20,867 research outputs found

    Estimating Infection Sources in Networks Using Partial Timestamps

    Full text link
    We study the problem of identifying infection sources in a network based on the network topology, and a subset of infection timestamps. In the case of a single infection source in a tree network, we derive the maximum likelihood estimator of the source and the unknown diffusion parameters. We then introduce a new heuristic involving an optimization over a parametrized family of Gromov matrices to develop a single source estimation algorithm for general graphs. Compared with the breadth-first search tree heuristic commonly adopted in the literature, simulations demonstrate that our approach achieves better estimation accuracy than several other benchmark algorithms, even though these require more information like the diffusion parameters. We next develop a multiple sources estimation algorithm for general graphs, which first partitions the graph into source candidate clusters, and then applies our single source estimation algorithm to each cluster. We show that if the graph is a tree, then each source candidate cluster contains at least one source. Simulations using synthetic and real networks, and experiments using real-world data suggest that our proposed algorithms are able to estimate the true infection source(s) to within a small number of hops with a small portion of the infection timestamps being observed.Comment: 15 pages, 15 figures, accepted by IEEE Transactions on Information Forensics and Securit

    Human-Centric Cyber Social Computing Model for Hot-Event Detection and Propagation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Microblogging networks have gained popularity in recent years as a platform enabling expressions of human emotions, through which users can conveniently produce contents on public events, breaking news, and/or products. Subsequently, microblogging networks generate massive amounts of data that carry opinions and mass sentiment on various topics. Herein, microblogging is regarded as a useful platform for detecting and propagating new hot events. It is also a useful channel for identifying high-quality posts, popular topics, key interests, and high-influence users. The existence of noisy data in the traditional social media data streams enforces to focus on human-centric computing. This paper proposes a human-centric social computing (HCSC) model for hot-event detection and propagation in microblogging networks. In the proposed HCSC model, all posts and users are preprocessed through hypertext induced topic search (HITS) for determining high-quality subsets of the users, topics, and posts. Then, a latent Dirichlet allocation (LDA)-based multiprototype user topic detection method is used for identifying users with high influence in the network. Furthermore, an influence maximization is used for final determination of influential users based on the user subsets. Finally, the users mined by influence maximization process are generated as the influential user sets for specific topics. Experimental results prove the superiority of our HCSC model against similar models of hot-event detection and information propagation

    Observer Placement for Source Localization: The Effect of Budgets and Transmission Variance

    Get PDF
    When an epidemic spreads in a network, a key question is where was its source, i.e., the node that started the epidemic. If we know the time at which various nodes were infected, we can attempt to use this information in order to identify the source. However, maintaining observer nodes that can provide their infection time may be costly, and we may have a budget kk on the number of observer nodes we can maintain. Moreover, some nodes are more informative than others due to their location in the network. Hence, a pertinent question arises: Which nodes should we select as observers in order to maximize the probability that we can accurately identify the source? Inspired by the simple setting in which the node-to-node delays in the transmission of the epidemic are deterministic, we develop a principled approach for addressing the problem even when transmission delays are random. We show that the optimal observer-placement differs depending on the variance of the transmission delays and propose approaches in both low- and high-variance settings. We validate our methods by comparing them against state-of-the-art observer-placements and show that, in both settings, our approach identifies the source with higher accuracy.Comment: Accepted for presentation at the 54th Annual Allerton Conference on Communication, Control, and Computin
    • …
    corecore