76,440 research outputs found

    Mathematical models of avascular cancer

    Get PDF
    This review will outline a number of illustrative mathematical models describing the growth of avascular tumours. The aim of the review is to provide a relatively comprehensive list of existing models in this area and discuss several representative models in greater detail. In the latter part of the review, some possible future avenues of mathematical modelling of avascular tumour development are outlined together with a list of key questions

    Multiphase modelling of vascular tumour growth in two spatial dimensions

    Get PDF
    In this paper we present a continuum mathematical model of vascular tumour growth which is based on a multiphase framework in which the tissue is decomposed into four distinct phases and the principles of conservation of mass and momentum are applied to the normal/healthy cells, tumour cells, blood vessels and extracellular material. The inclusion of a diffusible nutrient, supplied by the blood vessels, allows the vasculature to have a nonlocal influence on the other phases. Two-dimensional computational simulations are carried out on unstructured, triangular meshes to allow a natural treatment of irregular geometries, and the tumour boundary is captured as a diffuse interface on this mesh, thereby obviating the need to explicitly track the (potentially highly irregular and ill-defined) tumour boundary. A hybrid finite volume/finite element algorithm is used to discretise the continuum model: the application of a conservative, upwind, finite volume scheme to the hyperbolic mass balance equations and a finite element scheme with a stable element pair to the generalised Stokes equations derived from momentum balance, leads to a robust algorithm which does not use any form of artificial stabilisation. The use of a matrix-free Newton iteration with a finite element scheme for the nutrient reaction-diffusion equations allows full nonlinearity in the source terms of the mathematical model. Numerical simulations reveal that this four-phase model reproduces the characteristic pattern of tumour growth in which a necrotic core forms behind an expanding rim of well-vascularised proliferating tumour cells. The simulations consistently predict linear tumour growth rates. The dependence of both the speed with which the tumour grows and the irregularity of the invading tumour front on the model parameters are investigated

    Mathematical biomedicine and modeling avascular tumor growth

    Get PDF
    In this chapter we review existing continuum models of avascular tumor growth, explaining howthey are inter related and the biophysical insight that they provide. The models range in complexity and include one-dimensional studies of radiallysymmetric growth, and two-dimensional models of tumor invasion in which the tumor is assumed to comprise a single population of cells. We also present more detailed, multiphase models that allow for tumor heterogeneity. The chapter concludes with a summary of the different continuum approaches and a discussion of the theoretical challenges that lie ahead

    A multiphase model describing vascular tumour growth

    Get PDF
    In this paper we present a new model framework for studying vascular tumour growth, in which the blood vessel density is explicitly considered. Our continuum model comprises conservation of mass and momentum equations for the volume fractions of tumour cells, extracellular material and blood vessels. We include the physical mechanisms that we believe to be dominant, namely birth and death of tumour cells, supply and removal of extracellular fluid via the blood and lymph drainage vessels, angiogenesis and blood vessel occlusion. We suppose that the tumour cells move in order to relieve the increase in mechanical stress caused by their proliferation. We show how to reduce the model to a system of coupled partial differential equations for the volume fraction of tumour cells and blood vessels and the phase averaged velocity of the mixture. We consider possible parameter regimes of the resulting model. We solve the equations numerically in these cases, and discuss the resulting behaviour. The model is able to reproduce tumour structure that is found `in vivo' in certain cases. Our framework can be easily modified to incorporate the effect of other phases, or to include the effect of drugs

    Oscillatory dynamics in a model of vascular tumour growth -- implications for chemotherapy

    Get PDF
    Background\ud \ud Investigations of solid tumours suggest that vessel occlusion may occur when increased pressure from the tumour mass is exerted on the vessel walls. Since immature vessels are frequently found in tumours and may be particularly sensitive, such occlusion may impair tumour blood flow and have a negative impact on therapeutic outcome. In order to study the effects that occlusion may have on tumour growth patterns and therapeutic response, in this paper we develop and investigate a continuum model of vascular tumour growth.\ud Results\ud \ud By analysing a spatially uniform submodel, we identify regions of parameter space in which the combination of tumour cell proliferation and vessel occlusion give rise to sustained temporal oscillations in the tumour cell population and in the vessel density. Alternatively, if the vessels are assumed to be less prone to collapse, stable steady state solutions are observed. When spatial effects are considered, the pattern of tumour invasion depends on the dynamics of the spatially uniform submodel. If the submodel predicts a stable steady state, then steady travelling waves are observed in the full model, and the system evolves to the same stable steady state behind the invading front. When the submodel yields oscillatory behaviour, the full model produces periodic travelling waves. The stability of the waves (which can be predicted by approximating the system as one of λ-ω type) dictates whether the waves develop into regular or irregular spatio-temporal oscillations. Simulations of chemotherapy reveal that treatment outcome depends crucially on the underlying tumour growth dynamics. In particular, if the dynamics are oscillatory, then therapeutic efficacy is difficult to assess since the fluctuations in the size of the tumour cell population are enhanced, compared to untreated controls.\ud Conclusions\ud \ud We have developed a mathematical model of vascular tumour growth formulated as a system of partial differential equations (PDEs). Employing a combination of numerical and analytical techniques, we demonstrate how the spatio-temporal dynamics of the untreated tumour may influence its response to chemotherapy.\ud Reviewers\ud \ud This manuscript was reviewed by Professor Zvia Agur and Professor Marek Kimmel

    Mathematical models of avascular cancer

    Get PDF
    This review will outline a number of illustrative mathematical models describing the growth of avascular tumours. The aim of the review is to provide a relatively comprehensive list of existing models in this area and discuss several representative models in greater detail. In the latter part of the review, some possible future avenues of mathematical modelling of avascular tumour development are outlined together with a list of key questions

    Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications

    Get PDF
    Resorting to a multiphase modelling framework, tumours are described here as a mixture of tumour and host cells within a porous structure constituted by a remodelling extracellular matrix (ECM), which is wet by a physiological extracellular fluid. The model presented in this article focuses mainly on the description of mechanical interactions of the growing tumour with the host tissue, their influence on tumour growth, and the attachment/detachment mechanisms between cells and ECM. Starting from some recent experimental evidences, we propose to describe the interaction forces involving the extracellular matrix via some concepts coming from viscoplasticity. We then apply the model to the description of the growth of tumour cords and the formation of fibrosis

    Towards whole-organ modelling of tumour growth

    Get PDF
    Multiscale approaches to modelling biological phenomena are growing rapidly. We present here some recent results on the formulation of a theoretical framework which can be developed into a fully integrative model for cancer growth. The model takes account of vascular adaptation and cell-cycle dynamics. We explore the effects of spatial inhomogeneity induced by the blood flow through the vascular network and of the possible effects of p27 on the cell cycle. We show how the model may be used to investigate the efficiency of drug-delivery protocols
    • …
    corecore