811 research outputs found

    A Learning-Style Theory for Understanding Autistic Behaviors

    Get PDF
    Understanding autism's ever-expanding array of behaviors, from sensation to cognition, is a major challenge. We posit that autistic and typically developing brains implement different algorithms that are better suited to learn, represent, and process different tasks; consequently, they develop different interests and behaviors. Computationally, a continuum of algorithms exists, from lookup table (LUT) learning, which aims to store experiences precisely, to interpolation (INT) learning, which focuses on extracting underlying statistical structure (regularities) from experiences. We hypothesize that autistic and typical brains, respectively, are biased toward LUT and INT learning, in low- and high-dimensional feature spaces, possibly because of their narrow and broad tuning functions. The LUT style is good at learning relationships that are local, precise, rigid, and contain little regularity for generalization (e.g., the name–number association in a phonebook). However, it is poor at learning relationships that are context dependent, noisy, flexible, and do contain regularities for generalization (e.g., associations between gaze direction and intention, language and meaning, sensory input and interpretation, motor-control signal and movement, and social situation and proper response). The LUT style poorly compresses information, resulting in inefficiency, sensory overload (overwhelm), restricted interests, and resistance to change. It also leads to poor prediction and anticipation, frequent surprises and over-reaction (hyper-sensitivity), impaired attentional selection and switching, concreteness, strong local focus, weak adaptation, and superior and inferior performances on simple and complex tasks. The spectrum nature of autism can be explained by different degrees of LUT learning among different individuals, and in different systems of the same individual. Our theory suggests that therapy should focus on training autistic LUT algorithm to learn regularities

    Dynamics on the manifold: Identifying computational dynamical activity from neural population recordings

    Get PDF
    The question of how the collective activity of neural populations gives rise to complex behaviour is fundamental to neuroscience. At the core of this question lie considerations about how neural circuits can perform computations that enable sensory perception, decision making, and motor control. It is thought that such computations are implemented through the dynamical evolution of distributed activity in recurrent circuits. Thus, identifying dynamical structure in neural population activity is a key challenge towards a better understanding of neural computation. At the same time, interpreting this structure in light of the computation of interest is essential for linking the time-varying activity patterns of the neural population to ongoing computational processes. Here, we review methods that aim to quantify structure in neural population recordings through a dynamical system defined in a low-dimensional latent variable space. We discuss advantages and limitations of different modelling approaches and address future challenges for the field

    AI of Brain and Cognitive Sciences: From the Perspective of First Principles

    Full text link
    Nowadays, we have witnessed the great success of AI in various applications, including image classification, game playing, protein structure analysis, language translation, and content generation. Despite these powerful applications, there are still many tasks in our daily life that are rather simple to humans but pose great challenges to AI. These include image and language understanding, few-shot learning, abstract concepts, and low-energy cost computing. Thus, learning from the brain is still a promising way that can shed light on the development of next-generation AI. The brain is arguably the only known intelligent machine in the universe, which is the product of evolution for animals surviving in the natural environment. At the behavior level, psychology and cognitive sciences have demonstrated that human and animal brains can execute very intelligent high-level cognitive functions. At the structure level, cognitive and computational neurosciences have unveiled that the brain has extremely complicated but elegant network forms to support its functions. Over years, people are gathering knowledge about the structure and functions of the brain, and this process is accelerating recently along with the initiation of giant brain projects worldwide. Here, we argue that the general principles of brain functions are the most valuable things to inspire the development of AI. These general principles are the standard rules of the brain extracting, representing, manipulating, and retrieving information, and here we call them the first principles of the brain. This paper collects six such first principles. They are attractor network, criticality, random network, sparse coding, relational memory, and perceptual learning. On each topic, we review its biological background, fundamental property, potential application to AI, and future development.Comment: 59 pages, 5 figures, review articl

    Adaptively Lossy Image Compression for Onboard Processing

    Get PDF
    More efficient image-compression codecs are an emerging requirement for spacecraft because increasingly complex, onboard image sensors can rapidly saturate downlink bandwidth of communication transceivers. While these codecs reduce transmitted data volume, many are compute-intensive and require rapid processing to sustain sensor data rates. Emerging next-generation small satellite (SmallSat) computers provide compelling computational capability to enable more onboard processing and compression than previously considered. For this research, we apply two compression algorithms for deployment on modern flight hardware: (1) end-to-end, neural-network-based, image compression (CNN-JPEG); and (2) adaptive image compression through feature-point detection (FPD-JPEG). These algorithms rely on intelligent data-processing pipelines that adapt to sensor data to compress it more effectively, ensuring efficient use of limited downlink bandwidths. The first algorithm, CNN-JPEG, employs a hybrid approach adapted from literature combining convolutional neural networks (CNNs) and JPEG; however, we modify and tune the training scheme for satellite imagery to account for observed training instabilities. This hybrid CNN-JPEG approach shows 23.5% better average peak signal-to-noise ratio (PSNR) and 33.5% better average structural similarity index (SSIM) versus standard JPEG on a dataset collected on the Space Test Program – Houston 5 (STP-H5-CSP) mission onboard the International Space Station (ISS). For our second algorithm, we developed a novel adaptive image-compression pipeline based upon JPEG that leverages the Oriented FAST and Rotated BRIEF (ORB) feature-point detection algorithm to adaptively tune the compression ratio to allow for a tradeoff between PSNR/SSIM and combined file size over a batch of STP-H5-CSP images. We achieve a less than 1% drop in average PSNR and SSIM while reducing the combined file size by 29.6% compared to JPEG using a static quality factor (QF) of 90
    • …
    corecore