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Highlights

• Neural activity is often confined to low-dimensional activity manifolds

• Dynamical systems can connect activity manifolds to underlying circuit computation

• We highlight data-analysis approaches to study computation through dynamics

• Future directions include linking data-analysis to artificial network models

Abstract

The question of how the collective activity of neural populations gives rise to complex behaviour is
fundamental to neuroscience. At the core of this question lie considerations about how neural circuits
can perform computations that enable sensory perception, decision making, and motor control. It is
thought that such computations are implemented by the dynamical evolution of distributed activity in
recurrent circuits. Thus, identifying dynamical structure in neural population activity is a key challenge
towards a better understanding of neural computation. At the same time, interpreting this structure
in light of a computation of interest is essential for linking the time-varying activity patterns of the
neural population to ongoing computational processes. Here, we review methods that aim to quantify
structure in neural population recordings through a dynamical system defined in a low-dimensional
latent variable space. We discuss advantages and limitations of different modelling approaches and
address future challenges for the field.

Introduction

Survival often depends on computations that are explicitly dynamical in structure. Consider navigating
to a remembered shelter, integrating ambiguous or noisy cues to detect a predator, or planning and
executing a precise movement to catch or avoid becoming prey. In each case an estimate of current
state—reflecting relative location, partial information about the threat, or pose of the body in relation
to the target—must be retained and updated to determine the best course of future action.

Dynamical computations, and the associated maintenance of dynamical state, are likely to be supported
by the exuberantly recurrent circuitry found in much of the central nervous system. Even rapid
responses to brief stimuli may depend in part on recurrent dynamics. One signature of dynamical
computation is that it takes time. Although observers can assign a broad category to the visual
object that appears in a flashed image with a speed that seems consistent with feedforward processing
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alone, more detailed categorisation requires longer processing of the same briefly-presented stimulus
[1]. Indeed, almost all sensory decisions benefit (to a point) from greater processing time, even when
the duration of the sensory stimulus itself remains fixed. This is the ubiquitous phenomenon of speed-
accuracy tradeoff [2]. The hypothesis that this gain in accuracy results from greater time for dynamical
computation is supported by studies of backward masking, in which performance may be limited by
‘stopping’ such processing prematurely [3].

An emphasis on dynamics in neural computation is increasingly bringing to the fore empirical methods
that characterise the temporal evolution of neural activity in recurrent circuits. Many such methods
focus on visualisation, for example using dimensionality reduction techniques, but by themselves such
methods cannot identify the dynamical rule that dictates how current state and inputs combine to
shape the evolution of activity. It is this dynamical rule that embodies the computational algorithm
implemented by the network, and thus it is important for analytic methods to move beyond mere
visualisation of temporal patterns to direct statistical identification of dynamics.

Here, we review recent work that seeks to combine characteristion of a low-dimensional manifold
explored by population activity with estimation of the dynamical rules responsible for generating the
relevant activity patterns. We begin with a brief overview of dimensionality reduction, connecting
those ideas to a dynamical systems framework for studying neural computation. Next, we explore
methods that seek to capture dynamical laws of increasing complexity on the low-dimensional manifolds
underlying population data. We close by considering limitations and opportunities for future work in
the field.

Characterising neural activity manifolds

The time-varying activity of a population of neurons can be described in terms of a high-dimensional
coordinate system with axes corresponding to the firing rate of each neuron. The collective activity of
all neurons in the population determines a single point in this high-dimensional coordinate system—
the population state. As the activity unfolds over time, the population state traces out a trajectory
in the high-dimensional space. In some situations, the dimensionality of the space explored by these
population trajectories for a given computation may be much smaller than the number of neurons
in the circuit that maintains the relevant representation. In this case, computational activity will be
confined to a low-dimensional subset or manifold contained within this high-dimensional ambient space
(Figure 1) [4]. Here, each state value corresponds to one (or few) pattern(s) of population activity,
and the set of all activity patterns encountered during computation will, up to intrinsic neuronal noise,
reflect this dimensionality rather than the size of the network.

Computational manifolds with a range of geometries have been observed in neural activity. These
include linear or affine subspaces (Figure 1a) observed in cortical activity before and during deliberate
reaching [5–8], decision making [9, 10] and motor timing [11, 12], where the activity manifold lies
almost flat. Nonlinear examples include representations of space in the hippocampus and entorhinal
cortex [13–15], such as a ring topology in the head-direction cell system [16, 17] (Figure 1b), or
more generally curved manifolds [18]. In other settings, the manifold may be star-shaped (Figure 1c),
as when sparse groups of neurons encode different state values [19], or comprise a union of disjoint
submanifolds as in the collection of synchronous firing states of a synfire chain [20].

In many of these examples, the dimensionality of the computational manifold is closely related to the
dimensionality of an encoded state variable, such as location in two or three dimensional space or head
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Figure 1: a: Population activity evolves in a high dimensional coordinate space, where each axis corre-
sponds to the firing rate of a recorded unit. Even though this space is high-dimensional, neural activity
may only explore a low-dimensional subspace. Inter-trial differences in task outcome may be reflected
in inter-trial differences in the evolution of the neural population state over time. Dimensionality
reduction techniques can be applied to obtain descriptions of the high-dimensional population activity
in terms of a low-dimensional latent variable. b: Schematic illustration of a one-dimensional manifold,
embedded nonlinearly in the high-dimensional space of recorded neurons. Similar topologies have been
identified in the head-direction cell system [16, 17]. c: Illustration of a manifold representing different
state values, where each state engages different groups of neurons.

direction. The dynamical compution that updates this state variable in response to self motion, sensory
input, or perhaps as part of memory or action planning, will then appear to move activity along the
neutrally stable manifold of valid encodings giving rise to a computation that is largely confined within
this manifold. More generally, if the complexity of the underlying computation is low—as is often
the case in tightly controlled experimental tasks—then only a few computational variables need to be
encoded in the circuit and the dimensionality of the associated activity patterns may hence be low as
well [21]. Where representational demands are more elaborate, for instance when extracting features
from a high-dimensional set of natural stimuli, then neural activity reflects these added dimensions
[22]. Even in this case, however, the temporal evolution of activity in response to any one image may
remain confined to a lower dimensional space [23].

When relevant, the low-dimensional manifold of activity, as well as the trajectories by which activity
evolves along that manifold, may be found by applying dimensionality reduction techniques to popula-
tion data recorded while the computation is performed [24]. In effect, these methods use instantaneous
relationships between the activity in different neurons [5, 16, 19, 25–28] or between that activity and
externally measureable quantities [9, 29, 30], to estimate the low-dimensional structure in the data.
Often, these statistical relationships in observed activity are captured by assuming dependence on a
shared but unobserved latent variable. In such cases, the latent variable provides a direct estimate
of the representation of the underlying computational state. Otherwise a further step is necessary
to establish a coordinate system for the recovered manifold and so provide a variable that represents
state [16].

The manifold of population states is one part of the link between neural circuits and dynamical
computation. However, activity manifolds are only the signature of an ongoing computational process
and do not by themselves provide a description of the relevant computation. Although at least
one recent approach seeks to identify low-dimensional projections most compatible with dynamics
[31], a full connection between the observed population activity patterns and the underlying circuit
computation depends on explicit identifcation of the dynamical rule that dictates how neural activity
evolves in time.
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From data to dynamics to computation

The way in which temporal evolution of population activity implements computation is formalised by
viewing the network as a dynamical system [32–34], defined by a state and a dynamical law—the
system dynamics—that governs the future evolution of that state based on its current value and
inputs. This dynamics, ultimately implemented by the connections and integration properties of the
neurons in the network, then captures the computational transformation of inputs to outputs over
time. Its features, such as the location and stability of fixed points or limit cycles, their basins of
attraction, and properties of input-driven orbits in the state space, provide insight into the structure
of the computation.

Consider, for example, a network involved in a simple perceptual decision-making task, such as re-
porting the direction of motion of a random dots stimulus [35]. To solve this task, the network would
need to update a decision variable representing left- or rightward motion, based on perceptual evidence
arriving as inputs to the system. We may hence observe that activity in this network evolves gradually
towards a different pattern of firing for each choice made (Figure 1a). Such trajectories are consis-
tent with a simple dynamical system in which two (or more) attractor states are positioned such that
transient inputs that reflect sensory evidence nudge the state from a un- or marginally stable initial
point towards one or the other attractor (Figure 2c). Indeed, from a theoretical point of view, spiking
neural network models that achieve such integrative decision making [36] can be reduced to just such
a two-dimensional dynamical description in terms of decision-related variables [37] (Figure 3c). In this
case, the link between circuit computation and dynamics is made explicit.

Is it possible to extract an analogous description in terms of low-dimensional latent variables directly
from data recorded during a perceptual decision making task? Data analysis methods that facilitate
such a description could offer ways to refine and test hypotheses around computation in recurrent
circuits (Figure 3a), and thus represent a path towards a data-driven understanding of the biological
computational strategy.

Identifying dynamical systems from data

To study neural computation, we are interested in estimating and analysing the dynamics that govern
the temporal evolution of the underlying computational state of the network. A general class of latent
dynamical, or state-space models, facilitate this through the description of the evolution of neural
activity in terms of a low-dimensional latent computational state (here written xxx(t) or xxxt in discretised
time) that relates linearly or nonlinearly to recorded neural activity and evolves in time with dynamics
of an assumed functional form. Given recorded neural activity, the models can be fit to data to infer
a distribution over the path of the latent variable, and estimate the dynamics that describes this
evolution.

Linear models

The simplest class of latent dynamical models incorporates a linear dynamical system, modelling the
evolution of the latent state as

xxxt+1 = A xxxt +B uuut+1 + ηηηt (1)

in terms of a dynamics matrix A, inputs B uuut, and (typically random Gaussian) state innovations ηηηt.

4



linear
choice 1 dynamics

A1

la
te

nt
di

m
2

latent dim 1

choice 2 dynamics

A2

la
te

nt
di

m
2

latent dim 1

switching linear

time

st
1 2 1

discrete state sequence

la
te

nt
di

m
2

latent dim 1

nonlinear

local linear
approximation

stable fixed point

la
te

nt
di

m
2

latent dim 1

a b c

Figure 2: Description of the temporal evolution of the population activity in Figure 1a in terms
of different dynamical systems defined on the low-dimensional latent variable. The dynamics are
illustrated through a flow field. a: Linear dynamics with a single fixed point fit to trials corresponding
to the same choice. b: Switching dynamical system composed of two linear sub-systems and a discrete
variable indicating which system dictates the evolution of the latent variable at each time point. When
the discrete state variable is dependent on the current value of the latent variable, one subsystem is
more likely to be active in a given region of state-space. c: Nonlinear dynamical system with three
fixed points. Coloured lines show the system’s nullclines, where the temporal derivative of one of the
latent dimensions is zero. The path of the latent variables converges to one of the two stable fixed
points. The local behaviour of the system can be analysed via linear approximations.

Linear systems are made particularly attractive by the fact that their asymptotic behaviour can be
understood in terms of the eigenvalues and eigenvectors of A. For stable systems and in the absence of
inputs, activity will eventually decay towards a single fixed point at zero. Depending on the orientation
of the eigenvectors of A, the system may also exhibit transient, non-normal amplification on shorter
timescales [38, 39]. Analysis of control-theoretic objects like controllability and observability Gramians
provide further insight into the system’s behaviour in response to inputs [40].

Linear dynamical systems have been applied to brain-machine interface control [41], and used to
study mechanisms underlying contextual evidence integration in prefrontal cortex [42]. They have
also provided a theoretical framework within which to understand features of neural responses during
motor preparation and execution [43, 44], in primary visual cortex [39] and working memory [38]. These
applications have provided insight even though linear dynamical transformations of input are unlikely to
capture the full richness of neural dynamics. In part this is because linear systems provide parsimonious
local descriptions (for a single experiment condition, a single task epoch, or for restricted ranges of
neural activity) of potentially more complex circuit dynamics (Figure 2a). Local linear approximations
also represent an important building block for the analysis of the behaviour of more complex, nonlinear
dynamical systems (Figure 2c) [45].
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Switching linear models

Switching linear dynamical systems mix multiple linear updates under the control of a discrete switching
variable. The simplest model takes the form:

st+1 ∼ p(st+1|st) , st ∈ {1, . . . ,M}
xxxt+1 = Astxxxt +Bstuuut+1 + ηηηt ,

(2)

with the discrete Markov variable st selecting the linear evolution Ai and input mapping Bi (i =
1, . . . ,M) that act on the computational state at time t. Switching models are more expressive than a
single linear model: switches in dynamics may reflect the influence of multiple fixed points, or capture
changes in dynamics with time, or under the control of unobserved inputs. More generally, arbitrary
non-linear dynamics may be approximated by a piecewise linear form (Figure 2b). However, while
the simple form of eq. (2) allows transitions between dynamical regimes to be estimated from neural
data, it lacks the capacity to select linear dynamics based on the value of the computational state.
Thus, a richer model includes dependence of st (and thus the local linear dynamics) on the current
computational state xxxt [46–49]. One advantage to such an approximation is that by retaining explicit
linearity in each subsystem, dynamics within each region can still be analysed and understood using
classic tools from linear systems analysis.

Applications of switching linear dynamical systems include the analysis of neural population activity
during motor planning and execution [49, 50], and the identification of latent activity patterns in
recordings from C. elegans [47, 49]. In each case, models were able to identify relationships between
behavioral states and the discrete state sequence inferred in the model.

Nonlinear models

Theoretical studies have suggested essential roles for nonlinear network dynamics in computation
[36, 51, 52], with outputs depending on multiple fixed points, limit cycles or line attractors, or bifur-
cations with changes in inputs. Many of these features cannot be expressed in linear systems, and
may be difficult to approximate well with switching linear systems without overwhelming complexity.
Consequently, there has also been substantial interest in identifying nonlinear models of dynamics in
a circuit from neural data. In these models, the dynamics are expressed very generally through a
parametrised function fff(·):

xxxt+1 = fff(xxxt,uuut+1) + ηηηt (3)

which describes the state evolution as a function of both current latent state xxx and any inputs arriving
to the system uuu.

Choosing flexible function classes for fff(·) makes it possible to describe richer sets of dynamics than
linear or piecewise-linear models. Such flexible choices include nonparametric approaches like Gaussian
Process State Space Models [53–55], representation of the dynamics in terms of eigenfunctions of the
Hermitian operator of the dynamical system [56], or parametrisations in terms of a neural network
[57, 58].

The local behaviour of nonlinear dynamics can still be understood in terms of linear approximations
given by the Jacobian matrix evaluated at fixed points of the system (Figure 2c) [45]. However,
identifying fixed-points and Jacobians of the nonlinear system typically requires a second stage of
estimation [59], or the specification of models to include these features directly as additional parameters
[55].
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Figure 3: Different approaches towards studying neural population dynamics and computation. a:
Data analysis approaches require making assumptions to specify a parametric model of the underlying
populations dynamics. Different modalities of recorded neural activity can be used for model fitting
to obtain a description of low-dimensional structure in the neural population and estimates of the
model parameters. The recovered dynamical system can then be analysed in light of the task and
computation of interest. b: Task-optimised artificial network models learn a pre-specified input-output
transformation. Everything about the system is observable and can be analysed in detail to extract
insight about the resulting dynamical system solving the task. However, the solution will depend on
assumptions about task and network design, as well as the cost function used for optimisation. c:
Mechanistic models are designed to implement a hypothesised solution to a given task, often taking
biological constraints like cell-type structure into account. The design is often set up to capture
selected qualitative features of neural data.

Outstanding challenges and future directions

While dynamical systems offer a compelling framework for studying computation in recurrent circuits,
connecting such ideas to neural data is met with a number of challenges in practice.

These include challenges associated with fitting dynamical models to data, like choosing good criteria
for model selection when the goal is interpretation and scientific discovery [56], and adapting statistical
models to accommodate neural response features, which can lead to intractabilities in performing
statistical inference.

Furthermore, inputs to the local population are generally unknown, which makes it difficult to determine
which features of neural activity reflect the dynamics of the local circuit, or dynamics of inputs from
other areas. Recent work has begun to investigate the use of single trial activity to tease apart these
contributions [60]. Still, existing approaches for studying the dynamics of a local population generally
have to make assumptions about these components in order to arrive at a model description that is
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identifiable from data (Figure 3a). So far, it has been difficult to validate such assumptions, yet their
impact on the inferred dynamics may be large.

A further challenge relates to the interpretability of latent dynamical models with respect to the goal
of better understanding computation in biological circuits. The low-dimensional dynamics evolve in
an abstract latent space, which is typically identified in an unsupervised way and may not easily be
related to variables relevant to the computation or task of interest. Deriving explicit statements about
mechanistic circuit computation from the estimated model fits is hard, since any inference about
characteristics of dynamics in latent space do not directly translate to dynamics defined through a
connectivity matrix in neural space. Known constraints on the dynamics of the biological circuit, such
as excitatory and inhibitory cell-type structure and Dale’s law, are typically not taken into account
in methods that learn dynamics from data. However, such properties might influence features of the
neural responses used for fitting. This discrepancy in levels of analysis also makes it difficult to derive
testable experimental predictions based on any insights data analysis methods may provide.

To address these challenges, it is important to highlight that there are other, complementary ap-
proaches towards studying network dynamics and computation. These include reverse-engineering
task-optimised artificial neural network models [45, 61] (Figure 3b) and designing mechanistic network
implementations of a particular computation [36] (Figure 3c). Such network models are fully observ-
able and can incorporate biological constraints, yet their connection to data is often only qualitative in
nature. Furthermore, they too rely on model assumptions, such as network architecture, cost function,
and structure in network inputs and target outputs.

Drawing connections between mechanistic models of network computations, task-optimized aritifical
neural networks, and data analysis will help to better inform model assumptions, and provide more
quantitative links between theoretical network models and observed neural data. Such connections
will also aid model interpretability, and ultimately inform the design of experiments to test and refine
the hypotheses different models may generate. Indeed, recent work has begun to formulate statistical
models in ways to establish more direct connections between theory and data analysis [55, 62], or use
experimentally observed responses to constrain activity in recurrent network network models [63]. In
addition to this, establishing connections between latent variable models and mechanistic modelling
approaches might aid the interpretability of model parameters that are learned from data. Going
forward, it will be important to establish clearer links between theoretical descriptions of network
computation and data-driven latent dynamical models.
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