853 research outputs found

    Specification and Animation of Reactive Systems

    Get PDF
    SOLVE (Specification using an Object-based, LOTOS-defined, Visual language) is designed to allow formal requirements capture, particularly for reactive systems. The SOLVE language is object-based, and formally defined using LOTOS (Language Of Temporal Ordering Specification). SOLVE is supported by tools that allow direct visual animation of systems specified in this language. Animation is supported by translating a SOLVE specification automatically into a LOTOS specification, and then graphically simulating this. A further application is embodied in the XDILL tool that supports requirements specification and visual animation of digital logic circuits. Several illustrative SOLVE examples are given

    Visual animation of LOTOS using SOLVE (extended version)

    Get PDF
    SOLVE (Specification using an Object-based, LOTOS-defined, Visual language) is designed to allow formal requirements capture, particularly for interactive systems. The SOLVE language is object-based, and formally defined using LOTOS (Language Of Temporal Ordering Specification). SOLVE is also a set of software tools that allow direct visual animation of systems specified in this language. Communicating objects control onscreen icons that can be manipulated directly by the user. Animation is supported by translating a SOLVE specification automatically into a LOTOS specification, and then simulating this using standard LOTOS tools. A VCR (Video Cassette Recorder) clock controller is used to illustrate the SOLVE approach. A further application is embodied in the XDILL tool that supports requirements specification and animation of digital logic circuits. The architecture of the SOLVE toolset is described

    Checking Computations of Formal Method Tools - A Secondary Toolchain for ProB

    Full text link
    We present the implementation of pyB, a predicate - and expression - checker for the B language. The tool is to be used for a secondary tool chain for data validation and data generation, with ProB being used in the primary tool chain. Indeed, pyB is an independent cleanroom-implementation which is used to double-check solutions generated by ProB, an animator and model-checker for B specifications. One of the major goals is to use ProB together with pyB to generate reliable outputs for high-integrity safety critical applications. Although pyB is still work in progress, the ProB/pyB toolchain has already been successfully tested on various industrial B machines and data validation tasks.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Executable formal specifications of complex distributed systems with CoreASM

    Get PDF
    Formal specifications play a crucial role in the design of reliable complex software systems. Executable formal specifications allow the designer to attain early validation and verification of design using static analysis techniques and accurate simulation of the runtime behavior of the system-to-be. With increasing complexity of software-intensive computer-based systems and the challenges of validation and verification of abstract software models prior to coding, the need for interactive software tools supporting executable formal specifications is even more evident. In this paper, we discuss how CoreASM, an environment for writing and running executable specifications according to the ASM method, provides flexibility and manages the complexity by using an innovative extensible language architecture

    The Impact of Petri Nets on System-of-Systems Engineering

    Get PDF
    The successful engineering of a large-scale system-of-systems project towards deterministic behaviour depends on integrating autonomous components using international communications standards in accordance with dynamic requirements. To-date, their engineering has been unsuccessful: no combination of top-down and bottom-up engineering perspectives is adopted, and information exchange protocol and interfaces between components are not being precisely specified. Various approaches such as modelling, and architecture frameworks make positive contributions to system-of-systems specification but their successful implementation is still a problem. One of the most popular modelling notations available for specifying systems, UML, is intuitive and graphical but also ambiguous and imprecise. Supplying a range of diagrams to represent a system under development, UML lacks simulation and exhaustive verification capability. This shortfall in UML has received little attention in the context of system-of-systems and there are two major research issues: 1. Where the dynamic, behavioural diagrams of UML can and cannot be used to model and analyse system-of-systems 2. Determining how Petri nets can be used to improve the specification and analysis of the dynamic model of a system-of-systems specified using UML This thesis presents the strengths and weaknesses of Petri nets in relation to the specification of system-of-systems and shows how Petri net models can be used instead of conventional UML Activity Diagrams. The model of the system-of-systems can then be analysed and verified using Petri net theory. The Petri net formalism of behaviour is demonstrated using two case studies from the military domain. The first case study uses Petri nets to specify and analyse a close air support mission. This case study concludes by indicating the strengths, weaknesses, and shortfalls of the proposed formalism in system-of-systems specification. The second case study considers specification of a military exchange network parameters problem and the results are compared with the strengths and weaknesses identified in the first case study. Finally, the results of the research are formulated in the form of a Petri net enhancement to UML (mapping existing activity diagram elements to Petri net elements) to meet the needs of system-of-systems specification, verification and validation

    Component Composition in Business and System Modelling

    Get PDF
    Bespoke development of large business systems can be couched in terms of the composition of components, which are, put simply, chunks of development work. Design, mapping a specification to an implementation, can also be expressed in terms of components: a refinement comprising an abstract component, a concrete component and a mapping between them. Similarly, system extension is the composition of an existing component, the legacy system, with a new component, the extension. This paper overviews work being done on a UK EPSRC funded research project formulating and formalizing techniques for describing, composing and performing integrity checks on components. Although the paper focuses on the specification and development of information systems, the techniques are equally applicable to the modeling and re-engineering of businesses, where no computer system may be involved

    OnTrack: Reflecting on domain specific formal methods for railway designs

    Get PDF
    OnTrack is a tool that supports workflows for railway verification that has been implemented using model driven engineering frameworks. Starting with graphical scheme plans and finishing with automatically generated formal models set-up for verification, OnTrack allows railway engineers to interact with verification procedures through encapsulating formal methods. OnTrack is grounded on a domain specification language (DSL) capturing scheme plans and supports generation of various formal models using model transformations. In this paper, we detail the role model driven engineering takes within OnTrack and reflect on the use of model driven engineering concepts for developing domain specific formal methods toolsets

    Design, construction, and application of a generic visual language generation environment

    Get PDF
    2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    • 

    corecore