356 research outputs found

    A compositional neural architecture for language

    No full text
    Hierarchical structure and compositionality imbue human language with unparalleled expressive power and set it apart from other perception–action systems. However, neither formal nor neurobiological models account for how these defining computational properties might arise in a physiological system. I attempt to reconcile hierarchy and compositionality with principles from cell assembly computation in neuroscience; the result is an emerging theory of how the brain could convert distributed perceptual representations into hierarchical structures across multiple timescales while representing interpretable incremental stages of (de) compositional meaning. The model's architecture—a multidimensional coordinate system based on neurophysiological models of sensory processing—proposes that a manifold of neural trajectories encodes sensory, motor, and abstract linguistic states. Gain modulation, including inhibition, tunes the path in the manifold in accordance with behavior and is how latent structure is inferred. As a consequence, predictive information about upcoming sensory input during production and comprehension is available without a separate operation. The proposed processing mechanism is synthesized from current models of neural entrainment to speech, concepts from systems neuroscience and category theory, and a symbolic-connectionist computational model that uses time and rhythm to structure information. I build on evidence from cognitive neuroscience and computational modeling that suggests a formal and mechanistic alignment between structure building and neural oscillations and moves toward unifying basic insights from linguistics and psycholinguistics with the currency of neural computation

    Tongue Movements in Feeding and Speech

    Get PDF
    The position of the tongue relative to the upper and lower jaws is regulated in part by the position of the hyoid bone, which, with the anterior and posterior suprahyoid muscles, controls the angulation and length of the floor of the mouth on which the tongue body \u27rides\u27. The instantaneous shape of the tongue is controlled by the \u27extrinsic muscles \u27 acting in concert with the \u27intrinsic \u27 muscles. Recent anatomical research in non-human mammals has shown that the intrinsic muscles can best be regarded as a \u27laminated segmental system \u27 with tightly packed layers of the \u27transverse\u27, \u27longitudinal\u27, and \u27vertical\u27 muscle fibers. Each segment receives separate innervation from branches of the hypoglosssal nerve. These new anatomical findings are contributing to the development of functional models of the tongue, many based on increasingly refined finite element modeling techniques. They also begin to explain the observed behavior of the jaw-hyoid-tongue complex, or the hyomandibular \u27kinetic chain\u27, in feeding and consecutive speech. Similarly, major efforts, involving many imaging techniques (cinefluorography, ultrasound, electro-palatography, NMRI, and others), have examined the spatial and temporal relationships of the tongue surface in sound production. The feeding literature shows localized tongue-surface change as the process progresses. The speech literature shows extensive change in tongue shape between classes of vowels and consonants. Although there is a fundamental dichotomy between the referential framework and the methodological approach to studies of the orofacial complex in feeding and speech, it is clear that many of the shapes adopted by the tongue in speaking are seen in feeding. It is suggested that the range of shapes used in feeding is the matrix for both behaviors

    Timing in talking: What is it used for, and how is it controlled?

    Get PDF
    In the first part of the paper, we summarize the linguistic factors that shape speech timing patterns, including the prosodic structures which govern them, and suggest that speech timing patterns are used to aid utterance recognition. In the spirit of optimal control theory, we propose that recognition requirements are balanced against requirements such as rate of speech and style, as well as movement costs, to yield (near-)optimal planned surface timing patterns; additional factors may influence the implementation of that plan. In the second part of the paper, we discuss theories of timing control in models of speech production and motor control. We present three types of evidence that support models of speech production that involve extrinsic timing. These include (i) increasing variability with increases in interval duration, (ii) evidence that speakers refer to and plan surface durations, and (iii) independent timing of movement onsets and offsets

    Speech Sound Acquisition, Coarticulation, and Rate Effects in a Neural Network Model of Speech Production

    Full text link
    This article describes a neural network model of speech motor skill acquisition and speech production that explains a wide range of data on contextual variability, motor equivalence, coarticulation, and speaking rate effects. Model parameters are learned during a babbling phase. To explain how infants learn phoneme-specific and language-specific limits on acceptable articulatory variability, the learned speech sound targets take the form of multidimensional convex regions in orosensory coordinates. Reduction of target size for better accuracy during slower speech (in the spirit of the speed-accuracy trade-off described by Fitts' law) leads to differential effects for vowels and consonants, as seen iu speaking rate experiments that have been previously taken as evidence for separate control processes for the two sound types. An account of anticipatory coarticulation is posited wherein the target for a speech sound is reduced in size based on context to provide a more efficient sequence of articulator movements. This explanation generalizes the well-known look ahead model of coarticulation to incorporate convex region targets. Computer simulations verify the model's properties, including linear velocity/distance relationships, motor equivalence, speaking rate effects, and carryover and anticipatory coarticulation.Air Force Office of Scientific Research (F49620-92-J-0499

    The Perception and Production of SSBE vowels by Syrian Arabic learners:The Foreign Language Model

    Get PDF
    This thesis presents an examination of the perception and production of Standard Southern British English (SSBE) vowels by Syrian Arabic (SA) Foreign language (FL) learners. The focus of this thesis is the FL learners who learned their English in their country and mostly by non-native teachers. Thus, by definition, the FL learners do not have native English input on a daily basis. This thesis reports on an empirical investigation of the Second Language (L2) perceptual and production patterns of a group of FL learners, which has received little interest in the literature, combining insights from current cross-language speech perception (Perceptual Assimilation Model) (Best 1994, 1995, 1999) and L2 learning models (Speech Learning Model) (Flege 1995). These models were mainly developed to account for early and advanced L2 learners, respectively. Thus, this study aims to develop an account for the perception and production of FL learners based on current L2 models. Results indicate that the specific learning context of FL learners is reflected in their perception and production patterns. For example, these learners live in a predominantly L1 environment, and their L2 input is mainly taken in a classroom and mostly by local teachers. However, this study argues that though FL learners lack native L2 input, they do have access to the phonology, syntax, and structures of the L2 via direct teaching. It is also shown that the perceptual patterns of the learners succeeded in predicting their production patterns, which has implications on the perception-production link for L2 learners, in general, and for FL learners in particular. The main outcome of the present thesis is that it develops an account of the perception and production of FL learners. It outlines the main principles for a proposed Foreign Language Model, in which the peculiarities of FL learners are taken into consideration compared to other groups of learners

    Articulation in time : Some word-initial segments in Swedish

    Get PDF
    Speech is both dynamic and distinctive at the same time. This implies a certain contradiction which has entertained researchers in phonetics and phonology for decades. The present dissertation assumes that articulation behaves as a function of time, and that we can find phonological structures in the dynamical systems. EMA is used to measure mechanical movements in Swedish speakers. The results show that tonal context affects articulatory coordination. Acceleration seems to divide the movements of the jaw and lips into intervals of postures and active movements. These intervals are affected differently by the tonal context. Furthermore, a bilabial consonant is shorter if the next consonant is also made with the lips. A hypothesis of a correlation between acoustic segment duration and acceleration is presented. The dissertation highlights the importance of time for how speech ultimately sounds. Particularly significant is the combination of articulatory timing and articulatory duration

    Limb versus Speech Motor Control: A Conceptual Review

    Full text link

    Towards a clinical assessment of acquired speech dyspraxia.

    Get PDF
    No standardised assessment exists for the recognition and quantification of acquired speech dyspraxia (also called apraxia of speech, AS). This thesis aims to work towards development of such an assessment based on perceptual features. Review of previous features claimed to characterise AS and differentiate it from other acquired pronunciation problems (dysarthrias; phonemic paraphasia - PP) has proved negative. Reasons for this have been explored. A reconceptualisation of AS is attempted based on physical studies of AS, PP and the dysarthrias; their position and relationship within coalitional models of speech production; by comparison with normal action control and other dyspraxias. Contrary to the view of many it is concluded that AS and PP are dyspraxias (albeit different types). However, due to the interactive nature of speech-language production and behaviour of the vocal tract as a functional whole AS is unlikely to be distinguishable in an absolute fashion based on single speech characteristics. Rather it is predicted that pronunciation disordered groups will differ relatively on total error profiles and susceptibility to associated effects (variability; propositionality; struggle; length-complexity; latency-utterance times). Using a prototype battery and refined error transcription and analysis procedures a series of studies test predictions on three groups: spastic dysarthrics (n = 6) AS and PP without (n = 12) and with (n = 12) dysphasia. The main conclusions do not support the error profile hypotheses in any straightforward manner. Length-complexity effects and latency-utterance times fail to consistently separate groups. Variability, propositionality and struggle proved the most reliable indicators. Error profiles remain the closest indicators of speakers' intelligibility and therapeutic goals. The thesis argues for a single case approach to differential diagnosis and alternative statistical analyses to capture individual and group differences. Suggestions for changes to the prototype clinical battery and data management to effect optimal speaker differentiation conclude the work

    A Mechanistic Approach to Cross-Domain Perceptual Narrowing in the First Year of Life

    Get PDF
    Language and face processing develop in similar ways during the first year of life. Early in the first year of life, infants demonstrate broad abilities for discriminating among faces and speech. These discrimination abilities then become tuned to frequently experienced groups of people or languages. This process of perceptual development occurs between approximately 6 and 12 months of age and is largely shaped by experience. However, the mechanisms underlying perceptual development during this time, and whether they are shared across domains, remain largely unknown. Here, we highlight research findings across domains and propose a top-down/bottom-up processing approach as a guide for future research. It is hypothesized that perceptual narrowing and tuning in development is the result of a shift from primarily bottom-up processing to a combination of bottom-up and top-down influences. In addition, we propose word learning as an important top-down factor that shapes tuning in both the speech and face domains, leading to similar observed developmental trajectories across modalities. Importantly, we suggest that perceptual narrowing/tuning is the result of multiple interacting factors and not explained by the development of a single mechanism

    Individual Differences in Speech Production and Perception

    Get PDF
    Inter-individual variation in speech is a topic of increasing interest both in human sciences and speech technology. It can yield important insights into biological, cognitive, communicative, and social aspects of language. Written by specialists in psycholinguistics, phonetics, speech development, speech perception and speech technology, this volume presents experimental and modeling studies that provide the reader with a deep understanding of interspeaker variability and its role in speech processing, speech development, and interspeaker interactions. It discusses how theoretical models take into account individual behavior, explains why interspeaker variability enriches speech communication, and summarizes the limitations of the use of speaker information in forensics
    • …
    corecore