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Abstract: Key management is an essential functionality for a security protocol; particularly for implementations 
to low cost devices of a distributed sensor networks (DSN)–a prototype of Internet of Things (IoT). Constraints 
in resources of constituent devices of a low cost IoT (example: sensors of DSN) restricts implementations of 
computationally heavy public key cryptosystems. This leads to adaptation of the novel key predistribution 
technique in symmetric key platform to efficiently tackle the key management problem for these resource starved 
networks. Initial key predistribution schemes (KPS) use random graphs; while later ones exploit combinatorial 
approaches that assure predictable design properties. Combinatorial designs like a (v, b, r, k)–configuration that 
forms a µ–CID are effective schemes to design a KPS. A net in a vector space is a set of cosets of certain kind of 
subspaces called partial spread. A µ(v, b, r, k)–CID can be formed from a net. In this paper, we propose a KPS for 
DSN, named as Sensornet, using a net. We observe that any deterministic KPS suffer from “smart attack” and 
hence devise a generic method to eliminate such attacks. Resilience of a KPS can improve by clever application 
of a Hash Chains technique introduced by Bechkit et al. We improve our Sensornet to obtain a new Hash Chains 
Sensornet (HC(Sensornet)) by the applications of these two generic methods. Effectiveness of Sensornet and 
HC(Sensornet) in term of crucial metrics in comparison to prominent schemes has been theoretically established. 
 
Keywords: Distributed sensor networks, Key management, Combinatorial designs, Attacks, Hash function. 
 
 
 

1. Introduction 
 

Distributed (Wireless) Sensor Networks (DSN) are 
revolutionary information gathering systems owing to 
their easy deployment and flexible topology. They are 
decentralized with numerous low cost identical 
resource starved wireless devices, called sensors or 
nodes that deal with sensory data. 

                                                 
1 This paper is thoroughly revised and substantially extended version of our “best paper” awarded conference publication at 
Sensornet 2017. Title of our conference version is: “Sensornet: A Key Predistribution Scheme for Distributed Sensors using 
Nets” [1]. Additional sections in this work in comparison to earlier version are Sections 2, 6, 7 and 8 and all their subsections. 

They are considered to be a nice prototype of 
Internet of Things (IoT) which is a sophisticated 
concept that aims to connect our world beyond 
imagination. This has boosted the study of such DSN 
in recent times. 

Prominent scientific applications of IoT are smart 
homes, smart cities, smart grids, smart water 
networks, agriculture, health-care, etc. Of particular 
interest are applications of DSN to networks where 
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security is a premium. For instance, security may be 
essential for certain sensitive scientific and military 
networks that are meant for (i) self-healing minefields, 
(ii) military surveillance, (i) force protection arenas, 
and so on. Primary tasks of devices of an IoT in any 
such application are to collect information from their 
surroundings, process and forward them to other 
devices. Depending on specific applications, they may 
be further required to (i) track and/or classify an 
object, (ii) determine parametric value(s) of a given 
location, etc. These sensitive tasks for such critical 
applications create necessity of secure message 
exchange among the low cost IoT devices. 
 
 

1.1. Type of Cryptosystem: KPS 
 

Constraints in resources of constituent tiny devices 
of a low cost IoT (like sensors of DSN) make us opt 
for lightweight symmetric key cryptosystems (SKC) 
over expensive public key cryptosystems (PKC) while 
designing security protocols for such networks. SKC 
require both senders and receivers to possess the same 
encryption/decryption key before message exchange. 
Standard online key exchange techniques that involve 
PKC are avoided due to high cost factor. 

Few trivial key distribution techniques are as 
below. First approach is to assign a single key for the 
entire network. This method is vulnerable to “single 
point failure” (compromise of one sensor reveals this 
single system key). Second is to think of assigning 
pairwise distinct SKC keys for every pair of devices. 
This later strategy overloads the memory of each 
sensor; N – 1 keys are required to be stored per sensor 
for a network of size N. This is impractical for large 
networks (i.e., large value of N ( ≈104, say, or greater). 
Treating a node (or a few) as Trusted Authority (TA) 
is risky. This also makes the network prone to “single 
point failure” because capture of sensors acting as TA 
leads to vulnerable systems. Thereby schemes like 
LEAP [2] are avoided while designing secure key 
management schemes for DSN. 

These facts emphasize the importance of proper 
employment of an adequate key management scheme. 
This situation was wittily overcome in 2002 by 
Eschenauer and Gligor [3] by introducing the concept 
of key predistribution that involves applications of 
SKC to sensor networks. Any KPS primarily executes: 

 Key distribution: Prior to deployment, keys are 
preloaded into sensors to form their keyrings or key 
chains from the collection of all network keys, called 
key pool. Each system key is marked with a unique 
identifier (key id). Certain schemes [4] consider (node 
id) as a unique function of all the key ids. These key 
or, node id are used during key establishment. 

 Key establishment: The preloaded keys are 
established by a two steps process, as below: 

(i) Shared key discovery phase establishes the 
shared key(s) among the participant nodes. 
This may be achieved by broadcasting the key 
ids of all keys contained in the nodes (or node 

id). On receiving each other’s key ids, the 
sensors tally them to trace their shared key 
id(s), hence common shared key(s). 

(ii) Path key establishment phase establishes a path 
key between a pair of nodes that do not share 
key. This process involves intermediate nodes. 
Refer to common intersection designs (µ–CID) 
in Section 4. 

Depending on whether the above processes are 
probabilistic or deterministic, such schemes are 
classified into two types: (a) random and (b) 
deterministic. Sections 3.1 and 3.2 present a brief 
overview of individual type of schemes. 
 
 

1.2. Summary of our Contributions 
 

Observing the significant advantages of 
deterministic KPS during key management for low 
cost distributed networks, we set out to propose one 
such scheme. Our proposal uses net of partial spreads 
(or, nets) in a finite vector space that have been well 
studied combinatorically and as such, we name the 
scheme as Sensornet. Later we extend our protocol to 
a resiliency enhanced version, Hash Chains Sensornet 
(HC(Sensornet)). The process eliminates dangerous 
“smart attacks” (defined below in Section 2). 
 

1.3. Paper Organization 
 

Prior to the proposal of our protocols, we introduce 
in Section 2, all threat models that we consider in our 
work. Section 3 conducts a brief literature survey on 
KPS and then presents some preliminary theory 
related to combinatorial set systems that are required 
to construct such KPS. Construction of net of partial 
spreads or nets is reviewed in Section 4 and our 
scheme Sensornet is presented in Section 5. This is 
followed by proposal of a generic approach that 
eradicates “smart attacks” in Section 6. A generic 
Hash Chains based approach of Bechkit et al. [5, 6] 
that enhances resilience of any KPS is reviewed in  
Section 7. Our basic Sensornet scheme is then 
extended to Hash Chains Sensornet (HC(Sensornet)) 
by applications of these generic approaches. We 
analyze Sensornet and HC(Sensornet) in terms of 
performance metrics in Section 9 and thereby establish 
our scheme’s efficiency in comparison to prominent 
proposals. We infer that our protocols adhere to the 
desirable criteria set out in Section 3.4. We summarize 
our work in Section 10 and state related future research 
directions in Section 11. 
 
 

2. Threat Models 
 

Passive eavesdroppers have little effect on KPS 
systems. So, our system’s resilience is analyzed 
against two active adversarial attacks. They are 
random node compromise and smart attacks. 

‘Random node (compromise) attacks’, as the name 
suggests, is the random compromise of nodes by an 
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adversary. This leads to partial disclosure of key pool 
(K ) of existing devices; thereby restricting the use of 
links that were secured by these keys. 

“Smart Attack” [6] is essentially selective or 
“smart” compromise of (other) nodes that share the 
same key(s) as a pair of communicating nodes. This 
attack occurs because the key establishment process 
requires exchange of key ids in (unencrypted) plain 
text. This reveals the key sharing graph that can be 
beneficial to an adversary to selectively (or smartly) 
target specific nodes (see Pietro et al. [7] for details). 

Most KPS solution exchange unencrypted set of 
their key ids or a unique function of this set, aka node 
ids during key establishment. Thus the sets of key ids 
(or the node ids) of these nodes becomes a public 
information. So, an attacker can easily compute the 
shared key ids by ‘equating’ them (like any node) and 
successfully launch a “smart attack” [7]. Few 
prominent examples where this happens are [5, 6, 8-
13]. However, there are works [14, 15] that encrypt 
these secondary node ids or set of key ids before 
transmissions and thereby seal this attack. 

Due to its predictable nature, selective capture of 
(uncompromised) nodes may have more devastating 
effects than the random model. This situation is 
rectified by exchange of encrypted sets of key ids; 
thereby eliminating “smart attack” (see Section 6). 
 
 

3. A Brief Survey of KPS 
 

This section presents a state–of–the–art survey of 
prominent KPS. We split survey into three stage: (i) 
random KPS (RPKS), (ii) deterministic KPS (DKPS), 
and (iii) advantages of later type over former. Thereby, 
we justify proposal of our new deterministic KPS 
adhering to design criteria set out in Section 3.4. 
 
 

3.1. Random Key Predistribution Schemes 
 

First generation KPS rely on random graph theory 
pioneered by Erdos and Renyi [16] to preload SKC 
keys into the sensors. Therefore, keyrings are formed 
randomly. This leads to probabilistic key sharing and 
establishment. Later is achieved by either broadcast of 
key ids or challenge and response. Refer to [3,  
Section 2.1]. Earlier, Blom proposed the first key 
distribution scheme [17] in public key settings meant 
for resourceful ad hoc networks. Blom’s schemes uses 
pairs of public private matrices for key distribution. It 
cannot be applied to resource constraint sensor 
networks due to its heavy memory requirement to 
store huge vectors. Several researchers use variants of 
Blom’s schemes to propose both random and 
deterministic KPS for DSN. 
 
 

3.2. Deterministic Key Predistribution 
 

Deterministic KPS were simultaneously proposed 
by [9, 10, 13] in 2004. The work [13] combines subset 

based schemes with existing key distribution schemes 
such as [17] to obtain multiple key spaces. The scheme 
of Lee and Stinson [10] uses quadratic equation 
solving and can be viewed as a scalable extension of 
their later proposal [11] that uses Transversal Design 
(TD(k,p)). This later work further summarizes the 
necessary conditions for a combinatorial design to 
yield a deterministic KPS. The work [9] exploits 
combinatorial designs like symmetric Balanced 
Incomplete Block Designs (BIBD), generalized 
quadrangles and projective planes [11, 12, 18]. Certain 
KPS [4] exploit special Algebraic structures like Reed 
Solomon code based KPS. However, these protocols 
permit alternate combinatorial descriptions that have 
been well studied in [14, 15, 18]. 
 
 

3.3. Advantages of DKPS over RKPS 
 
Deterministic schemes have advantages over their 

random counterparts. For instance, a desired property 
of a randomized scheme may occur only with a certain 
probability whereas they can be proven to hold in a 
deterministic scheme [11, 12, 18]. This led to 
proposals of numerous deterministic KPS using 
various combinatorial tricks. Further the predictable 
nature of these combinatorial structures has been 
efficiently exploited to address design weaknesses of 
certain prominent KPS. For instance, the schemes [14, 
15] addresses the connectivity and resilience aspect of 
[4, 11] by a deterministic design specific approach. 

Contrary to these observations, Ruj and Pal [19] 
state that random graph models are well suited for 
‘scalability’ and ‘resilience’. Thereby, they justify 
their proposals of random graph based preferential 
attachment models with degree bounds. They design 
networks using their model. Their designs suffer from 
highly skewed load distribution, poor connectivity and 
resiliency; and so, are inappropriate for applications to 
(distributed) IoT. 

In fact, sensitive IoT applications require protocols 
to yield equal distribution of tasks among peers. 
Moreover, to reduce hops and hence potential risks 
from node capture, it is more important to have 
connected networks that cannot be guaranteed by 
random schemes. So we opt for deterministic 
protocols for security applications in low cost IoT 
networks that assure predictable (high) connectivity; 
despite them having restricted scaling operations. This 
is a major area of study for most (deterministic) KPS 
proposals, including ours (recalled in Section 11). 

Structure of the combinatorial objects used to 
design deterministic KPS cannot directly model 
networks of any specified size N. Usually, such 
structures result in designs having a specific pattern in 
the number of resultant blocks, viz. a prime power etc. 
Since N can be any number, a standard strategy is to 
consider the least prime power that is greater than the 
network size (i.e., pz ≥ N). Then N subset are 
randomly selected to form the key rings of the network 
nodes. Bose et al. [8] speculate that random removal 
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of blocks may have a disadvantageous effect on the 
underlying design’s properties and hence become an 
issue of concern. Fortunately, this claim of Bose et al. 
[8] has been successfully challenged by Henry et al. 
[20]. Through practical experiments, they establish 
that random removal of key rings of a combinatorial 
KPS has negligible effect with overwhelming 
probability. This work reestablishes the importance of 
combinatorial schemes. Further these excess block 
may be useful in (restricted) scaling of a network. 
 
 

3.4. Desirable Design Criteria 
 

Devices of a low cost IoT (example: sensors of a 
DSN) are highly prone to damage and/or physical 
capture. This is a crucial consideration during the 
design of an (energy) efficient KPS. Prime objectives 
of any KPS is to ensure that the resulting network: 
1. Has less number of keys per node, i.e., sizes of 

individual keyrings are less; 
2. Have large node support, i.e., support large 

number of network nodes; 
3. Has good (ideally full secure) connectivity. Secure 

connectivity (or, simply connectivity) is the ratio 
of number of (secure) links in eventual network to 
all possible links. A pair of nodes are said to be 
connected by a (secure) link if there exists at least 
one secret key between them; 

4. is resilient against various types of adversarial 
attacks. A prevailing method adopted in most 
existing works [9-15,18] is to show that a standard 
resiliency coefficient fail(t) is minimized. We 
follow suit. The quantifier fail(t) measures the 
ratio of links broken after compromise of t sensors 
to the total number of links in the remaining 
network. Formally, fail(t) = ݑ௧ ܾ௧ൗ , where ܾ௧ is the 

number of links broken when t nodes are 
compromised and ݑ௧ is the total number of links in 
the remaining network of uncompromised nodes. 

Ideally a KPS should have small keyrings, large network 
support with appreciable resiliency, scalability and 
(secure) connectivity. However, prominent researches 
prove the impossibility of construction of a perfect KPS 
that meets all these criteria [11, 18]. This motivates 
proposal of designs that are robust for specific purpose. 
In the same spirit, we propose our schemes, Sensornet (in 
Section 5) and its resiliency enhanced version, Hash 
Chains Sensornet (HC(Sensornet)) in Section 8 that are 
derived from net of partial spreads (or nets). Our schemes 
have a good balance of these combinatorial properties 
and so, are useful to design a deterministic KPS. 

 
 

3.5. Deteriorated Resilience of KPS 
 

Any KPS assigns multiple sensors to a given key. 
For a deterministic scheme, this value is the (regular) 
degree r of the design (refer to Section 4 below). 
Therefore, compromise of a node exposes partial key 
rings of uncompromised ones that affect their secure 
communication. This makes the resultant system 

vulnerable to various node capture attacks; thereby 
affecting the system’s resilience. Several researches 
develop tricks to reduce the effect of this attack. We 
discuss a prominent effort in a Section 7 while 
extending our Sensornet to Hash Chains Sensornet. 
 
 

4. Preliminaries 
 

This section introduces definitions and notations 
that are required to describe our scheme, Sensornet. 
 
 

4.1. Combinatorial Set Systems and KPS 
 

Construction of generic deterministic KPS by the 
use of a combinatorial designs is presented in the 
paper [11]. A unified treatment of prominent 
combinatorial designs in terms of partially balanced t 
– design is present in [18]. We present below the basic 
design theoretic concepts: 

Let X be a finite set. Elements of X are called 
varieties. Each subset of X is termed as a block. Consider 

A to be a collection of blocks of X . Then (X ,A) is 

said to be a set system or, a design. (X ,A) is regular of 
degree r if each point is contained in r blocks. 

(X ,A) is uniform (of rank k) if all blocks have the 

same size, say k. A design (X ,A) is said to form a 
(v,b,r,k)–design if: |X |= v, |A|=b; it is regular of 
degree r and of uniform of rank k. A (v,b,r,k)–design 
forms a (v,b,r,k)–configuration if any arbitrary pair of 
blocks intersect in at most one point. Moreover, if any 
pairs of varieties occur in exactly one block, then a 
(v,b,r,k)–design forms a (v,b,r,k)–BIBD (Balanced 
Incomplete Block Designs). They can be used to 
construct various KPS [11] by mapping: 

a) v varieties of X to the set of keys in the scheme 
(i.e., |X | = v =size of key pool), 

b) b to the number of network nodes in the system 
(:=network size), 

c) k to the number of keys per node (:=size of key 
rings), and 

d) r to the number of nodes that share a given key 
(:=degree of the resultant KPS). 

The target is to construct KPS with identical 
burden on each sensor. This leads to opting for design 
with uniform rank (k) and regular degree (r), so that 
every key ring is of equal size (k) and same number of 
nodes (r) share each key for the resultant network. 

Block graph GA of the set design (X ,A) is defined 

with the vertex set A and edge set E A = {(A, B) : A, B 

∈ A and A ∩ B ≠ ∅}. If the set design is regular of 
degree r and uniform of rank k, then the block graph 
GA is k(r 1)–regular. A (ν,b,r,k)−configuration (X 

,A) is said to form a µ−common intersection design 
(µ−CID) in case for every pairwise empty intersection 
of blocks, there exists µ other blocks that share 
common keys with these blocks. It is important to 
construct designs that maximize the value of µ. 
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4.2. Net of Partial Spread or Nets 
 

Let IFp be the finite field on p elements where p is 
a prime. Denote by ௡ܸሺൌ  ௣௡ሻ to be the vector spaceܨܫ
of dimension n over the field IFp with zero vector 0. 
Since the finite field ܨܫ௣௡ is a vector space over IFp and 
is isomorphic to ܨܫ௣೙ [21], we interchange the 
notation as per its suitability. This isomorphism 
mapping can be considered as a mapping from a basis 
set of ܨܫ௣௡ to a basis set of ܨܫ௣೙. We consider n=2m to 
be an even integer in this work. 

A partial spread Σ of order s in ௡ܸ is a set of 
pairwise supplementary m–dimensional subspaces 
E1,E2,…,Es of ௡ܸ i.e., Ei∩Ej = {0}, 1 ≤ i < j ≤ s. A 
partial spread Σ forms a spread if ⋃ ௜ܧ

௦
௜ୀଵ ൌ 	 ௡ܸ. It is 

known that a spread of Vn exists since m divides n [22], 
then |Σ|=pm +1. Therefore, from a given spread Σ each 
of the choices of s members of Σ provides a partial 
spread of Vn. Note that a partial spread might not be a 
subset of a spread (refer to Eisfeld and Storme [23]). 
An interested reader can refer to the books [24, 25]. 

Let E be a subspace of the vector space Vn. A coset 
of E in Vn is of the form α+E = {α+ v: v ∈ Vn} for an α 
∈ Vn. The set of cosets makes a disjoint partition of Vn. 
The element α is called a coset representative of the 
coset α+E. Since E is an additive group, any element 
from the coset α+E can be a coset representative. 
Given a partial spread Σ = {E1,E2,…,Es} in Vn, let Ei be 
a set of coset representatives of subspace Ei for  
1≤ i ≤ s. Then the set A = {α+ Ei : α ∈ Ei,1≤ i ≤ s } i.e., 
set of all cosets of subspaces Ei, 1≤ i ≤ s forms a net in 
Vn. An interested reader is referred to the book by 
Johnson et al. [25] for a detailed study of nets. 
 
 

4.3. Examples of Partial Spreads 
 

There are numerous constructions of spreads and 
partial spreads that can be found in the literature [25]. 
Now we present a few spreads S in IFn

p, where p is a 
prime. For a given s, any Σ⊆	S such that |Σ| = s forms 
a partial spread of order s. By Theorem 1 (see below 
in Section 5), this partial spread yields a KPS. 

Spread I: This is a classic example of a spread 
from the additive group of the finite field ܨܫ௣௠. Since 
n=2m, ܨܫ௣௠ is a subspace of ܨܫ௣௡ with respect to a 
basis. Let {αi : 1 ≤ i ≤ pm+1} be a set of coset 
representative of the cosets of the subgroup ܨܫ௣௠ in the 
multiplicative group IFn

p. Then the set SI = {Si = αi 

 .௣௠ܨܫ ௣௠,1 ≤ I ≤ pm +1} is a spread inܨܫ
Spread II: This example of spread is represented 

in bivariate form (see [26]). For each α ∈	ܨܫ௣௠, define 
a subspace Uα of IFm

p×IFm
p by Uα ={(αu,u)| u∈ܨܫ௣௠} 

and for sake of the consistency U∞={(u,0)|u∈ܨܫ௣௠}. 
The set SII={Uα:α∈ܨܫ௣௠}∪U∞ constitute a spread in 
 .௣௡ܨܫ ⋍ ௣௠ܨܫ×௣௠ܨܫ

Spread III: This example of spread is generated 
from pre-quasifield, which is defined as following. A 
system Q=(V,+,◦), with finite |V|, is a pre-quasifield if 
the following axioms holds: 

1. (V, +) is an abelian group, with identity 0. 
2. (V∗,◦) is a quasigroup where V∗ =V\{0}. That 

is, for any a ∈	V∗, the left multiplication operator a ◦x 
and the right multiplication operator x◦a are both 
bijective from V∗ to V∗. 

3. ∀	x, y, z ∈V, (x + y) ◦z = x ◦z + y ◦z. 
4. x ◦0=0, ∀	x ∈	V. 

Now assuming (ܨܫ௣௠,+,◦) is a pre-quasifield, set  
Ea ={(x,a ◦x): x ∈	ܨܫ௣௠} for any a ∈	ܨܫ௣௠ and E∞ = 
{(0,x) :x ∈	ܨܫ௣௠ }. Then it can be checked that SIII = 
{Ea : a ∈	  .௣௠ [25]ܨܫ×௣௠ܨܫ௣௠∪{∞}} is a spread inܨܫ
Many pre-quasifields are available in literature. Refer 
to [27] for three types of pre-quasifields on set ܨܫଶ

௠ 
and [28] for a pre-quasifield on set ܨܫ௣௠. 

Example 1 (of NETS): Here, we present a simple 
KPS from the spread of type SI. Take Vn = IF9 = 
IF3[x]/(x2+1). Consider the subspace IF3 = {0,1,2} and 
{1,x,x+1,x+2} as a set of coset representatives of IFଷ

∗ 
in IF9. Then SI={{0,1,2},{0,x,2x},{0,x+1,2x+2},{0, 
x+2,2x+1}} is a spread in IF9. Consider a partial 
spread Σ={E1={0,1,2},E2={0, x,2x}} where ܧଵതതത ൌ  2ܧ
and ܧଶതതത ൌ  So, by Theorem 1, the set X = IF9 and .1ܧ

the net A={{0,1,2},{x,x+1,x+2},{2x,2x+1, 2x+2}, 

{0,x,2x},{1,x+1,2x+1},{2,x+2,2x+2}} forms a KPS 
(X ,A). The block graph of (X ,A) is the K3,3. 
 
 

5. Sensornet 
 

Sensornet is a class of KPS for distributed sensor 
networks. The design of Sensornet is based on partial 
spread or nets and is a consequence of the 
forthcoming set design and Theorem 1. 

Given a partial spread S = {E1,E2,…, Es} in Vn, let 
పഥܧ  be a supplementary subspace of Ei in Vn (their direct 
sum ܧ௜⨁ܧపഥ ൌ ௡ܸ	and	ܧ௜ ∩ పഥܧ ൌ{0}). One can check 
that ܧపഥ  is a set of coset representatives of Ei for1 ≤ i ≤ 
s. Note that the subspaces Ei’s in a partial spread are 
pairwise supplementary. So, any Ej, j≠i can be chosen 
as ܧపഥ . Consider a set system (X ,A) with X =Vn and 
the set of blocks, A= {α+Ei: α ∈ Ei, 1≤ i ≤ s}, which 
is a net in Vn. Then we have the results below: 

Theorem 1. Given any partial spread Σ, the set 
design (X ,A) is µ(pn,spm,s,pm)–CID  for µ=(s−1)pm. 

Proof. Here v=|X|=pn. Consider two blocks α+ Ei 
and β+Ej, then we have the following cases: 

1. If i = j, then 
a. α+Ei =β+Ej if α=β or, 
b. (α+Ei)∩(β+Ej)=∅ if α ≠ β. 
2. If i ≠ j, then we shall show that: 
|(α+Ei) ∩ (β+Ej)|=1. 
Ei and Ej are supplementary to each other. So, the 

element α–β∈ Vn can be uniquely expressed as –u +v 
where u ∈Ei and v ∈Ej. That is, α–β = –u+v => 
α+u=β+v is a unique element in (α+Ei) ∩(β+Ej). 

So, the number of blocks i.e., the number of cosets 
is b=spm and each block contains k=pm elements. 
Given a subspace Ei, i ∈	{1,2,…,s}, each element u ∈	
Vn belongs to exactly one coset of Ei. So, each u ∈	Vn 
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belongs to exactly s many blocks in A. The set design 
(X ,A) is regular with r = s. Every two distinct blocks 
intersect each other by at most one element which 
implies that (X ,A) is a (pn,spm,s,pm)– configuration. 

We observe that two blocks α+Ei and β+Ej do not 
intersect if i = j and α ≠ β, i.e., both are distinct cosets 
of same subspace Ei. For the case of non–intersecting 
blocks α+Ei and β+Ei, α ≠ β, both blocks intersect all 
other blocks of the form γ+Ej where j ≠ i. Since there 
areµ=(s–1)pm such blocks γ+Ej in A, (X ,A)) is a 
(s−1)pm(pn,spm,s,pm)–CID. 

Here, the set of block A of the scheme (X, A) 
forms a net in a vector space. It can be checked then 
the block graph of (X ,A) is a strongly regular graph 
with parameters (n=spm, r=(s−1)pm, λ=(s−2)pm, 
µ= (s−1)pm). Moreover, the block graph is a complete 
s–partite graph. In the study of finite geometry, the 
varieties together with the blocks (i.e., cosets) form 
the points and lines of an affine plane. Since two non–
parallel lines (i.e., α+Ei and β+Ej for i ≠j) intersects at 
one point, this set of cosets is called a net. We name 
the scheme as Sensornet. 

 
 
6. Eradication of Smart Attacks 

 

Sensornet, like all combinatorial KPS is 
susceptible to “smart attacks” (formalized in Pietro et 
al. [7]). We briefed this attack in Section 2. This 
section devises a generic method to reduce it to 
random node compromise attacks. 

Our approach requires locally or group-wise 
random of nodes with one (ordinary) node in each 
group acting as its lead. Each group member is 
assigned exact one extra key for secure 
communication with its lead. While these leads stores 
an additional g + l – 1 keys for its g children and l–1 
co-leads. Therefore N (= b) = gl and so, g = l =√N is 
an optimized value. Association of keys and primary 
addresses (IP/MAC) can be stored in a table and 
preloaded in these group leads, so that key 
establishment is not required for these extra keys. 
These extra keys are thus be available to secure 
communication between these leads and their 
children. We use these extra keys for secure exchange 
of node ids during initial or subsequent (seldom) key 
establishment phases during a network’s life time. 
Recall that these node ids are unique function of the 
set key ids of the preloaded keys for a given node and 
so are secondary ids. They are consequences of the 
combinatorial design construction meant for a 
deterministic KPS. 

We propose a modified key establishment protocol 
as below. Sensors securely transmit their own node ids 
to their leads by the extra key. The leads circulates 
these node ids among themselves (in communication 

                                                 
2 We do not advocate use of the extra keys in leads and 

their children for message exchange after key establishment 

range). Node ids being linear functions are easy to 
“equate” and hence their collective computation 
burden is not abrupt. Moreover leads can apply a 
distributed algorithm to reduce the mutual burden on 
these leads. A table of shard key-primary address 
(IP/MAC) is formed during run time for each node. 
This tabular representation is returned to individual 
sensors and destroyed instantaneously. Node ids of 
children and co-leads are also flushed. So these leads 
retain data required only for their own conversations. 
Their children also gets only those information that 
concerns themselves. 

Being orders less in number (=√ܾ), we assume non 
compromise of the leads during the (short lived) key 
establishment phase(s). In fact, all existing works 
assume absolute trust on all system devices that 
includes their non-compromise during this phase. We 
are less restrictive and allow (random) “children 
compromise attacks” during key establishment. Refer 
to Section 2. Our construction does not reveal key 
sharing graph for “children compromise attacks” 
during key establishment as they do not ever possess 
other nodes' ids. Therefore, it is reasonable to assume 
concealment of the key sharing graph during key 
establishment. Post key establishment capture of any 
children does not reveal the key sharing graph due to 
same reason. Moreover, destruction of relevant 
information from the leads means that their capture at 
a late stage does reveal these node ids. Therefore, 
compromise of any sensor (lead or children) during 
(later) run time of the system does not reveal node ids, 
though all information about keys of that sensors are 
exposed. Thus cycles of keys that are not contained in 
exposed nodes are not disclosed. In effect “smart 
attack” cannot be launched. 

The remedial construction may seem to convert a 
distributed system into a hierarchical one. Well, the 
hierarchy is required only during key establishment. 
We do not advocate use of these extra keys of the leads 
and/or their children for message exchange later on. 
(This is because “single point attack” on the leads may 
reveal the message (exchange) of their children.) Once 
a key establishment phase is over, the leads have no 
role in their children’s conversations; these leads are 
not gateways for future conversations of their children. 
Therefore, our seemingly hierarchical construction 
retains its distributed flavor for the entire life time of 
the network barring the short lived key establishment 
phases(s). This is contrary to an inherent hierarchy in 
most key management protocols like [14, 15]. 2 
 
 
7. Lightweight Resilience Improvement 

 

Degree of any KPS lead to a security deterioration 
due to node capture attacks (defined to Section 2). A 

phases. Our system remains distributed later; as opposed to 
an inherent hierarchy in key management protocols [14, 15]. 
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network’s resilience against such attacks is of vital 
importance. Many work aim to improve this aspect. 

One such approach, due to Bechkit et al. [5, 6], 
presents a cute application of (recursive) hash function 
in a generic fashion. Their Hash Chains scheme HC(x) 
successfully improves resilience of any KPS x without 
affecting other parameters and is briefed below: 

 node ids of nodes vary from 0 to b – 1 where 
b is the number of blocks of the underlying 
combinatorial design. Observe that b ≈N. 

 given a key K, let us inductively define  
Hi(K) := H(Hi-1(K)). That is, Hi(K) denotes the i times 
use of the hash function H on key K for i ∈ Z+. 

 due to resource constraints, let the maximum 
number of times that we can repeat this (recursive) 
hash function computation in any sensor be N-1, (1≤ 
N ≤ b ≈N). 

 node ids are used to discriminate initial 
preloaded KPS keys as described below: 

(i) instead of original keys, K, they preloaded a 
node with id i with the key H(i modN)(K), for 
each key K in the i-th node (0 ≤ i < N); 

(ii) thus, two nodes with id i and j that shared the 
same key K in original KPS x end up with  
H(i mod N)(K) and H(j mod N)(K); 

(iii) if (j – i mod N) > 0 then node i calculates  
H(j-I mod N)(ki). Preimage resistant property of 
the (cryptographic) hash function H implies 
node j cannot find H(i mod N)(K). 

 key establishment of these nodes uses set of 
key ids or node ids and is same as the original KPS. 

 nodes i, j establishes their shared key, SK=  
Hl(K), where l = max (i mod N; j mod N). This SK can 
be computed at either end, in case they possess either 
key H(i mod N)(K) or H(j mod N)(K). Node a computes 

Hl-a(H1
a(K)), for a = i, j: 

 capture of i-th node exposes all its keys  
H(i mod N)(K) to the adversary, who: 

(i) cannot establish links with the nodes that 
possess the keys H(j mod N)(K), for any key K in 
the i-th node and j>i (mod N); 

(ii) can establish link with nodes that possess a 
key H(j mod N)(K) for j < i (mod N). 

(iii) resilience dip is 30% for node capture. 
So, in this Hash Chains based schemes HC(x), 
connectivity, storage overhead and communication 
overhead remains same as the original scheme x. 
Application of our generic “smart attack” removal 
method (devised in Section 6) reduces any “smart 
attack” to random node compromise attack. Therefore 
the combination of the two approaches improves the 
original system’s resilience by 50% against any node 
compromise attack (see Theorem 3). This combined 
technique is suitably adapted to enhance resilience of 
our Sensornet scheme and yield a new protocol: Hash 
Chains Sensornet in Section 8.3 

 
 

                                                 
3 We denote a keys by K (CAPITAL LETTER) and its 

id by k (small letter) throughout this work. A full domain 

8. Hash Chains Sensornet (HC(Sensornet)) 
 

Prototyped application of Bechkit et al.’s idea to our 
Sensornet scheme produces a resilience enhanced 
scheme that we term as Hash Chains Sensornet. 
Therefore considering x = Sensornet, the shared key 
between the node i, j with (j mod N) > (i mod N) is 
computed as described below. 

Let K is the distributed keys between the ith and jth 
nodes for j > i mod N. Then the nodes i, j compute 
shared secret key as 

SK = H j(K): 
i-th node computes this shared secret key as 

SK = Hl(Hi(K) 
where l = (j–i  mod N) > 0 So, in this Hash Chains 
based schemes HC(x), connectivity (range), storage 
overhead and communication overhead remains same 
as the original scheme x.  

Key establishment process is similar to Sensornet 
with modification. We store the basis vectors in leads, 
say Ei (α= 0 is natural choice). So its children α+Ei 
contains only α’s. These α’s are exchanged securely 
using the extra keys. Therefore the leads Ei’s gets the 
entire node ids (α; ߚ௜

ଵ, ߚ௜
ଶ, ߚ௜

ଷ,…,ߚ௜
௠) of each of their 

children α+Ei, α=1,2…m. So in our HC(Sensornet) 
these leads can only perform the three steps given in 
Section 9.1 (nodes do not have their own id). Of course 
our Sensornet could have been combined with this 
unique “smart attack” removal technique. So, key 
establishment of both these combined schemes require 
less (O(logp N)) data transfer; computation complexity 
is same as original Sensornet scheme that was 
presented in Section 5. 

 
 

9. Analysis of Our Protocols 
 

In this section we compute the values of some 
important metrics involved in the protocols we have 
proposed, i.e., Sensornet and HC(Sensornet). 

 
 

9.1. Time (Tk) and Space Complexities (Mk) 
for Key Establishment 

 
For the key establishment between two nodes, the 

nodes need to discover a common key stored between 
them. For this purpose, the nodes need to broadcast 
some data, which is required to trace the common key 
between two nodes. Since the sensor nodes have low 
memory and computation power, data and time 
requirement for key establishment are two very 
important factors to design a KPS. In this subsection 
we discuss the process of key establishment between 
two nodes and associated time and data requirement of 
the process. In case of path key establishment (refer to 
Section 1.1), both the concerned nodes have to find a 
common neighbor with whom they discover their 
shared key and establish connection via this neighbor. 

hash function is a suitable candidate for our work (like  
[5, 6]). 
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Denote by Tk and Mk to be the time and memory 
complexity functions for the key establishment. 

The blocks of Sensornet forms a net, i.e., they are 
affine spaces. So, nodes can be identified by their basis 
vectors and key establishment is done using the node 
id. When nodes α+Ei and β+Ej need key establishment 
between them, they follow the process below: 

Step 1: The nodes α+Ei and b + E j compare the 
last m (basis) vectors in their node id. If they are same 
then follow Step 3 else follow Step 2. 

Step 2: Here, we have Ei ≠ E j i.e., so they share a 
common key. Let this key be α+u = β+v, where  
u ∈ Ei and v	∈ E j. Now we need to find u and v in 
terms of the basis vectors of Ei and Ej respectively. 
Here, α–β=v–u ∈Vn. Since Ei and Ej are supplementary 
subspaces in Vn, α–β can be uniquely expressed as a 
linear combination of the basis vectors of Ei and Ej. 
This leads to the fact that this common key is in both 
Ei and Ej. The time complexity in this step is the time 
complexity to express α–β in terms of the basis vectors 
in a basis i.e., O(n3). Same is true for HC(Sensornet). 

Step 3: In this case, Ei = Ej i.e., they do not share 
a common key. So, they have to establish connection 
through another node with whom they share a key, 
individually. That is, they have to find a node γ+Ek 
where k ≠ i. The probability of finding such a node 
using a random pick up is s–1/s which is very high. 
Since both α+Ei and β+Ej share a key with γ+Ek, each 
one does the same process described in Step 2 with 
γ+Ek to discover their common key. After that α+Ei 
and β+Ej can establish connection through γ+Ek. So, 
the time complexity in this case is O(n3). 

So, each node spends Mk = (m+1)∗n∗ሺlog2 p) 
=O(n2) bits of data for broadcasting of their identity 
and the time complexity to discover the common 
key(s) is Tk=O(n3). Note that in Sensornet and so, in 
HC(Sensornet), nodes broadcast only node id, that are 
only O(n2) bits instead of O(rpn/2) many (all) key ids 
as broadcast by other prominent schemes.  
 
 
9.2. Key-node Ratio (σ) 
 

The key-node ratio is defined as σ = k/b. This ratio 
provides idea about the storage requirement of the 
scheme at each node with respect to the total number 
of nodes. With this metric we can compare the storage 
requirement of the schemes from different designs. It 
is desirable for this ratio σ to be as small as possible as 
lesser amount of memory required for key storage at 
each node. In both our schemes, Sensornet and 
HC(Sensornet), value of key-node ratio is  
 
 

σ = 
௣೘

௦௣೘
ൌ ଵ

௦
ൌ ଵ

ఀ
. 

 
 

If the size of partial spread is larger, then the storage 
requirement to store keys in Sensornet is lesser. 

9.3. Resiliency (fail(t)) 
 

Schemes should be equipped to perform against 
adversarial attacks. To this end, the standard resiliency 
metric fail(t) need to be minimized. This is prevalent 
method adopted by most existing works [4, 9,-12, 14, 
15]. The quantifier fail(t) measures the probability that 
a random link between two sensor nodes is broken due 
to the compromise of t other random nodes. Formally, 
fail(t) = bt/ut where bt is the number of links broken 
when t nodes are compromised and ut is the total 
number of links among uncompromised nodes of 
remaining network. Theorem 2 is due to Lee and 
Stinson ([11, Section VIII]) provides the formula to 
compute fail(t) for any (v, b, r, k, 1)–configuration. 
 

Theorem 2.  Theorem 2. For any (v, b, r, k, 1)–
configuration, the value of the metric fail(t) on random 
compromise of t nodes is given by: 

݂݈ܽ݅ሺݐሻ ൌ 1 െ ൬
ܾ െ ݎ
ܾ െ 2

൰
௧

																		ሺ1ሻ 
 

Corollaries 1 is an immediate outcome of 
substituting the values of b and r in Equation 1, for the 
scheme Sensornet. 
 

Corollary 1. The value of the resilience fail(t) for 
the set design (X ,A) of the scheme Sensornet, 
which is a (pn,spm,s,pm)−configuration is 

 

 ݂݈ܽ݅ሺݐሻ ൌ 1 െ ቀ
௦௣೘ି௦

௦௣೘ିଶ
ቁ
௧
 (2) 

 

Clearly, the metric fail(1) = O(p-m) i.e., if a node N 
is compromised, then the probability that a link (which 
is not incident with N) is O(p m ). Here, the size of the 
partial spread has no significant effect on fail(1). For 
example, with p = 2, n = 10 (i.e., network  
size= 210 > 1000), the value of fail(1) = 0:03. 

 
Theorem 3. Value of our resilience metric fail(t) 

for our HC(Sensornet) design is given by: 
 

 ݂݈ܽ݅ሺݐሻ ൌ
ଵ

ଶ
൬1 െ ቀ

௦௣೘ି௦

௦௣೘ିଶ
ቁ
௧
൰ (3) 

In particular, fail(1) = 

 ݂݈ܽ݅ሺ1ሻ ൌ
ଵ

ଶ
ቀ

௦ିଶ

௦௣೘ିଶ
ቁ ൎ

ଵ

ଶൈ	௣೘
 (4) 

 

Proof. The result follows the observation made in 
point 6(c) during the brief of Bekhkit at al. along with 
Theorem 2. Of course our Sensornet and 
HC(Sensornet) schemes are assumed to be blessed 
with the generic “smart attack” removal approach. 
(Lee and Stinson, 2005) like most KPS assume only 
random node compromise attack in their analysis. 
Therefore, we rectify this half analyzed situation.  
 
 

9.4. Connectivity (࣋) 
 

We say two blocks in a set system are connected by d 
links (or, are at a distance e) if the shortest path between 
them in the block graph includes ‘e’ edges. Hence, we 
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define the metric connectivity (or, connection 
probability) ߩe of the network to be the probability that 
two nodes (placed in physical neighborhood) are 
connected by e links for a positive integer ‘e’. 

Observe that the value of d for a µ CID with µ > 1 
is either 1 (if they share a key) or 2 (if they do not share 
a key). The formula for 1ߩ and 2ߩ are provided in (Lee 
and Stinson, 2005, Section VI), which are being 
formally restated in the following theorem. Let ߬ 
denote the number of nodes in the intersection of the 
physical neighborhood of two given nodes. 
 

Theorem 4. The value of the matric connectivities 

of a µ(ν,b,r,k)−CID are: (i) 1ߩ=k ൈ	ቀ
௥ିଵ

௕ିଵ
ቁ; and 

(ii) – 1) =2ߩ	(1ߩ	ൈ ቀ1 െ ቀ
ܾെμെ2

ܾെ2
ቁ
߬

ቁ. 
 

The following corollary is an immediate outcome 
for our scheme by substituting the values of b, r, k 
and λ in Theorem 4. 
 

Corollary 2. The value of the connectivity metrics 
for the set system (X,A), which is a (s−1)pm–(pn, spm, 

s, pm)−CID are 1 ≈1ߩ െ
ଵ

௦
 and 2ߩ= 

௦ഓିଵ

௦ഓశభ
. 

 

The metric ρ1≈ 1 െ
ଵ

௦
, i.e., connectivity increases if 

the size of spread increases. Here, the size of base field 
(i.e., the value of the prime p) has no significant effect 
on (direct) connectivity. As an example, if n = 10,  
p = 2 (i.e., there are 210 ≈ 1000 many nodes) and s=25 
then the value of ρ1 = 1−2−5. 
 
 

9.5. Comparative Study 
 

This section presents a comparative study of our 
schemes (Sensornet and HC(Sensornet)) with existing 

works with respect to connectivity, resilience and 
network scaling. Performance of our schemes with 
respect to other prominent metric like storage, etc. has 
been discussed in previous section. 

Schemes with high connectivity (i.e., ρ1) and 
resiliency as small as possible are preferred. 
Unfortunately, both these metrics are inversely related 
to each other. So, it is a fundamental problem of 
trading off connectivity verses resiliency. The works 
[18, 29] considers the ratio ߩ ൌ

ఘభ
௙௔௜௟ሺଵሻ

 for comparison 

of several combinatorial designs. Therefore, the larger 
ρ value confirms higher connectivity and lower 
resiliency. It is desirable that the ratio ρ be as large as 
possible for the basic combinatorial designs. If 
necessary, resilience improvement tricks like Bechkit 
et al. [5, 6] can applied like we did to construct 
HC(Sensornet) from our basic scheme, Sensornet. 

There have been several proposals for 
deterministic key predistribution schemes for wireless 
sensor networks based on various types of 
combinatorial structures such as designs and codes. 
The paper [18] proposes a general framework by 
unifying those structures into a new design, termed as 
“partially balanced t-designs (PBtD)”. Although, our 
scheme Sensornet falls into 2−(ν, k, λ0=b, λ1=r)– 
PBtD as a configuration, the generalization does not 
consider µ−CIDs. Hence, being a µ−CID, Sensornet 
does not classify as PBtD by their description [18]. 
There are few comparison tables of different schemes 
are provided in [18]. In the following, we take data of 
TD(t,k,Q) with intersection threshold η = 1 from the 
paper [18] along with other designs to compare with 
the scheme Sensornet. 

Let consider the number of nodes in all the 
compared scheme is N. Now we shall compare the 
asymptotic behavior of metrics ρ1, fail(1) and the ratio 
ρ. The comparison is displayed in Table 1. 

 
 
 

Table 1. Comparison of asymptotic behavior of different schemes. Refer to Remark 1 for discussions about the parameter ࣋. 
 

Schemes 
Number of 
nodes (N) ࣋૚ fail(1) ࣋ ൌ

࣋૚
ሺ૚ሻ࢒࢏ࢇࢌ

 

(Sensornet) 
(devised in Section 5) 

N = spm 1 െ
1
ݏ

௠ = N –1/2 ቀ1ି݌  െ
ଵ

௦
ቁN 1/2 

HC(Sensornet) 
(devised in Section 8) 

N = spm 1 െ
1
ݏ

௠ = N –1/2 ቀ1ି݌  െ
ଵ

௦
ቁN 1/2 

TD(2; k; q); k = cq; [18] N = q2 C ିݍଵ = N –1/2 cN 1/2 

TD(3; k; q); k = cq; c < 1 N = q3 
ܿሺ2 െ ܿሻ

2
 

ଶሺଵି௖ሻ

ଶି௖
 N –1/3 

௖ሺଶି௖ሻమ

ସሺଵି௖ሻ
 N 1/3 

TD(3; k; q); k = q N = q3 
1
2

 5N –2/3 ଵ

ଵ଴
N 2/3 

TD(4; k; q); k = cq; c > 1 N=q4 ܿሺܿଶ െ 3ܿ ൅ 6ሻ
6

 
ଷሺ௖మିଶ௖ାଶሻ

௖మିଷ௖ା଺
N –1/4 

௖ሺ௖మିଷ௖ା଺ሻమ

ଵ଼ሺ௖మିଶ௖ାଶሻ
N 1/4 

Symmetric BIBD [9] N=q2+q2+1 1 N –1/2 N 1/2 

RS code based [4] N =q2 
ݍ െ 1
ݍ ൅ 1

 N –1/2 N 1/2 

MB designs [15] over TD(k,q) KPS [11, 
12] or RS code KPS [4] N = 

௤మ

ଶ
 1 (2N)–1/2 (2N)1/2 
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Remark 1. For parity with the existing works that we 
consider in in Table 1, stated r values are independent of 
“smart attack” removal technique devised in Section 6. In 
case, this novel technique is applied, the l LEAD nodes 
gets g+l–1 extra keys. So their memory is a bit strained. 
However Moore’s law ascertains that memory expansion 
with time is easy as compared to other hardware. 
Therefore this excess memory overload (O(k),k : original 
key rings sizes) is reasonable to assume in front of 
existing computation and transreceiver overheads. 

From this comparison table it is clear that the 
asymptotic behavior of the ratio r of Sensornet and 
HC(Sensornet) is similar or better than all other 
schemes except the scheme TD(3;k;q);k=q and 
Merging Block (MB) design of [14, 15]. 

Former scheme needs computation of number 
theoretic problems during key agreement; while the 
later supports significantly less (merged) blocks. 
Moreover shared key discovery in Sensornet scheme 
requires O((logp N)3) time complexity and the amount 
of broadcast data is O((logp N)2). Broadcast data in 
both Sensornet and HC(Sensornet) is O(logp√N) since 
transfer of basis vectors not required. This is 
advantageous over many KPS that require more data 
broadcast and complex establishment mechanism. 
 
 

9.5.2.  Scalability Comparison 
 

Sensornet and thus HC(Sensornet) can support 
large networks. This is because the choice n and 
respectively m and/or s are unbounded in theory. Thus 
networks designed by our schemes are scalable. 

Scalability is a major challenge in most 
deterministic KPS. For instance, the schemes [4, 9-12] 
have restricted scaling. This owes to the fact that key 
establishment for these network require general 
solutions of polynomials. Therefore, the complexity of 
the key establishment process increases with 
increment in degree of these polynomials. Random 
schemes can scale arbitrarily [19]; but at the expense 
of desirable parameters like connectivity, resilience, 
storage (key-node ratio), etc. Therefore, we opt 
deterministic schemes while designing KPS [18]. Also 
refer to Section 3.3. 
 
 

10. Conclusion 
 

Realizing the need of deterministic KPS with 
desirable properties (set out in Section 3.4) to address 
the problem of key management in low cost networks, 
we propose one such scheme. Since the scheme is 
constructed using nets in a vector space, we named it 
as Sensornet. The scheme is later improved using Hash 
Chains trick of Bechkit et al. [5,6] to obtain 
HC(Sensornet), a resilience improved version. Key 
establishment of both Sensornet and HC(Sensornet) is 
a great advantage over other schemes, but still exploits 
the network’s key sharing graph. This is overcome by 
a generic approach devised in Section 6 that removes 
“smart attacks”. Resilience of Sensornet can be 

improved by a Hash Chains approach (along with the 
above approach) to yield HC(Sensornet). 
 
 
11. Related Future Works 
 

Although both or schemes, Sensornet and 
HC(Sensornet) suffer from lack of full connectivity, it 
is very close to full connectivity for large size of 
partial spread. Moreover, the generic computations in 
Section 9.4 establish that connectivity of Sensornet is 
good (either direct or 1–hop path). It is preferable to 
have full connectivity or at least a deterministic path 
in case of 1–hop connectivity. The sophisticated MB 
designs of [14, 15] establishes a deterministic 1– hop 
connectivity for the Reed Solomon code based KPS 
(Ruj and Roy [4]). These heavily design dependent 
works can certainly open the doors for future research 
by considering similar constructions over Sensornet in 
place of other combinatorial design based schemes. 

Efficient deterministic protocols for security 
applications in low cost IoT networks have restricted 
scaling. We adopt them due to their predictable 
connectivity and resilience. Scalable deterministic 
security protocols with flat topology using SKC 
techniques is a major area of study. Our “smart attack” 
removal approach may give interesting leads. 
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