6,467 research outputs found

    Path Coordination Planning and Control in Robotic Material Handling and Processing

    Get PDF
    This chapter presents a unified approach to coordination planning and control for robotic position and orientation trajectories in Cartesian space and its applications in robotic material handling and processing. The unified treatment of the end-effector positions and orientations is based on the robot pose ruled surface concept and used in trajectory interpolations. The focus of this chapter is on the determination and control of the instantaneous change laws of position and orientation, i.e., the generation and control of trajectories with good kinematics and dynamics performances along such trajectories. The coordination planning and control is implemented through controlling the motion laws of two end points of the orientation vector and calculating the coordinates of instantaneous corresponding points. The simulation and experiment in robotic surface profiling/finishing processes are presented to verify the feasibility of the proposed approach and demonstrate the capabilities of planning and control models. Keywords: Robot pose ruled surface, Unified approach, Trajectory planning and control, Off-line programming, Robotics polishin

    Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints

    Get PDF
    In this paper, we propose a solution to compute full-dynamic motions for a humanoid robot, accounting for various kinds of constraints such as dynamic balance or joint limits. As a first step, we propose a unification of task-based control schemes, in inverse kinematics or inverse dynamics. Based on this unification, we generalize the cascade of quadratic programs that were developed for inverse kinematics only. Then, we apply the solution to generate, in simulation, wholebody motions for a humanoid robot in unilateral contact with the ground, while ensuring the dynamic balance on a non horizontal surface

    Discrete Cosserat Approach for Multi-Section Soft Robots Dynamics

    Full text link
    In spite of recent progress, soft robotics still suffers from a lack of unified modeling framework. Nowadays, the most adopted model for the design and control of soft robots is the piece-wise constant curvature model, with its consolidated benefits and drawbacks. In this work, an alternative model for multisection soft robots dynamics is presented based on a discrete Cosserat approach, which, not only takes into account shear and torsional deformations, essentials to cope with out-of-plane external loads, but also inherits the geometrical and mechanical properties of the continuous Cosserat model, making it the natural soft robotics counterpart of the traditional rigid robotics dynamics model. The soundness of the model is demonstrated through extensive simulation and experimental results for both plane and out-of-plane motions.Comment: 13 pages, 9 figure

    An Equivariant Observer Design for Visual Localisation and Mapping

    Full text link
    This paper builds on recent work on Simultaneous Localisation and Mapping (SLAM) in the non-linear observer community, by framing the visual localisation and mapping problem as a continuous-time equivariant observer design problem on the symmetry group of a kinematic system. The state-space is a quotient of the robot pose expressed on SE(3) and multiple copies of real projective space, used to represent both points in space and bearings in a single unified framework. An observer with decoupled Riccati-gains for each landmark is derived and we show that its error system is almost globally asymptotically stable and exponentially stable in-the-large.Comment: 12 pages, 2 figures, published in 2019 IEEE CD

    A Factor Graph Approach to Multi-Camera Extrinsic Calibration on Legged Robots

    Full text link
    Legged robots are becoming popular not only in research, but also in industry, where they can demonstrate their superiority over wheeled machines in a variety of applications. Either when acting as mobile manipulators or just as all-terrain ground vehicles, these machines need to precisely track the desired base and end-effector trajectories, perform Simultaneous Localization and Mapping (SLAM), and move in challenging environments, all while keeping balance. A crucial aspect for these tasks is that all onboard sensors must be properly calibrated and synchronized to provide consistent signals for all the software modules they feed. In this paper, we focus on the problem of calibrating the relative pose between a set of cameras and the base link of a quadruped robot. This pose is fundamental to successfully perform sensor fusion, state estimation, mapping, and any other task requiring visual feedback. To solve this problem, we propose an approach based on factor graphs that jointly optimizes the mutual position of the cameras and the robot base using kinematics and fiducial markers. We also quantitatively compare its performance with other state-of-the-art methods on the hydraulic quadruped robot HyQ. The proposed approach is simple, modular, and independent from external devices other than the fiducial marker.Comment: To appear on "The Third IEEE International Conference on Robotic Computing (IEEE IRC 2019)
    • …
    corecore