques as metrics for assessing key predistribution schemes and their resulting wireless sensor networks
    corecore