
 

  

Title Page  

Adaptively Lossy Image Compression for Onboard Processing 

 

 

 

 

 

 

 

 

by 

 

Justin Goodwill 

 

B.S. Electrical Engineering, University of Pittsburgh, 2018 

 

 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of the 

 

Swanson School of Engineering in partial fulfillment 

  

of the requirements for the degree of 

 

Master of Science in Electrical and Computer Engineering 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

 

2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/328827009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii 

Committee Page  

UNIVERSITY OF PITTSBURGH 

 

SWANSON SCHOOL OF ENGINEERING 

 

 

 

 

 

 

 

 

 

This thesis was presented 

 

by 

 

 

Justin Goodwill 

 

 

It was defended on 

 

March 6, 2020 

 

and approved by 

 

Dr. Zhi-Hong Mao, Ph.D., Professor, Department of Electrical and Computer Engineering, 

Department of Bioengineering 

 

Dr. Ahmed Dallal, Ph.D., Assistant Professor, Department of Electrical and Computer 

Engineering 

 

Thesis Advisor: Dr. Alan George, Ph.D., Department Chair and Mickle Chair Professor, 

Department of Electrical and Computer Engineering 

  



 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by Justin Goodwill 

 

2020 

 

 

 

 



 iv 

Abstract 

Adaptively Lossy Image Compression for Onboard Processing 

 

Justin Goodwill, MS 

 

University of Pittsburgh, 2020 

 

 

 

 

More efficient image-compression codecs are an emerging requirement for spacecraft 

because increasingly complex, onboard image sensors can rapidly saturate downlink bandwidth of 

communication transceivers. While these codecs reduce transmitted data volume, many are 

compute-intensive and require rapid processing to sustain sensor data rates. Emerging next-

generation small satellite (SmallSat) computers provide compelling computational capability to 

enable more onboard processing and compression than previously considered. For this research, 

we apply two compression algorithms for deployment on modern flight hardware: (1) end-to-end, 

neural-network-based, image compression (CNN-JPEG); and (2) adaptive image compression 

through feature-point detection (FPD-JPEG). These algorithms rely on intelligent data-processing 

pipelines that adapt to sensor data to compress it more effectively, ensuring efficient use of limited 

downlink bandwidths. The first algorithm, CNN-JPEG, employs a hybrid approach adapted from 

literature combining convolutional neural networks (CNNs) and JPEG; however, we modify and 

tune the training scheme for satellite imagery to account for observed training instabilities. This 

hybrid CNN-JPEG approach shows 23.5% better average peak signal-to-noise ratio (PSNR) and 

33.5% better average structural similarity index (SSIM) versus standard JPEG on a dataset 

collected on the Space Test Program – Houston 5 (STP-H5-CSP) mission onboard the International 

Space Station (ISS). For our second algorithm, we developed a novel adaptive image-compression 

pipeline based upon JPEG that leverages the Oriented FAST and Rotated BRIEF (ORB) feature-

point detection algorithm to adaptively tune the compression ratio to allow for a tradeoff between 



 v 

PSNR/SSIM and combined file size over a batch of STP-H5-CSP images. We achieve a less than 

1% drop in average PSNR and SSIM while reducing the combined file size by 29.6% compared 

to JPEG using a static quality factor (QF) of 90. 
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1.0 Introduction 

When developing mission concepts and systems for satellites, mission designers must 

address design considerations balancing concessions between data storage, data processing, and 

communication bandwidth for their instruments. The spacecraft platform (i.e. from nanosatellite 

to large satellite) has requirements for size, weight, power, and cost (SWaP-C) that define general 

constraints in the trade-space for those considerations. The designer must then identify the best 

combination and balance of these traits for the mission. For example, more efficient image-

compression codecs are an emerging requirement for spacecraft because increasingly complex, 

onboard sensors can rapidly saturate both downlink bandwidth of communication transceivers and 

onboard data storage capability. While these codecs can significantly reduce transmitted or stored 

data volume, many are computationally intensive and require rapid processing to sustain sensor 

data rates. 

Traditional large spacecraft often rely upon slow, radiation-hardened (rad-hard) processing 

technologies due to the harsh space environment [1]-[2]. However, with the advent of more capable 

onboard processing systems, including hybrid rad-hard/commercial architectures or commercial-

off-the-shelf (COTS) devices [3], developers are emphasizing more onboard processing and 

compression to address mission challenges. These hybrid and commercial systems provide 

substantial benefits in processing capability and power efficiency over their rad-hard counterparts, 

and benefit from significant advancements in hardware and software dependability, enabling their 

inclusion in a variety of mission classes and orbits. These systems can provide a several orders of 

magnitude increase in computational capacity, enabling more complex onboard sensor processing 

including intelligent image-compression techniques for both science and defense applications. 
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In recent years, multiple prominent examples of these space computer architectures 

featuring hybrid system-on-chips (SoCs) have been developed for 1U and 3U spacecraft [4]-[5].  

Developed by the National Science Foundation (NSF) Center for Space, High-performance, and 

Resilient Computing (SHREC),  the CHREC Space Processor (CSP) [4] and its successor, the 

SHREC Space Processor (SSP), include the Xilinx Zynq-7000 APSoC (Zynq-7020 for CSP and 

selectable Zynq-7030 or Zynq-7045 for SSP), which is comprised of a dual-core ARM Cortex-A9 

processor and a 28-nm Artix-7 (CSP) or 28-nm Kintex-7 (SSP) FPGA fabric. Developed by NASA 

Goddard Space Flight Center (GSFC), the SpaceCube v3.0 [5] includes a Xilinx Zynq UltraScale+ 

MPSoC (Zynq-MPSoC, ZU7EV), which incorporates a quad-core ARM Cortex-A53 and a 16-nm 

UltraScale Architecture FPGA fabric. There are additional single-board processors using these 

same devices listed in [3].  

The development of more capable methods for data reduction and data triage is a critical 

concern for NASA highlighted in the 2015 NASA Technology Roadmaps [2] under TA 11: 

Modeling, Simulation, Information Technology, and Processing, specifically, 11.1.1 Flight 

Computing and 11.4.1.4 Onboard Data Capture and Triage Methodologies. This demand was also 

acknowledged by the National Research Council of the National Academies in the assessment of 

the technology roadmap in [6] and [7]. 11.4.1.4 specifically describes, “Apply novel machine 

learning capabilities onboard to support data reduction.” In this technology description, NASA 

defines a performance goal of at least 50% in data reduction with an earliest technology need date 

of 2019. 

The demand for efficient compression is expressed by the Space Studies Board (SSB) of 

the National Academies for Earth science in their decadal strategy for Earth observation [8]. In 

this document, the SSB highlights compressive sensing using JPEG-2000 as a potential application 
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for lowering the cost for observing systems. For planetary applications, in Small Satellite Missions 

for Planetary Science [9] , NASA Planetary Science Division’s (PSD) concept study highlights the 

need to reduce the large amounts of data onboard, stressing the limitations on communication 

systems which can be ameliorated with compression. For defense, the Institute for Defense 

Analyses (IDA) and the JASON advisory group describe similar needs for onboard compression 

in [10] and [11], respectively. 

Historically, space-based, data-compression systems employed a wide variety of both 

lossless and lossy compression schemes [12]-[13]. Typically, systems that use lossy compression 

also provide an alternative datapath for lossless compression. On many satellite systems, lossy 

compression is used if either (1) the system bandwidth was too low to support lossless 

compression, (2) the science value was not compromised by the distortion that would be introduced 

by lossy compression, or (3) additional sensors were included that did not contribute to the primary 

science data product, such as a scene-context camera.  

To address these impending challenges for data reduction in future missions, we apply two 

lossy compression algorithms for deployment on modern flight-hardware systems: (1) end-to-end, 

neural-network-based, image compression (CNN-JPEG); and (2) adaptive image compression 

through feature-point detection (FPD-JPEG).  

Intelligent data-processing pipelines can help overcome limited downlink bandwidth 

because they can adapt to sensor data and compress it more effectively. Recent research in neural-

network-based approaches [14]-[19] for lossy image compression has shown significant 

improvements in image quality at lower data rates, in comparison to traditional codecs such as 

JPEG [20] and JPEG-2000 [21]. Importantly, unlike traditional codecs, these machine-learning 

frameworks and intelligent pipelines are not data-agnostic, but adaptable to the application based 
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upon input training data. Earth-observation satellites are an ideal use case, since satellite data is 

readily available and plentiful; therefore, developers can access that data for training purposes.  

Adapting the architecture from [14], the first algorithm, CNN-JPEG, uses a hybrid 

approach combining convolutional neural networks (CNNs) and JPEG. In the encoder, the image 

is input into a three-layer CNN to obtain a compact image representation, which is then encoded 

with JPEG. In the decoder, a deeper 20-layer CNN reconstructs the original image. CNN-JPEG 

shows 23.5% higher average PSNR and 33.5% higher average SSIM versus standard JPEG on a 

dataset collected on the Space Test Program – Houston 5 – CSP (STP-H5-CSP) mission onboard 

the International Space Station. We ported the encoder CNN to TensorFlow Lite and executed it 

on the ARM Cortex-A9 cores of the Zynq-7020 and the ARM Cortex-A53 cores of the Zynq-

MPSoC, demonstrating an average runtime of 16.747 s and 2.118 s, respectively. To reduce 

execution time, the algorithm was accelerated in the FPGA fabric of both devices using the Xilinx 

SDSoC design-flow for an average runtime of 2.293 s on the Zynq-7020 and 0.136 s on the Zynq-

MPSoC, an overall 7.30× and 15.57× increase over the software baselines, respectively.  

For our second algorithm, FPD-JPEG, we developed a novel adaptive image-compression 

pipeline based upon JPEG that leverages the ORB feature-point detector to adaptively tune the 

compression ratio. Whereas CNN-JPEG is an algorithm that attempts to produce a better encoder 

than standard JPEG, FPD-JPEG addresses how one can automatically tune the encoder’s 

hyperparameters (e.g. the JPEG quality factor) to achieve combined file size savings over a batch 

of images while maintaining a high average PSNR/SSIM over the batch.  To dynamically modify 

the bitrate and image distortion based upon feature content for JPEG, the quality factor (QF) is 

adjusted based on a linear relationship with feature-point count. This adaptive compression allows 

for a tradeoff between PSNR/SSIM and combined file size accumulated over a batch of images, 
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compared to compression with a static JPEG QF. This tradeoff allows our design to produce 

images with relatively comparable PSNR/SSIM to JPEG images compressed with a static QF at 

significantly reduced storage volume. 
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2.0 Background 

In lossy image compression frameworks such as JPEG and JPEG-2000, transform coding 

is the dominant method for compression. When encoding an image, traditional codecs commonly 

employ a 3-stage pipeline: (1) a sparsity-inducing, linear transformation maps the input data to an 

alternative space; (2) quantization maps the continuous coefficients to a discrete set; and (3) an 

entropy encoding scheme encodes quantized coefficients to variable-length prefix codes. The 

decoding stage performs the exact inverse of the encoding stage to achieve the reconstructed target 

image. Researchers commonly employ two image metrics to measure the perceptual quality of the 

reconstruction: peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). 

Indicating the level of mean square error (MSE) in the reconstructed signal, PSNR is 

mathematically defined as: 

 

 

 
𝑃𝑆𝑁𝑅(𝐼) = 20 log (

𝑀𝐴𝑋(𝐼)

√𝑀𝑆𝐸(𝐼, 𝐼)
) (2-1) 

 

 

 

  

SSIM is a perceptual metric designed to improve upon PSNR that quantifies the similarities 

in visible structures between the original and reconstructed image [22]. Standardized compression 

frameworks such as JPEG are data-agnostic and thus are limited in their ability to achieve 

significant compression. In satellite applications, the developers know both the type and volume 

of the input data in advance, and as a result, the compression model should adapt to this data in 

order to compress it more efficiently. 
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2.1 Compression with Neural Networks 

In recent years, researchers have developed many end-to-end, neural-network-based 

compression frameworks [14]-[19] that allow for the adaptation of the compression model through 

dataset training. These frameworks generally follow a similar codec structure to traditional 

transform coding. However, unlike traditional codecs, the linear transform and its inverse for the 

encoder and decoder are replaced by nonlinear feature-extraction and synthesis neural networks 

trained on input data. To adapt the compression framework for a particular application domain, 

the encoder-decoder pipeline is trained using a cost function that attempts to minimize the bitrate 

while simultaneously minimizing a perceptual reconstruction loss metric over a training dataset. 

Earth-observation satellites are an ideal use case since satellite data is widely available and easily 

accessible for training the end-to-end neural network. In satellite applications, this training 

typically occurs on the ground before deployment. Once trained, the encoding portion can be 

deployed on the satellite platforms and used to perform inference. With limited computational 

resources onboard, it is essential to find less computationally intensive encoders to reduce the 

encoding execution time. After downlinking the compressed data, the decoder performs inference 

to reconstruct the image. With more computational resources available such as high-end GPUs, 

much deeper networks can be deployed. 

Just as researchers have applied deep-learning approaches to image processing and 

computer vision domains, they are also now focused on applying these techniques towards lossy 

image compression to achieve state-of-the-art results [14]-[19]. One of the primary challenges for 

deep learning in training end-to-end lossy compression neural networks is overcoming the non-

differentiability of the quantization step. Since all current optimization routines for deep-learning 

models employ a variant of gradient descent, having a non-differentiable function disallows the 
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use of standard backpropagation techniques. Researchers approach this problem in various ways. 

In [15], the authors employ an autoencoder structure and train on the rate-distortion tradeoff loss 

function, replacing the derivative of the quantization function with the identity. [16] uses a similar 

codec structure of a nonlinear analysis transform, quantizer, and synthesis transform. However, in 

the analysis and synthesis transforms, convolutional filters followed by a generalized divisive 

normalization (GDN) joint nonlinearity are used.  To overcome the non-differentiability of 

quantization during backpropagation, they replace quantization with additive uniform noise. In 

[17], the authors use a pyramidal decomposition for feature extraction and adaptive arithmetic 

coding with code-length regularization. In training, they use a unique generative adversarial 

network (GAN) formulation featuring both reconstruction and discriminator loss. Other than 

CNNs, different neural-network architectures have also been proposed for portions of the encoder 

and/or decoder, including recurrent neural networks (RNNs) and GANs. The framework of [18] 

uses an encoder, binarizer, and decoder where the encoder and decoder use RNN units for 

progressively better reconstructions. For extremely low bitrate compression, the authors of [19] 

use the generator network of a GAN as the decoder. With a standard convolutional encoder and 

quantizer, they train the full encoder-decoder pipeline by constraining the typical GAN 

optimization objective with both the reconstruction loss and the entropy of the encoded bitstream. 

For this paper, in CNN-JPEG, we employ the architecture described in [14] but modify and 

tune the training scheme for satellite imagery to account for observed training instabilities. The 

rationale for this architecture selection is that the complexity of the encoder was the smallest 

among the surveyed architectures. The encoder complexity generally scales with respect to 

execution time and memory footprint, and therefore, lower complexity designs are more feasible 

for deployment on embedded computers. Table 1 compares the approximate number of parameters 
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in the encoders for each of the surveyed methods. For the architecture in [14], the encoder, denoted 

ComCNN, is a 3-layer CNN that learns a compact image representation that is half the size of the 

original image. The compact representation is then encoded with a standard compression codec, 

allowing developers to incorporate any suitable lossy compression codec for their requirements. 

However, for this research, we employed JPEG to facilitate development due to its native 

integration in the TensorFlow API. Upon decoding the compact representation learned from 

ComCNN, the resulting image is upsampled to the original size and passed through the decoder, 

denoted RecCNN. Implemented with a 20-layer CNN, RecCNN reconstructs the original image 

by learning a residual image and adding it to the upsampled image. An alternating training scheme 

is employed: the decoder is first trained over an epoch of the training set with fixed encoder 

weights; subsequently, the encoder is trained over the same epoch with fixed decoder weights. To 

overcome the non-differentiability in quantization, the compression codec is removed from the 

pipeline in training the encoder [14]. 

 

Table 1: Approximate Number of Parameters in Encoder Network for Color Images 

 

Paper 
Approx. Number of 

Parameters 

Tao et. al. [14] 40320 

Theis et. al. [15] 1368768 

Ballé et al. [16] 19150081 

Rippel et al. [17] 2691362 

Toderici et. al. [18] 3688128 

Agustsson et. al. [19] 55513803 

 

1 Assuming 192 filters for color version 
2 Assume 6 scales with ci= 64 and C=64 
3 Assume C = 4 
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2.1.1 TensorFlow Lite 

TensorFlow Lite4 is an open-source framework for performing on-device inference of 

deep-learning models applicable for a range of embedded systems. Currently, the framework 

contains only a subset of the operations in TensorFlow, most notably 2D convolution and matrix 

operations. Due to ComCNN’s simplicity, developers can port the architecture to a TensorFlow 

Lite model file. To accelerate inference time on ARM processors, TensorFlow Lite exercises the 

NEON single-instruction-multiple-data (SIMD) architecture in ARM processors. The NSF 

SHREC Center at the University of Pittsburgh recently examined image classification with CNNs 

on their CSP platform using TensorFlow Lite. More specifically, they examined CNN 

architectures designed for mobile applications, including MobileNetV1, MobileNetV2, Inception-

ResNetV2, and NASNet Mobile, which were pre-trained on ImageNet [23]. 

2.1.2 Hardware Acceleration with FPGAs 

Onboard inference of CNNs is computationally expensive for space platforms. Due to 

advances in space computers that incorporate state-of-the-art Xilinx devices, developers can use 

commonly available development boards as facsimiles that represent flight hardware. Many new 

avionics systems include hybrid SoCs with FPGAs, allowing for hardware acceleration of CNN 

inference. Examples include the Zynq-7020 on CSP [4], the Zynq-7030 or Zynq-7045 on SSP (and 

many others referenced in [3]), and the Zynq-MPSoC on SpaceCube v3.0 [5]. However, designing 

a custom hardware/software stack using low-level hardware description languages (HDLs) and 

 

4 https://www.tensorflow.org/lite 



 11 

Linux driver development can be time consuming and non-trivial. To help alleviate this complexity 

and simultaneously increase productivity, Xilinx SDSoC is an integrated development 

environment for software-defined SoCs available for Xilinx SoCs, which can be used for rapid 

prototyping and development. The SDSoC design-flow abstracts many of the low-level 

complexities associated with developing for hybrid SoCs. As a result, developers can program 

their applications in C++ using compiler directives for high-level synthesis. Moreover, SDSoC 

allows for full-stack application development: developers can perform hardware/software 

partitioning by defining which functions will be accelerated on the FPGA and which will be 

executed directly in software on the ARM processor, with all CPU-FPGA interactions inferred. 

2.2 Adaptive Compression 

JPEG applies a discrete cosine transformation (DCT) on 8×8 blocks, quantizes coefficients 

with quantization tables tuned to a specific JPEG QF, and finally entropy encodes the quantized 

coefficients [20]. In our FPD-JPEG adaptive compression method, to dynamically adjust rate-

distortion based upon feature content, the JPEG QF is modified according to a linear relationship 

with feature-point count. By adjusting the QF, we modify the quantization matrix used during 

encoding, allowing for increased or decreased compression at the cost of greater or lesser 

quantization. A low QF attempts to adjust the quantization matrix such that the high-frequency 

DCT components are diminished. In contrast, a high QF limits the quantization in the high-

frequency DCT components, allowing for better image reconstructions.  

The feature detector used in our experiments is Oriented FAST and Rotated BRIEF (ORB) 

[24]. ORB is commonly included in OpenCV [25] as the primary feature-point detection algorithm. 
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This algorithm is frequently selected due to accessibility since other competitive alternatives, such 

as SIFT and SURF, are not open-source and readily available.  

The image-processing community has invested significant research into optimizing the 

quantization table in the JPEG encoder, just as FPD-JPEG attempts to do on a per-image basis. 

Soon after the release of the JPEG standard, the authors of [26] developed the image-dependent 

perceptual method, where the quantization matrix is estimated for an image that yields minimum 

bitrate for a given total perceptual error. As JPEG gained popularity, various optimization and 

search methodologies were also explored. [27] applies a recursive algorithm that seeks to optimize 

the quantization table by trading off the bitrate and PSNR metric. A similar approach optimizes 

the quantization tables using rate-SSIM graphs instead of rate-PSNR through simulated annealing 

[28]. Designed for one specific set of images, [29] uses an evolutionary algorithm to find 

specialized quantization matrices for JPEG compression of IRIS images, which lead to lower 

mean-square error (MSE) rates while reducing the amount of data to store. Most recently, [30] 

proposes a modification to the quantization table to improve PSNR at the same compression ratio 

by preserving more of the low-frequency DCT amplitude values. 
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3.0 Approach 

This section describes the implementation of two compression techniques, CNN-JPEG and 

FPD-JPEG, for use on satellite processors. These two methods address approaches developers can 

exercise to supplement JPEG with other algorithms to improve compression ratio performance by 

adapting to the input satellite imagery. Designers can employ CNN-JPEG in missions where a 

sufficient amount of training data is available in order to achieve significant compression ratio 

gains. FPD-JPEG is easily extensible to the standard JPEG codec, essentially performing an 

automatic tuning of the QF based on the feature content of different images. Therefore, instead of 

manually tuning the QF for each image for acceptable reconstruction fidelity, FPD-JPEG can 

perform this functionality onboard automatically by adapting to individual input images. It is 

important to highlight that these methods are not restricted to JPEG alone.  Rather, they can also 

be readily adapted to other recognized lossy compression codecs, including JPEG-2000 and BPG5. 

For CNN-JPEG, it is straightforward to replace JPEG with JPEG-2000 or BPG. To extend FPD-

JPEG to other methods, one can instead tune the compression ratio parameter in JPEG-2000 or the 

quantizer parameter in BPG. 

 

5 https://bellard.org/bpg/ 
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3.1 Compression with CNN-JPEG 

As mentioned previously, CNN-JPEG follows the same neural-network architecture 

employed in [14]. This design features a 3-layer encoder followed by JPEG compression and 20-

layer decoder. In our experiments, a JPEG QF of 50 was used.  The neural-network architecture 

was implemented and trained in the TensorFlow framework with the JPEG encoder. To define the 

network in TensorFlow, two subgraphs were constructed: one to train the encoder, and one to train 

the decoder.  

The subgraph to train the encoder features: (1) the encoder network, (2) bicubic 

interpolation, and (3) the decoder network. During training on this subgraph, the backward pass 

only updates the encoder weights. The subgraph to train the decoder features: (1) the encoder, (2) 

the JPEG codec, (3) bicubic interpolation, and (4) the decoder network. During training on this 

subgraph, the backward pass only updates the decoder weights. As with the original method, an 

alternating training scheme is employed, first updating the weights of the decoder over one epoch 

using the subgraph dedicated to training the decoder, then updating the weights of the encoder 

over the same epoch using the subgraph dedicated to training the decoder. After training one 

subgraph, the resulting updated weights for the encoder or decoder network are shared between 

the subgraphs. 

In deep learning, hyperparameters are user-defined, high-level parameters, such as the 

learning rate and batch size, which the user tunes to improve model accuracy and training 

efficiency. To train a deep-learning model, an objective or loss function is minimized by adjusting 

the weights of the model typically using some form of gradient descent. With the hyperparameters 

and loss functions defined in [14], significant instabilities during training were observed on the 

training dataset comprised of satellite images. These instabilities resulted in poor reconstructions 
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that often had random green and yellow discolorations and spikes in intensity at various locations 

in the image. Figure 1 and Figure 2 show examples of these observed instabilities in the output 

reconstruction and the compact image representation, respectively. While the output 

reconstructions exhibit only a few random discolorations, the compact representations display 

extreme instabilities with spikes in intensity throughout the whole image. With a significant 

amount of random discolorations, the entropy of the compact representation is high, which 

increases the file size of the resulting JPEG image and results in a limited compression ratio. 

 

 

 
Figure 1: Observed Instabilities in Output Reconstruction 

 

 

 
Figure 2: Observed Instabilities in Compact Representation 
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Therefore, modifications were made to the training process in order to stabilize the training 

of the model and improve the reconstructions. Adopting the notation from [14], the CNN- JPEG 

encoder cost function was defined by the MSE between the reconstruction from the encoder 

subgraph and the original input image: 

 

 

 

𝐿1(𝜃1) =
1

2𝑁
∑ ‖𝑅𝑒 (𝜃2, 𝐶𝑟(𝜃1, 𝑥𝑘)) − 𝑥𝑘‖

2
𝑁

𝑘=1

 (3-1) 

 

 

where Cr(∙) indicates inference of the encoder network with variable weights 𝜃1, Re(∙) indicates 

the inference of the decoder network including bicubic interpolation with fixed weights 𝜃2, 𝑥𝑘 

refers to the original input images, and N is the batch size.  For the decoder, the cost function was 

likewise the MSE of the decoder subgraph: 

 

 

 

𝐿2(𝜃2) =
1

2𝑁
∑ ‖𝑅𝑒 (𝜃2, 𝐶𝑜 (𝐶𝑟(𝜃1, 𝑥𝑘))) − 𝑥𝑘‖

2
𝑁

𝑘=1

  (3-2) 

 

 

where Co(∙) indicates the JPEG compression codec. Unlike Eq. 3-1, the encoder network’s weights 

𝜃1 are fixed and the decoder network weights 𝜃2 are variable. In the original paper, this loss 

function was defined in terms of the mean-square error of residual terms. Though similar, better 

results were observed when defining the loss function as in Eq. 3-2. 
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The encoder and decoder were trained on ~200,000 40×40 image patches randomly 

selected from the STP-H5-CSP dataset supplemented with a subset of the Berkeley dataset [31]. 

The STP-H5-CSP dataset consists of 489×410, 8-bit satellite images, while the Berkeley dataset 

consists of 8-bit natural images of random size typically in the range of 512×512. During initial 

experiments, the training was only performed with a subset of the STP-H5-CSP dataset. It was 

observed that the compression model performed well on the training subset of images, but it did 

not generalize well to the entire test dataset. On 28 test images, CNN-JPEG exhibited a 2.66 % 

increase in average PSNR and 6.20% increase in average SSIM over standard JPEG. 

While CNN-JPEG performed well on images with few features (i.e. large portions of the 

image were land and/or water), it failed to reconstruct images with high-frequency features and 

structures not readily present in the training dataset. Figure 3 displays two examples exemplifying 

this model’s poor generalization to the test set. In the top image, structures such as the ISS solar 

panels that are infrequently present in training dataset exhibit poor visual quality in reconstruction, 

and in the bottom image, the finer, high-frequency structures of the clouds are blurred. Therefore, 

the compression model was augmented with the Berkeley dataset to learn a larger space of image 

structures to generalize more accurately to the test dataset.  In doing so, CNN-JPEG exhibited a 

much larger 23.5% increase in average PSNR and 33.5% increase in average SSIM over standard 

JPEG. 
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Figure 3: Reconstructed Images Exemplifying Poor Generalization to Test Set 
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Adam [32] is a general-purpose, state-of-the-art optimization algorithm based on gradient 

descent designed for training deep neural networks, adapting the learning rate for each individual 

trainable parameter in the model. For this design, two separate Adam optimizers were 

incorporated, both with parameters ∝=0.001, β1=0.9, β2=0.999, and ϵ=10-8, and were defined for 

training the encoder and decoder. Unlike [14], the learning rates for the both Adam optimizers 

were not exponentially decayed but were fixed at 0.001, since slow convergence was observed in 

using decay. Additionally, we performed regularization through weight decay on both the encoder 

and decoder weights to stabilize training and avoid exploding gradients. This process is significant 

because these exploding gradients prevent convergence of the compression model and hinder 

reconstruction accuracy. In our experiments, the weight decays were 0.0005 for the encoder and 

0.005 for the decoder.  

To evaluate the compression performance of the trained model, the test images were passed 

through CNN-JPEG and compared with standard JPEG compression in terms of PSNR and SSIM. 

In the standard JPEG implementation, the JPEG QF was adjusted to achieve the same compressed 

file size as the trained CNN-JPEG model.  

The execution time of the encoder was measured using a software timer on the ZedBoard 

(featuring the Zynq-7020) and ZCU102 (featuring the Zynq-MPSoC, ZU9EG) development 

boards, which act as facsimiles to the CSP and SpaceCube v3.0. To execute the model on the 

development boards, the trained encoder network weights were frozen on a standard development 

workstation and exported to a TensorFlow Lite model via the TensorFlow Python API. The saved 

model and test images were first imported using the TensorFlow Lite C++ API compiled for the 

ARM Cortex-A9 processors of the Zynq-7020 and the ARM Cortex-A53 processors of the Zynq-
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MPSoC. Subsequently, inference was performed by invoking the TensorFlow Lite Interpreter, 

resulting in the compressed JPEG output file. 

To decrease the execution time of the encoder, the computations in the 3-layer CNN were 

hardware-accelerated using the FPGA resources of the Zynq-7020 using a similar implementation 

to [33]. Using Xilinx SDSoC 2018.3, a hardware implementation of 2D convolution was 

synthesized, employing a streaming architecture where an image is streamed through the 

convolutional accelerator. To rapidly implement this streaming architecture, SDSoC infers 

multiple direct-memory access (DMA) cores with corresponding Linux device drivers, which 

handle the transfers of image data to and from external DDR memory. Within a single streaming 

convolutional unit, the 3×3 kernel multiplications with the input image occur in parallel as the 

image is streamed. The results of the multiplications are then summed through an adder tree to 

obtain the resulting pixel. Figure 4 depicts a high-level block diagram of the streaming architecture 

from [33]. For the Zynq-7020, the accelerator features a 2×2 grid of convolution units (Figure 5), 

performing four convolutions in parallel. With more FPGA resources on the Zynq-MPSoC, the 

convolutional grid was increased to 8×4. 

 

 

 
Figure 4: SDSoC-Generated Streaming Architecture [33] 
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Figure 5: 2×2 Grid of Convolution Units [33] 

3.2 Compression with FPD-JPEG 

In FPD-JPEG, the JPEG QF is adjusted based on feature-point count derived from the 

OpenCV implementation of ORB [25]. The hyperparameters of the ORB algorithm were first 

tuned to the STP-H5-CSP dataset. Specifically, for dark, featureless images, the threshold for the 

FAST algorithm incorporated in ORB was adjusted to ensure no features were detected. This 

adjustment is significant because the images on STP-H5 are collected on timed intervals and 

include many images taken when the ISS is over a night-covered area resulting in nearly all black 

pictures. In our experiments, the FAST threshold was set to 9. A maximum of 10,000 features 

were allowed to be detected. Once the feature points were detected, the JPEG QF was adjusted 

according to the linear relationship: 

 

 

 
𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 =  20(

# 𝑜𝑓 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠

10000
) + 70  (3-3) 
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From this equation, the minimum QF is 70, whereas the maximum QF is 90 since the 

maximum number of features that can be detected is 10,000. For comparison, 36 representative 

images from the STP-H5-CSP dataset were compressed with FPD-JPEG and JPEG with static QFs 

of 70, 80, and 90. The average PSNR/SSIM and combined data size over the batch of images were 

compared between the FPD-JPEG and the static methods. 
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4.0 Results 

This section provides a discussion of the two different methods proposed in this paper. 

Both techniques are compared to the original JPEG standard. 

4.1 CNN-JPEG Compression 

Figure 6 provides a PSNR comparison between CNN-JPEG and JPEG on a test dataset of 

50 STP-H5-CSP images, while Figure 7 displays the same comparison with SSIM. On average, 

CNN-JPEG shows a 23.5% improved PSNR and 33.5% improved SSIM compared to JPEG 

images compressed to the same bitrate, measured in bits per pixel (bpp). 

 

 

 
Figure 6: PSNR vs. Bitrate 
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Figure 7: SSIM vs. Bitrate 

 

Further examination shows the PNSR/SSIM differences between CNN-JPEG and JPEG 

decrease as the bitrate of the image increases. For images with few features that require a lower 

bitrate due to low entropy in the image, CNN-JPEG significantly outperforms JPEG in both PSNR 

and SSIM. However, for images with more features that require a higher bitrate due to increased 

entropy, there is less of a difference between CNN-JPEG and JPEG. This result is expected 

because the rate-distortion curves tend to converge at high bitrates, achieving diminishing returns 

in reconstruction quality as more bits per pixel are used. 

Figure 8 shows the distribution of compression ratios for the STP-H5-CSP test images 

when the QF is adjusted such that the JPEG-compressed images exhibit approximately the same 

PSNR as CNN-JPEG. The average compression ratio of CNN-JPEG is 204.36 with a standard 

deviation of 79.78. The average compression ratio of JPEG is 116.69 with a standard deviation of 

25.59. Providing a 1.74× increase in compression ratio on average, these results show the potential 

benefits of using CNNs in conjunction with JPEG trained on a specific dataset. It should be 
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emphasized that for this dataset CNN-JPEG has a wide variation in compression performance, 

whereas JPEG, which is data-agnostic, will have nearly similar performance regardless of the 

image. 

 

 

 
Figure 8: Distribution of Compression Ratios for Standard JPEG and CNN-JPEG 

 

 

Figure 9 provides examples of three test images in the STP-H5-CSP dataset and shows a 

visual comparison of CNN-JPEG with JPEG. In the figure, each of the images are compressed to 

the same file size. This figure also demonstrates that for the same data volume, images compressed 

with CNN-JPEG retain more structure and detail, which would provide greater value for the data 

downlinked to the ground. The top and middle rows show images with relatively low entropy as 

large portions of the image, such as the water or land, are constant. In this low bitrate regime (~0.16 

bpp for both rows), CNN-JPEG significantly outperforms standard JPEG as indicated by the 

0.3252 and 0.3355 differences in SSIM in the top and middle row, respectively. In contrast, the 

third row shows an image with higher entropy than the top two rows as the clouds exhibit high-
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frequency features in the image. For images requiring a high bitrate due to this increased entropy, 

the difference in reconstruction quality between CNN-JPEG and standard JPEG are less 

noticeable. Nonetheless, CNN-JPEG still provides more structural information than standard 

JPEG, indicated by the 0.7238 dB and 0.0194 increase in PSNR and SSIM, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 27 

 

 

Original CNN-JPEG JPEG 

   
 PSNR = 30.4260 SSIM = 0.8487 

bpp = 0.1581 

PSNR = 24.8546 SSIM = 0.5235 

bpp = 0.1613 

   

   
 PSNR = 31.0608 SSIM = 0.8735 

bpp = 0.1640 

PSNR = 25.6951 SSIM = 0.5380 

bpp = 0.1703 

   

   

 PNSR = 27.0613 SSIM = 0.7804 

bpp = 0.3455 

PSNR = 26.3375 SSIM = 0.7610 

bpp = 0.3535 

 

Figure 9: Visual Comparison of CNN-JPEG against Standard JPEG at Same Bitrate 
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Considering realistic mission scenarios, employing CNN-JPEG is advantageous primarily 

for lossy compression of satellite images when a system is determining what full science data 

products to retrieve via lossless compression. At the same file size as JPEG, CNN-JPEG provides 

better perceptual quality for visual inspection of the science products. Therefore, CNN-JPEG uses 

downlink bandwidth more efficiently, providing more information with comparatively less data. 

Additionally, when a satellite is not directly over a ground station or if the transceiver link is 

interrupted, it is always advantageous to use CNN-JPEG for file storage purposes. When the 

downlink is reestablished, CNN-JPEG, with its 1.74× increase in average compression ratio, will 

reduce the amount of data required to downlink. 

Executing the encoding portion of CNN-JPEG in TensorFlow Lite on the Cortex-A9 cores 

of the Zynq-7020, the average execution time with one thread was 16.75 s, as indicated in Figure 

10. In changing from single-threaded to double-threaded execution via the TensorFlow Lite 

interpreter, the execution time was reduced only by ~1.0 s. This indicates the parallelization 

through the TensorFlow Lite interpreter deviates far from ideal linear speedup. Leveraging the 

FPGA resources of the Zynq-7020 through SDSoC for hardware acceleration, the average 

execution time of the CNN-JPEG encoder decreased significantly to 2.293 s, exhibiting 7.30× and 

6.87× speedup over the single-threaded and double-threaded TensorFlow Lite implementations, 

respectively. The maximum clock frequency achieved was 100 MHz for the FPGA fabric. The 

limiting critical path in the design is the write DMAs for output buffers. Similarly, the design was 

also executed on the Zynq-MPSoC with the results indicated in Figure 11. For the Zynq-MPSoC, 

there was a reduction of ~0.6 s from single-threaded to quad-threaded execution. For the hardware-

accelerated implementation, the design saw a 15.57× and 11.11× speedup over the single-threaded 
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and quad-threaded runs, respectively. Comparing with standard JPEG, the CNN-JPEG execution 

time shows a 36.97× and 4.25× increase on the Zynq-7020 and Zynq-MPSoC respectively, which 

is expected due to the increased number of computations. However, despite this increase in 

execution time, CNN-JPEG can make extensive use of transceiver link downtime to produce 

science data products with better visual quality at the same or better data rate as JPEG. Future 

improvements to CNN-JPEG will attempt to decrease execution time through fixed-point 

quantization of the encoder network weights. The resource utilization for the hardware acceleration 

portion of the model is shown in Table 2. 
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Figure 10: Execution Time on Zynq-7020 
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Figure 11: Execution Time on Zynq-MPSoC 
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Table 2: Resource Utilization 

 

Resource 
Zynq-7020 

(100 MHz) 

Zynq-MPSoC  

(ZU9EG; 300 MHz) 

CLB LUTs 78.48% 64.67% 

CLB FF 58.81% 55.82% 

BRAM/FIFO 

ECC (36 Kb) 

40.00% 14.75% 

DSP Slices 88.64% 60.12 % 

 

 

The average dynamic power was also recorded for these algorithms using a Watts Up 

power meter on both the Zynq-7020 and Zynq-MPSoC for each of the implementations described, 

as shown in Figure 12 and Figure 13, respectively. The average dynamic power was calculated by 

subtracting the idle power of the development board from the average power consumed during 

program execution. As expected, both SDSoC implementations of CNN-JPEG draw significantly 

more dynamic power than their corresponding TensorFlow Lite software implementations due to 

the use of the FPGA resources on the SoC. With a 2×2 convolutional grid running at 100 MHz on 

the Zynq-7020, the SDSoC design consumed 2.10× and 5.10× more dynamic power than the 

double-threaded and single-threaded TensorFlow Lite programs, respectively. In contrast, with an 

8×4 convolutional grid running at 300 MHz on the Zynq-MPSoC, the SDSoC design consumed 

3.37× and 6.80× more dynamic power than the single-threaded and double-threaded TensorFlow 

Lite programs, respectively. Due to the higher clock frequency and increased FPGA resource 

usage, the Zynq-MPSoC SDSoC design shows a relative increase in dynamic power in comparison 

to the Zynq-7020. Comparing these CNN-JPEG implementations with standard JPEG, the average 

dynamic power of standard JPEG is smaller than all CNN-JPEG implementations on both the 
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Zynq-7020 and Zynq-MPSoC. Specifically, on the Zynq-7020, the single-threaded TensorFlow 

Lite and SDSoC implementations drew 1.12× and 5.72× more dynamic power than standard JPEG, 

respectively. On the Zynq-MPSoC, the single-threaded TensorFlow Lite and SDSoC 

implementations drew 2.26× and 15.4× more dynamic power than standard JPEG, respectively.  

These results illustrate the design tradeoffs to be examined by mission developers: CNN-JPEG 

provides significant improvements in storage volume, but it requires compromises in execution 

time and power usage when compared to standard JPEG. 
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Figure 12: Dynamic Power on Zynq-7020 
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Figure 13: Dynamic Power on Zynq-MPSoC 
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4.2 FPD-JPEG Compression 

Figure 14 and Figure 15 show the average PSNR and SSIM respectively of the FPD-JPEG 

compared with JPEG at static QFs over the dataset of 36 representative STP-H5-CSP images.  

Based on the linear relationship defined in Eq. 3-3, the QF for FPD-JPEG ranges from 70 to 90.  

Therefore, for comparison, static QFs of 70, 80, and 90 for JPEG were chosen to demonstrate how 

combined file size and PSNR/SSIM scale over the same QF range as FPD-JPEG.  Comparing 

FPD-JPEG with standard JPEG at static QF=90, the average PSNR and SSIM over the batch 

decreased by only 0.172 dB and 0.0017, respectively. However, the combined file size 

accumulated over the 36 encoded images was considerably reduced by 29.6%.  In addition, the 

combined file size of FPD-JPEG was only 10.3% higher than the static JPEG QF=80 but provides 

a 1.894 dB increase in PSNR and 0.0113 increase in SSIM. 
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Figure 14: FPD-JPEG Compression SSIM Comparison 
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Figure 15: FPD-JPEG Compression PSNR Comparison 

 

 

 

 

 

 

 

 

 

0

200

400

600

800

1000

1200

1400

1600

35

36

37

38

39

40

41

Static QF=70 Static QF=80 Static QF=90 FPD-JPEG

C
o
m

b
in

ed
 F

il
e 

S
iz

e 
(k

B
)

A
v
er

ag
e 

P
S

N
R

Combined File Size Average PSNR



 39 

These increases in PSNR and SSIM between FPD-JPEG and standard JPEG at a static QF=80 can 

be significant in terms of visual quality, particularly when examining the distinct edges of 

coastlines in an image.  To highlight the importance of these increases in PSNR and SSIM,  

Figure 16 shows a comparison of two cropped images zoomed in on the coastline in the 

same ~1.9 dB PSNR and ~0.01 SSIM difference range as FPD-JPEG and JPEG with static QF=80.  

Since JPEG operates over 8×8 blocks in an image, it can distort or introduce block artifacts into 

the image, which become particularly apparent when examining the coastline.  In this example, 

the bottom image, with its 1.940 dB increase in PSNR and 0.0099 increase in SSIM, exhibits a 

sharper coastline edge with less block artifacts as compared to the top image. 
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PSNR = 37.8478 SSIM = 0.9661 

 

 
PSNR = 39.7874 SSIM =0.9760 

 

Figure 16: Comparison of Coastline at Different PSNR and SSIM 
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The average execution time for FPD-JPEG and standard JPEG are shown in Figure 17 and 

Figure 18 for the Zynq-7020 and for the Zynq-MPSoC, respectively. On the Zynq-7020, FPD-

JPEG shows a 5.58× increase in execution time as compared to standard JPEG. On the Zynq 

MPSoC, FPD-JPEG shows a 3.52× increase in execution time as compared to standard JPEG.  The 

average dynamic power for both algorithms was also measured:  for the Zynq-7020, the average 

dynamic power for both algorithms was 0.18 W, and for the Zynq-MPSoC, the average dynamic 

power was likewise 0.18 W. 
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Figure 17: FPD-JPEG Execution Time on Zynq-7020 
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Figure 18: FPD-JPEG Execution Time on Zynq-MPSoC 
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For a mission designer, these results indicate that FPD-JPEG is a relatively simple 

extension for systems with JPEG already baselined. For a slight increase in execution time and 

power, FPD-JPEG can conserve nearly a third of the data volume with minimal concessions to 

image quality compared with JPEG using a static QF=90. Moreover, unlike CNN-JPEG, FPD-

JPEG uses a classical computer-vision algorithm without the need to train a neural network. 

Therefore, since FPD-JPEG requires only the addition of ORB functions while CNN-JPEG 

requires training and the addition of TensorFlow Lite libraries, it may be less intrusive and less 

resource-intensive to current onboard systems already using JPEG (or another codec that this 

method can tune) in comparison to CNN-JPEG. 
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5.0 Conclusions 

This research examined two lossy image-compression methods that serve to supplement 

JPEG for onboard processing systems: the first, CNN-JPEG, adopts the CNN architecture of [14] 

trained on satellite images, while the second, FPD-JPEG, uses an adaptive approach that fine-tunes 

the JPEG QF based on feature-point content to achieve combined file size reductions over a batch 

of images. Experimental results for CNN-JPEG show a 23.5% and 33.5% increase in PSNR and 

SSIM over standard JPEG, respectively, on an image dataset collected from STP-H5-CSP 

compressed to the same file size. On the same dataset, CNN-JPEG showed a 1.74× increase in 

average compression ratio at the same PSNR. We demonstrated substantial performance benefits 

through hardware acceleration of the TensorFlow Lite implementation of the encoder using Xilinx 

SDSoC. This hardware-accelerated design demonstrated an immense speedup of over 6.87× on 

the Zynq-7020 and over 11.11× on the Zynq-MPSoC enabling feasible deployment on a satellite 

platform. Therefore, Xilinx SDSoC proved to be an efficient framework for rapid development of 

hardware-accelerated designs for CNN inference. For FPD-JPEG, experimental results indicate 

that fine-tuning the JPEG QF using a linear relationship with feature-point count achieves a less 

than 1% drop in average PSNR and SSIM while reducing the combined file size by 29.6% when 

compared to a static QF=90 over a batch of satellite images collected on STP-H5-CSP.  As a result, 

FPD-JPEG provides nearly the same average visual quality as JPEG with static QF=90 over a 

batch of images while vastly decreasing the amount of data that needs to be stored and transmitted 

to the ground. 
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6.0 Future Work 

This research provides a compelling starting point for evaluating the latest state-of-the-art 

compression techniques for onboard systems, instead of defaulting to less effective heritage 

techniques. There are numerous extensions that could be pursued to provide solutions more 

broadly applicable to more satellite systems and sensor instruments.  

For CNN-JPEG, the first extension is to study higher QFs used to compress the compact 

representation (greater than 50, as in the above experiments) of the image in order to measure the 

difference in distortion between JPEG at higher bitrates. Additionally, this neural network 

architecture can be extended to other codecs such as JPEG-2000 and BPG whose reconstruction 

fidelities at lower bit rates are often better than JPEG. Since TensorFlow does not currently support 

JPEG-2000 or BPG in their graph API, an external API must be used in conjunction with 

TensorFlow. 

For faster encoding execution times, the encoder neural-network model will be quantized 

to use fixed-point integer arithmetic instead of floating-point for both the TensorFlow Lite 

software implementation and the hardware-accelerated SDSoC version. However, this 

quantization may come at the cost of reconstruction accuracy. Therefore, we will examine 

quantitatively how PSNR and SSIM loss occurs from quantizing just the encoding portion of CNN-

JPEG. 

Beyond CNN-JPEG, we will examine other machine-learning models with more complex 

encoders to provide potentially improved compression ratios. One of the primary focuses of this 

study will be to determine how much speedup can be obtained via hardware-acceleration of the 
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encoder such that their execution times are fast enough to sustain real-time or near real-time 

encoding with large bandwidth sensors. 

Both CNN-JPEG and FPD-JPEG will be deployed on NSF SHREC experiments currently 

operating on the ISS, namely STP-H5-CSP and STP-H6-SSIVP. A study will be conducted to 

profile the bandwidth savings in a relevant mission scenario. For CNN-JPEG, the TensorFlow Lite 

version will first be uploaded to demonstrate functionality. Once this demonstration is complete, 

a bit stream for the convolutional accelerator will then be uploaded to reconfigure the FPGA. 
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