23,319 research outputs found

    Secure Management of Personal Health Records by Applying Attribute-Based Encryption

    Get PDF
    The confidentiality of personal health records is a major problem when patients use commercial Web-based systems to store their health data. Traditional access control mechanisms, such as Role-Based Access Control, have several limitations with respect to enforcing access control policies and ensuring data confidentiality. In particular, the data has to be stored on a central server locked by the access control mechanism, and the data owner loses control on the data from the moment when the data is sent to the requester. Therefore, these mechanisms do not fulfil the requirements of data outsourcing scenarios where the third party storing the data should not have access to the plain data, and it is not trusted to enforce access control policies. In this paper, we describe a new approach which enables secure storage and controlled sharing of patient’s health records in the aforementioned scenarios. A new variant of a ciphertext-policy attribute-based encryption scheme is proposed to enforce patient/organizational access control policies such that everyone can download the encrypted data but only authorized users from the social domain (e.g. family, friends, or fellow patients) or authorized users from the professional\ud domain (e.g. doctors or nurses) are allowed to decrypt it

    Information Accountability Framework for a Trusted Health Care System

    Get PDF
    Trusted health care outcomes are patient centric. Requirements to ensure both the quality and sharing of patients’ health records are a key for better clinical decision making. In the context of maintaining quality health, the sharing of data and information between professionals and patients is paramount. This information sharing is a challenge and costly if patients’ trust and institutional accountability are not established. Establishment of an Information Accountability Framework (IAF) is one of the approaches in this paper. The concept behind the IAF requirements are: transparent responsibilities, relevance of the information being used, and the establishment and evidence of accountability that all lead to the desired outcome of a Trusted Health Care System. Upon completion of this IAF framework the trust component between the public and professionals will be constructed. Preservation of the confidentiality and integrity of patients’ information will lead to trusted health care outcomes

    Architecture and Implementation of a Trust Model for Pervasive Applications

    Get PDF
    Collaborative effort to share resources is a significant feature of pervasive computing environments. To achieve secure service discovery and sharing, and to distinguish between malevolent and benevolent entities, trust models must be defined. It is critical to estimate a device\u27s initial trust value because of the transient nature of pervasive smart space; however, most of the prior research work on trust models for pervasive applications used the notion of constant initial trust assignment. In this paper, we design and implement a trust model called DIRT. We categorize services in different security levels and depending on the service requester\u27s context information, we calculate the initial trust value. Our trust value is assigned for each device and for each service. Our overall trust estimation for a service depends on the recommendations of the neighbouring devices, inference from other service-trust values for that device, and direct trust experience. We provide an extensive survey of related work, and we demonstrate the distinguishing features of our proposed model with respect to the existing models. We implement a healthcare-monitoring application and a location-based service prototype over DIRT. We also provide a performance analysis of the model with respect to some of its important characteristics tested in various scenarios

    Semantic security: specification and enforcement of semantic policies for security-driven collaborations

    Get PDF
    Collaborative research can often have demands on finer-grained security that go beyond the authentication-only paradigm as typified by many e-Infrastructure/Grid based solutions. Supporting finer-grained access control is often essential for domains where the specification and subsequent enforcement of authorization policies is needed. The clinical domain is one area in particular where this is so. However it is the case that existing security authorization solutions are fragile, inflexible and difficult to establish and maintain. As a result they often do not meet the needs of real world collaborations where robustness and flexibility of policy specification and enforcement, and ease of maintenance are essential. In this paper we present results of the JISC funded Advanced Grid Authorisation through Semantic Technologies (AGAST) project (www.nesc.ac.uk/hub/projects/agast) and show how semantic-based approaches to security policy specification and enforcement can address many of the limitations with existing security solutions. These are demonstrated into the clinical trials domain through the MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project (www.nesc.ac.uk/hub/projects/votes) and the epidemiological domain through the JISC funded SeeGEO project (www.nesc.ac.uk/hub/projects/seegeo)

    Sensor function virtualization to support distributed intelligence in the internet of things

    Get PDF
    It is estimated that-by 2020-billion devices will be connected to the Internet. This number not only includes TVs, PCs, tablets and smartphones, but also billions of embedded sensors that will make up the "Internet of Things" and enable a whole new range of intelligent services in domains such as manufacturing, health, smart homes, logistics, etc. To some extent, intelligence such as data processing or access control can be placed on the devices themselves. Alternatively, functionalities can be outsourced to the cloud. In reality, there is no single solution that fits all needs. Cooperation between devices, intermediate infrastructures (local networks, access networks, global networks) and/or cloud systems is needed in order to optimally support IoT communication and IoT applications. Through distributed intelligence the right communication and processing functionality will be available at the right place. The first part of this paper motivates the need for such distributed intelligence based on shortcomings in typical IoT systems. The second part focuses on the concept of sensor function virtualization, a potential enabler for distributed intelligence, and presents solutions on how to realize it
    • …
    corecore