
An editor and transformation system for a Z animation
case tool.

BUCKBERRY, Graham R.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19404/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

BUCKBERRY, Graham R. (1999). An editor and transformation system for a Z
animation case tool. Doctoral, Sheffield Hallam University (United Kingdom)..

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

1 9 DEC 2005 ,
S p ^

<g 5 MAP 2006

x ' i 2

2 1 APR 2006
Ap.O^pf-f

ProQuest N um ber: 10694285

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com ple te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10694285

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

An Editor and Transformation System for a
Z Animation CASE Tool

Graham Robert Buckberrv

A thesis submitted in partial fulfilment of the requirements of
Sheffield Hallam University

For the degree of Doctor of Philosophy

August 1999

jt- ■*"* ' «-»■*• - P1 ̂ 'v'4*;

/ - v v -S t a c k

;f f i f c m o \ ;
•A'1" V J'f fj

Pj\. ___..

Acknowledgements

I would like to express my thanks to Mr Ian Morrey and Professor Jawed Siddiqi of the

department of Computing and Management Sciences, Sheffield Hallam University, for

their advice, guidance and enthusiasm throughout the course of this project.

I would also like to acknowledge the work of Richard Hibberd in the development of the

ZAL animation environment, and Paul Parry for his work in the development of the ViZ

visualisation system, both of which are referenced in this thesis.

In addition, I would like to express my gratitude to Siemens Communications Limited,

and in particular Mr Roger Andrews, Engineering Manager, for the support the company

has given me in the completion of this work.

No one can aspire to complete a work of this magnitude without the support of his or

her family. I have indeed been fortunate to enjoy the love and encouragement of my wife

Lorraine throughout this project, without whom I am sure I would not have completed

this work. Thanks is too small a word.

Graham .R. Buckberrv. B.Enz (Hons), M.Sc. C.Eng. MIEE. August 1999.

Microsoft, MS and MS-DOS are registered trademarks and Windows is a trademark of the Microsoft Corporation.
IBM and PC/AT are registered trademarks and PC/XT is a trademark of International Business Machines
Corporation.

Table of Contents

ACKNOWLEDGEMENTS 2

TABLE OF CONTENTS 4

TABLE OF FIGURES 9

LIST OF TABLES 11

ABSTRACT 12

1. INTRODUCTION AND PROBLEM DEFINITION 13

1.1 The Risks and Costs of Developing Software 14
1.1.1 Developers Under Pressure 16
1.1.2 The Need to Capture What the User Requires 17

1.2 Software Engineering Processes and Practice 18
1.2.1 Software Engineering Practice 20
1.2.2 The Software Lifecycle 20
1.2.3 Identifying Costs in the Waterfall Model 25
1.2.4 The Implications of Software Evolution for Requirements Engineering 26
1.2.5 Improving the Lifecycle Model 28
1.2.6 The Case for Prototyping 29
1.2.7 Rapid Prototyping, Animation and Executable Specifications 31
1.2.8 The Application of CASE Tools 32

1.3 The Objectives of the Research Programme 33
1.3.1 The Project Plan 36

1.4 Thesis Structure 37

2. REQUIREMENTS ENGINEERING AND FORMAL SPECIFICATION 39

2.1 What is a Requirement? 39
2.1.1 Requirements Engineering Methods 41
2.1.2 The Activities within Requirement Engineering 43
2.1.3 Factors Affecting the Requirement Engineering Task 44

2.2 A General Approach to Requirements Engineering 45
2.2.1 Roles and Communication in Requirements Engineering 48
2.2.2 Techniques Promoting User Consultation 48
2.2.3 Techniques Promoting User Participation 50
2.2.4 Techniques Promoting Stakeholder Participation 52
2.2.5 Techniques Promoting Stakeholder Co-operation 53
2.2.6 The Specification of Requirements 56

2.3 Approaches Based on Formal Methods 57

4

2.3.1 Formal Specification Techniques 60
2.3.2 The Z Notation 62
2.3.3 Formal Specification and Bridging the Communication Gap 65
2.3.4 Related Research into Executable Specifications 66

2.4 Summary 69

3. REQUIREMENTS ENGINEERING TOOLS AND PROCESSES 71

3.1 Developing a Requirements Engineering Tools Hierarchy 72
3.1.1 Identifying the Users of Requirements Engineering Tools 75
3.1.2 Identifying Requirements Engineering Problems from the Primary Viewpoints 78
3.1.3 Tools to Control the Relationship Between Requirements and System Costs 79
3.1.4 Tools Which Capture Requirements for System Reliability and Maintainability 80
3.1.5 Tools Which Capture Requirements Associated with System Functionality 81
3.1.6 Tools for Specification Validation 82
3.1.7 A Requirements Engineering Tools Hierarchy 84
3.1.8 Requirements Engineering Tools Limitations 86

3.2 Developing Requirements for a Requirement Engineering Tool 86
3.2.1 Developing Requirements for a Tool to Support the Representation Process 88
3.2.2 Introducing Formalism Within the Representation Process 90
3.2.3 Justification for the Use of the Z notation 90
3.2.4 Product Requirements for a Tool to Support the Representation Process 92
3.2.5 Developing Requirements for a Tool to Support the Specification Process 92
3.2.6 Understanding How Specifications are Developed 95
3.2.7 The Usability Phase 98
3.2.8 The Functional Phase 99
3.2.9 The Resolution Phase 99
3.2.10 Conclusions from the Study of Specification Development 101
3.2.11 Managing the Interfaces Between Specification Components 102
3.2.12 Assessing the Impact of Formal Methods on the Specification Process 103
3.2.13 Product Requirements for a Tool to Support the Specification Process 106
3.2.14 Developing Requirements for a Tool to Support the Agreement Process. 107
3.2.15 The Semantic and Implementation Gaps 108
3.2.16 Product Requirements for a Tool to Support the Agreement Process 110

3.3 A Process for Requirements Engineering Using TranZit, ZAL and ViZ 110
3.3.1 The REALiZE Process 113

3.4 Summary 115

4. REALISATION OF THE TRANZIT EDITOR AND ANALYSER
SUBSYSTEM 117

4.1 Research and Development of the TranZit User Interface 118
4.1.1 The TranZit User Interface Design 120
4.1.2 The TranZit Main Editor Window 122
4.1.3 The Use of Object-Orientation to Support the Capture of Z specifications 124
4.1.4 Accommodating the Learning Potential of the User 125
4.1.5 Considerations in Designing the GUI for the TranZit Analyser Subsystem 128
4.1.6 The User Interface to the TranZit Transformation Engine (TTE) 131
4.1.7 Evaluating the TranZit User Interface 133

4.2 Research and Development of the TranZit Syntax Analyser 133
4.2.1 The Parsing Problem 134

5

4.2.2 Definitions for Languages and Grammars 137
4.2.3 Language Classes 139
4.2.4 Grammars and Automata 140
4.2.5 Grammars and Ambiguity 143
4.2.6 Developing a Parser for the Z Notation Syntax 145
4.2.7 Applying Iteration and Factoring Transformations to the Z Notation Grammar 147
4.2.8 Recursive Descent Techniques 152
4.2.9 Recovery From Errors 155

4.3 Research and Development of the TranZit Type Checker 156
4.3.1 Rationale and Design Criteria for the TranZit Schema ObjectBase 156
4.3.2 Implementing the TranZit Schema ObjectBase 159
4.3.3 Realising a Type Checker for the Z notation 164
4.3.4 Representing Types in the Z notation 165
4.3.5 Performing the Type Checking function 167
4.3.6 Other Semantic Actions 171

4.4 Summary 173

5. RESEARCH AND DEVELOPMENT OF THE TRANZIT
TRANSFORMATION ENGINE 175

5.1 The Rationale for Transformation 175
5.1.1 Constructing an Executable Representation of a Specification 177
5.1.2 Evolution of the Z Animation Language (ZAL) 179
5.1.3 Development of the ZAL Grammar 184
5.1.4 Evolution of the TranZit Transformation Engine (TI E) 186
5.1.5 Requirements for the TranZit Transformation Engine 187
5.1.6 Intermediate Languages 188
5.1.7 Accessibility of the Executable Representation 189
5.1.8 Ensuring Transformation Correctness 191

5.2 Realisation of the TranZit Transformation Engine 192
5.2.1 TranZit Transformation System Architecture 194
5.2.2 The Production System 195
5.2.3 The Polish Conversion Engine 195
5.2.4 The Computability Analyser 196
5.2.5 Animation Support 197
5.2.6 Support for Shown Variables 197
5.2.7 Resolution of Implicit Schemas 198
5.2.8 The Format Engine 199

5.3 Non-Computable Aspects of Specification Languages 201
5.3.1 Computability and the Z Notation 203
5.3.2 A Strategy for Dealing With Non-Computable Clauses in Z 204
5.3.3 Example: IsAPerfectSquare 205
5.3.4 Adding Constraints to Non-Computable Clauses 206
5.3.5 The Computability Analyser: Identifying Enumeration Functions 210
5.3.6 An Eclectic Strategy: The TranZit Transformation Assistant 212

5.4 Summary 215

6. TRANZIT SYSTEM TESTING, EVALUATION AND CASE STUDIES 217

6.1 The Testing of TranZit 217
6.1.1 Unit Testing 219

6

6.1.2 Integration Testing
6.1.3 Acceptance Testing

220
222

6.2 Assessment of the Usability of TranZit 225
6.2.1 Analysis of Feedback from User Questionnaires 225

6.3 Comparison of TranZit and other Requirements Engineering Tools 227
6.3.1 The Use of Formalism 227
6.3.2 Tools Platforms 228
6.3.3 Comparison of the TranZit and Formaliser Tools 229
6.3.4 Comparison of the TranZit and ZFDSS Tools 229

6.4 Case Study I: A Library System 233
6.4.1 Z Specification Development 233
6.4.2 Capturing in TranZit and Transformation to ZAL 235
6.4.3 Animation in the ZAL Environment 240
6.4.4 Creating Candidate Data 241
6.4.5 Animating the Library Specification 242
6.4.6 Discussion 247

6.5 Case Study II: The Telephone Network 248
6.5.1 Z Specification Development 248
6.5.2 Capturing in TranZit and Transformation into ZAL 251
6.5.3 Animation in the ZAL Environment 255
6.5.4 Creating Candidate Data 256
6.5.5 Executing the Telephone Network Animation 257
6.5.6 Discussion 263

6.6 Summary 264

7. RESULTS AND CONCLUSIONS 266

7.1 Review of Achievement Against Research Programme Objectives 266

7.2 Opportunities for Further Research Work 269

7.3 General Conclusions 272

BIBLIOGRAPHY 274

APPENDIX I: LL(K) GRAMMAR FOR THE Z NOTATION 291

APPENDIX II: CONTEXT-FREE GRAMMAR OF THE ZAL LANGUAGE 298

APPENDIX I I I: A REVIEW OF CURRENT REQUIREMENTS ENGINEERING
TOOLSETS 303

APPENDIX IV: TRANZIT USER QUESTIONNAIRE RESULTS 310

Appendix TV-1: Population Statistics 310

Appendix IV-II: About Requirements Engineering 311

7

Appendix IV-HI: About the Z Notation 313

Appendix IV-IV: About TranZit 315

APPENDIX V: PUBLICATION HISTORY 317

APPENDIX VI: GLOSSARY OF ABBREVIATIONS 318

8

Table of Figures

Figure 1-1: Developers underPressure__ 16
Figure 1-2: Study Phase Costs as a Percentage o f Development Costs_________________________ 17
Figure 1-3: Waterfall Model o f Software Systems D evelopm ent_______________________________24
Figure 1-4: Prototyping Lifecycle M o d el___29
Figure 2-1: Categories o f Requirements Engineering M ethods________________________________41
Figure 2-2: Requirements Engineering Process Framework__________________________________ 46
Figure 2-3: Kano's Model o f Customer Requirements_______________________________________ 55
Figure 2-4: Example Z Specification__ _ 64
Figure 3-1: Requirements Engineering Tools H ierarchy_____________________________________ 85
Figure 3-2: Pohl’s Three Dimensions o f Requirements Engineering___________________________ 87
Figure 3-3: Considerations in the Specification Process_____________________________________ 93
Figure 3-4: Industrial Specification Process__ 97
Figure 3-5: The three phases o f Specification Production___________________________________ 101
Figure 3-6: The REALiZE P rocess___ 113
Figure 3-7: The Logical Interfaces between TranZit, ZAL and ViZ___________________________ 115
Figure 4-1: Hierarchy o f TranZit Features__ 122
Figure 4-2: TranZit Main Editor Window__123
Figure 4-3: TranZit Open Schema Dialog__125
Figure 4-4: TranZit Symbol Selection Dialog__ 127
Figure 4-5: TAS Control D ia log___ 129
Figure 4-6: TAS Results Window___ 130
Figure 4-7: TAS Type Mismatch Summary Example___130
Figure 4-8: Example Transformation Output Window______________________________________ 132
Figure 4-9: Example Syntax T ree__ 134
Figure 4-10: Example BNF N ota tion___ 136
Figure 4-11: Expansion by the Production System__136
Figure 4-12: TranZit Schema Objectbase Concept__157
Figure 4-13: TranZit Schema Objectbase Internal Structure_________________________________ 160
Figure 4-14: Local Declarations ObjectArray Structure____________________________________ 164
Figure 4-15: Representing Types___ 166
Figure 4-16: Example Interactions within the Type Checker_________________________________ 170
Figure 5-1: Comparing Executability and Expressibility___________________________________ 178
Figure 5-2: Example Specification with Corresponding ZAL Representation__________________ 184
Figure 5-3: The Interface between TranZit and the ZAL Animation Environment_______________ 186
Figure 5-4: Mapping Between Semantic U niverses___192
Figure 5-5: TranZit Transformation System Architecture____________________________________ 194
Figure 5-6: Set Show Variable Dialog___ 198
Figure 5-7: The Transformation System D ialog__ 200
Figure 5-8: Typical TranZit Window Arrangement fo r Transformation Auditing_______________ 201
Figure 5-9: TranZit Transformation Assistant D ia lo g ______________________________________ 213
Figure 6-1: Integration Test Strategies__220
Figure 6-2: Capturing the Library Specification in TranZit__________________________________ 236
Figure 6-3: Screen Dump from TAS fo r Library Specification________________________________236
Figure 6-4: Screen Dump Showing TTE Output fo r Library Specification______________________237
Figure 6-5: Using TranZit and ZAL to Animate the Library Specification_____________________240
Figure 6-6: Creating Candidate Data fo r the Library A nim ation____________________________ 242
Figure 6-7: Executing the Library Animation__ 243
Figure 6-8: ZAL Execution Feedback Window on Executing Schema Borrow__________________ 244
Figure 6-9: Provocative Testing o f the Library Animation___________________________________ 245
Figure 6-10: Executing the Revised Library Animation_____________________________________ 246
Figure 6-11: Output from ZAL on Executing the Revised Library Animation__________________ 246
Figure 6-12: TranZit Transformation Assistant Request Dialog fo r ConnsO___________________ 252
Figure 6-13: TranZit Transformation Assistant Request Dialog fo r C onnsl___________________ 253
Figure 6-14: TranZit Transformation Assistant Request Dialog fo r Variable C ________________ 253

9

Figure 6-15: Executing the Telephone Network Animation__________________________________ 256
Figure 6-16: Creating Candidate Data fo r the Telephone Network Animation_________________ 257
Figure 6-17: Result o f Executing Schema TN___ 257
Figure 6-18: Result o f Executing Schema TN with Revised Candidate Data___________________258
Figure 6-19: Result o f Executing Schema TN with further Candidate Data Changes___________ 259
Figure 6-20: Result o f Executing Schema TN as part o f evaluating EfficientTN_______________ 259
Figure 6-21: Result o f Executing Schema EfficientTN______________________________________260
Figure 6-22: ZAL Execution Feedback Window on Executing Schema C a ll___________________ 261
Figure 6-23: Creating Candidate Data fo r the Hangup Operation___________________________ 262
Figure 6-24: Result o f Executing the Hangup Schema______________________________________ 262

10

List of Tables

Table 1: Stakeholder Concerns__ _ 77
Table 2: Product Requirements fo r a Tool to support the Representation Process______________ 92
Table 3: Product Requirements fo r a Tool to support the Specification Process_______________ 106
Table 4: Product Requirements fo r a Tool to Support the Agreement P rocess_________________110
Table 5: Table o f ZAL Operators___ 182
Table 6: Product Requirements Checklist__224
Table 7; Table o f Meta-Symbols fo r the LL(k) Grammar____________________________________ 291
Table 8: Symbols Which Can Be Surrounded by NL Characters_____________________________ 291
Table 9: Table o f Terminal Symbols fo r LL(k) Grammar____________________________________ 297
Table 10: Table o f Meta-Symbols fo r the ZAL Grammar____________________________________ 298
Table 11: Table o f Terminal Symbols fo r the ZAL Grammar________________________________ 302
Table 12: Review o f Requirements Engineering Toolsets____________________________________ 308
Table 13: REALiZE Toolset C apabilities___ 309
Table 14: Questionnaire Results: User Experience I _______________________________________ 310
Table 15: Questionnaire Results: User Experience II______________________________________ 311
Table 16: Questionnaire Results: Opinions on Requirements Engineering I__________________ 312
Table 17: Questionnaire Results: Opinions on Requirements Engineering I I _________________312
Table 18: Questionnaire Results: Opinions on Requirements Engineering I I I ________________313
Table 19: Questionnaire Results: Opinions on the Z Notation I_____________________________ 313
Table 20: Questionnaire Results: Opinions on the Z Notation II____________________________ 314
Table 21: Questionnaire Results: Opinions on the Z Notation III ________________________ 314
Table 22: Questionnaire Results: Opinions on the TranZit Tool I _________________ 315
Table 23: Questionnaire Results: Opinions on the TranZit Tool I I ________________ 315
Table 24: Questionnaire Results: Opinions on the TranZit Tool III________________ 316
Table 25: Questionnaire Results: Opinions on the TranZit Tool IV________________ 316
Table 26: Table o f Publications Associated with this Project_________________________________317

11

Abstract

In order to remain competitive, modem systems developers are increasingly under
pressure to produce software solutions to complex problems faster and cheaper, whilst at
the same time maintaining a high level of quality in the delivered product. One of the key
quality measures is the delivery of a system that meets the customer’s requirements.
Failure to meet the customer’s requirements may engender significant re-design, which in
turn will cost money, delay product introduction and may seriously damage the
developer’s credibility. For these reasons, the problem of developing a precise and
unambiguous statement of requirements for a proposed system is perhaps one of the
most challenging problems within software engineering today.

Formal, model-based specification languages such as the Z notation have been widely
adopted within the context of requirements engineering, to provide a vehicle for the
development of precise and unambiguous specifications. However, the mathematical
foundation upon which these notations are based often makes them unapproachable and
difficult to assimilate by a non-specialist reader. The problem then faced is that if the
customer cannot understand the semantics of the specification, how can the customer
agree that the specification is indeed a true reflection of the requirements for the desired
system?

Several researchers have proposed that rapid prototyping and animation of
specifications can be used to increase the customer’s understanding of the formal
specification. This is achieved by executing specification components on candidate data
and observing that the behaviour is as expected. However this requires that the original
formal specification be reliably transformed into a representation capable of being
executed within a computer system. To achieve this aim requires the support of
computer-based tools able to assist the requirements engineer in capturing, manipulating
and transforming the formal specification in an efficient and consistent manner.

This thesis describes the research and development of the TranZit tool, which is a Z
notation editor, checker and transformation system. TranZit supports the efficient
capture and maintenance of Z notation specifications using the Windows™ Graphical
User Interface, supported by a suite of powerful language-driven features. In addition
TranZit contains a highly integrated and optimised syntax and type checker, combining
traditional compiler design techniques with innovative use of object-oriented data
structures and methods, to assist the requirements engineer in ensuring the internal
consistency of the captured specification.

Most importantly, TranZit contains a novel transformation engine, which is capable of
transforming a captured Z specification into an executable representation based on
extensions to LISP, suitable for direct execution in an animation environment. This
process is supported by an eclectic strategy combining automated transformation with
user assistance, to overcome many of the well-documented problems associated with
transforming non-executable clauses in formal specifications.

12
A
■I

1. Introduction and Problem Definition

It is an accepted fact that as time progresses, more everyday products are incorporating

some form of computer system into their basic design. As the cost of powerful computer

hardware continues to fall, driven by recent advances in semiconductor technology, it is

now possible for manufacturers to build ever more sophisticated embedded computer

systems into their products, to meet the increasing consumer demand for features and

information. Computer systems are trusted to control everything from washing machines

to jet aircraft; from ATM machines to stock markets. Indeed, such is the proliferation of

computer systems in the modem world that it is hard to conceive of many aspects of

everyday life that are not influenced by computer technology.

The massive increase in the availability of affordable desktop PC’s to both the business

and home user, has opened up a huge global market for computer software, which now

incorporates a massive range of applications. In particular the consumer demand for

recreational software has created a highly lucrative computer games market, whilst

revolutions in the communications and information technology industries has made such

things as mobile phones, satellite television, teleworking and home connection to the

Internet commonplace. Together, these aspects of computing are already having a

marked effect upon the sociological factors that influence the way our civilisation is

evolving.

While the software applications market continues to grow year on year, likewise a similar

increase in the embedded computing marketplace has seen computer systems begin to

control much more of the equipment and services we depend on in our day to day

existence. In recent years computers have been trusted to control more safety critical

systems, such as aircraft fly-by-wire control systems or Nuclear Power Plant control

systems, in which the reliability and performance of the controlling software is

paramount in safeguarding the well-being of human beings under its influence.

Our technological society has now evolved to the point where almost everyday, we place

our physical, social and economic wellbeing in the hands of computer systems, and place

13

our trust in the fact that they will perform the tasks required of them flawlessly. Yet as

these systems become ever more complex, and the performance demands placed upon

them are forever increasing, how can we be sure that the computer software they

embody will deal correctly with the chaotic myriad of events that constitute the real

world?

It is this dichotomy which continues to perplex software developers throughout the

world: How to meet the challenge of developing reliable and efficient computer

software, which satisfies the needs of the customer, whilst maintaining control of project

costs and timescales?

In this introductory chapter we will explore the background to this problem through;

• An investigation into the history and reasons for the evolution of Software

Engineering,

• An analysis of the problems addressed and highlighted by various approaches and

techniques adopted in Software Engineering,

• A discussion of the software development lifecycle and the costs which it embodies.

• Investigation of the Requirements Capture lifecycle phase, with a view to improving

the quality of the deliverables produced.

The chapter aims to present a clear background to the problem domain and set the

context for the work presented in the remainder of the thesis. In addition, this chapter

will define the need for such work and identify clear plans and objectives for the

subsequent project work.

1.1 The Risks and Costs of Developing Software

Whilst recent times have seen the cost of computer hardware continue to fall year on

year, the costs associated with developing computer software have not. As long ago as

1977, Lehman (1980) suggested that software development costs in the USA exceeded

$50 billion a year, representing more than 3% of the American GNP. Accurate figures

14

representing actual costs today are difficult to establish, often due to the fact that

development organisations regard this information as commercially sensitive and

therefore do not publish figures openly. However, with the huge increase in the number

and size of commercial software houses seen in recent years, it is likely that the

equivalent costs today are several times this figure. Indeed Boehm (1987) suggested that

in 1985, worldwide software costs exceeded $140 billion, and would continue to grow at

a rate of 12% per year. Projecting these figures into the future suggests that by the end

of the century, software development costs will exceed $600 billion a year.

This figure represents a huge investment by the software industry, and with so much

money at stake the cost of failure may have devastating financial effects on organisations

developing such computer systems. Yet the enormous global market for IT and

computer products means that if computer systems can be made to work to specification

and meet the customer need, then software development as an industry can return

generous profits. One need look no further than the phenomenal success of the Microsoft

Corporation to understand what the returns on such an investment may be.

However, even apparently successful organisations are not immune from the problems

associated with complex software systems development: As reported by Forsberg

(1997), during the Atlanta Olympics the IBM Corporation suffered a number of high-

profile problems with their $40 million Olympic Information Integration system. The

result was that twelve News wire services that had contracted to the IBM system had

trouble obtaining accurate competition results. The effect of this high profile failure not

only had a negative impact on the credibility of the IBM organisation itself, but also had

direct financial implications for the customers of the system. When questioned on the

matter at a later date, the IBM project manager, Luis Estrada, conceded that the system

had broken down “.. because user requirements were not understood

This statement has far reaching consequences, in that the apparent failure of a costly

computer system was not attributed to poor design, poor implementation or even poor

testing. It is purely the case that the system did not do what the users wanted it to do.

One could be forgiven for thinking that it should be obvious that the system should do

15

what the users want it to do, and that one should not embark upon such a project until

the system requirements are fully agreed with the customer. Yet as discussed below, the

problem of engineering requirements for complex computer systems is perhaps one of

the most challenging fields of computer research today.

1.1.1 Developers Under Pressure
At the same time as the costs involved in major software projects continue to increase,

so the software developer is under increasing pressure from two opposing forces. On the

one hand there is competitive pressure from management and the business to complete

developments faster, increase productivity, get the product to market sooner and make it

cheaper than before. On the other hand there is pressure from increasingly

technologically minded customers for high quality IT solutions which add value to their

business.

Faster Cheaper Sooner More Productive

\ 7 V . K 7 , X 7
Bevetopers Underpressure

High Quality

Figure 1-1: Developers under Pressure

In order to meet these objectives, the development team must focus their efforts on

achieving the right product first time. Hence any methodology we choose to develop

software must be much more than simply a profoftna for writing software. It must be an

integrated process for engineering the right product to meet business objectives, costs

and timescales, whilst at the same time satisfying customer requirements and quality

measures.

16

1.1.2 The Need to Capture What the User Requires

From the preceding discussion, an immediate conclusion one could draw might be that

projects are more likely to meet budgets and generate customer satisfaction, if more time

were spent analysing the users’ requirements during the study phase of the project. This

view is now generally accepted and is supported by data from the NASA organisation

shown in Figure 1-2 (reproduced from Forsberg, 1997), which relates to several of their

space system projects. The diagram indicates the benefits of conducting an effective

project study phase as a percentage of the development budget overrun costs (source:

W. Gruhl NASA-HQ).

160

Data fro n Spaaa Prog a mo including:
• Hut ble Space Tel iscope
«—1D1LSS________________
• Gar una Ray Obs< rvatory 1978
• Gar ima Ray Obsi rvatory 1982

140

120

O
V 100 Seâ iat

Pioi eer Venus
Voj agerR

R
U
N

%

STUDY COST

Figure 1-2: Study Phase Costs as a Percentage of Development Costs

This data highlights the view that if no requirements study is started before development

begins, then project overrun costs can be up to twice the original project budget

estimate.

This was aptly demonstrated by the Geostationary Operational Environment Satellite

project, which was initiated by NASA in 1985. This project was crucial to the

replacement of the existing weather satellites, which were expected to reach the end of

their operational life by the end of the 1980’s. The project was planned to be completed,

17

ready for a first launch, in 1989 (a total of 4 years) and had a budget in excess of $500

million. A crucial decision made in the evolution of the project was that management

decided to skip the traditional requirements study phase. The rationale for this decision

was that it was considered that the project amounted to a replacement exercise for

existing satellites and therefore the operational characteristics of the required system

were well understood. This decision proved to be a grave mistake, with the result that

the first satellite was launched five years late, by which time the project costs had soared

to over three times the original estimate. The resultant political outcry is well

documented by Kuznik (1994) in his article “Blundersaf, and almost caused the project

to be completely cancelled.

It should be clear from the previous discussion that any complex engineering problem

needs careful analysis at project inception in order to reduce the risk of budget overrun

and possible system failure. Yet with so much more emphasis being placed on software

solutions, how have software developers responded to this challenge? Most importantly,

what causative problem agents have been identified in the software development process,

and what thinking has evolved to mitigate these problems? To find the answers to these

questions, it is necessary to examine the evolution of Software Engineering itself.

1.2 Software Engineering Processes and Practice

In the early years of commercial software development, a highly unstructured, ad-hoc

approach was taken in addressing the development process. However, as development

costs began to rise, the companies involved soon began to realise that software

development required much more than simple programming. In effect it became

necessary to consider the environment into which the software would be delivered,

including psychological, organisational, ergonomic, economic and performance factors.

It was realised that computer systems needed to be engineered to fit into organisations

and meet their business objectives, rather than simply be programmed to provide specific

functionality. The needs of the user, rather than the needs of the program were beginning

to become important.

18

The 1960’s saw a huge increase in the computing power available to the programmer.

This made it possible to apply computer-based solutions to a whole range of business

processes hitherto thought to be impossible or too expensive to implement.

Computers could now be used to automate payroll systems, manage stock control,

produce management reports, and perform many other traditionally manual clerical tasks,

as the amount of data that could be stored and manipulated within the system increased

dramatically. However, as the systems programmers tried to apply their old, ad-hoc

development techniques to these much larger problems, it became apparent that simply

scaling up the programming effort failed to produce acceptable solutions. Many systems

under development began to be delivered late, showed spiralling costs, were difficult to

maintain or modify and most importantly failed to meet the expectations of the users.

The software industry was in a state of crisis (Naur and Randell, 1969), and as a result it

was recognised that the application of generic engineering principles to the development

of software was the only way for the industry to retain its credibility.

Many solutions were postulated, however the essential conclusion reached was that the

problems associated with developing large, complex software systems where

fundamentally different to those involved in developing an isolated computer program.

One of the major differences subsequently identified highlighted the fact that deficiencies

in the analysis o f requirements for large software systems made a significant

contribution to the overall development problem. Indeed it was stated by Alford and

Lawson (1979) as far back as 1979 that “In nearly every software project which fails to

meet performance and cost goals, requirements inadequacies play a major and

expensive role in project failure”.

However, what aspects of the generic engineering principles outlined, were needed to

transform software development from an art into an engineering discipline?

19

1.2.1 Software Engineering Practice
Although coined in the late 1960’s, the term Software Engineering has evolved in the

intervening years to cover a range of software development issues. There are many

proposed definitions of the term Software Engineering, although Sommerville (1985)

provides one of the more concise when he states:

“The practise o f Software Engineering is concerned with building large and complex

software systems in a cost effective way.”

The use of the term Engineering implies much more than simple programming, involving

a thorough analysis of the problem, a systematic approach to design, and a rigorous

validation method, all supported by effective documentation.

The use of an engineering approach was intended to break the traditional cycle of the

software system relying for its development and maintenance, on a small group of

programmers who knew the system internals in intimate detail It soon became clear that

to surmount the problems involved in developing and maintaining such systems, more

than one role was needed in the software engineering process. In particular, there was

early recognition that more work was needed in the analysis and design phases and this is

turn lead to specific roles being generated, including the Systems Analyst or Analyst

Programmer.

As these roles developed, so it became necessary to formalise the interface between them

and hence discrete phases of system development began to evolve, associated with the

particular specialisations. Similarly, the need for a systematic approach to software

engineering naturally lead to the evolution of so called methodologies, designed to

standardise and organise the information presented at each phase of development.

1.2.2 The Software Lifecycle

The software lifecycle is an extremely important model in defining the nature of software

systems development. Not only does it clarify understanding of the associated problems,

but it also defines an engineering process for software development. This process

20

consists of several discrete engineering phases, each of which is associated with a set of

deliverables and objectives.

It is important to recognise that there is no single definitive view of the information

embodied within the software lifecycle model. Rather the discrete phases identified must

be organised according to various factors, possibly including the nature of the application

being developed, the organisation and management of the development team, project

timescales, cost targets and deliverables.

According to Avison and Fitzgerald (1988) the software lifecycle model grew out of

three main observations:

• Firstly, a growing appreciation of the importance of the systems analysis and systems

design roles within the development process, as well as the systems implementers.

• Secondly, the realisation that the rate at which organisations were growing

necessitated the need to develop integrated and maintainable information systems,

rather than simple one-off programs.

• Finally, the desirability of a standardised approach or methodology for the

development of software systems.

The notion of a methodology recognises that software systems pass through a number of

discrete phases in their development and use. One of the earliest methodologies was that

developed by the National Computing Centre (NCC) in the United Kingdom and is

described by Daniels and Yeates (1971), and later by Lee (1979). The methodology,

which came to be known as conventional systems analysis, is based on the so-called

Waterfall model of software development, proposed by Royce (1970).

In essence, conventional systems analysis methodology embodies the following discrete

phases:

• The Feasibility Study Phase examines current problems and proposes alternative

solutions, based on simple cost/benefit analysis.

21

• The System Investigation Phase follows the feasibility phase and the developers then

proceed to assess the system requirements, record constraints and problems with

current working methods.

• The System Analysis Phase analyses the current system with view to addressing why

such problems exist, where automation will help, and to define the boundary of the

proposed system.

• The System Design Phase involves the design of both the computerised and manual

parts of the system.

• The Implementation Phase concerns the implementation and testing of the

computerised parts of the system. The manual parts are documented and users are

trained. Master files are set up and the system goes through a period of trial running

before being brought into service.

• The Review and Maintenance Phase is the final stage of the methodology and

addresses any changes required to the system to ensure efficient running, and also

review the performance of the system against the original requirements and objectives.

From the description above, it is clear that the original NCC methodology was (rightly)

designed around the state of computer technology as it existed at the time. In more

recent years, the development of new techniques for software development has offered

alternative approaches based on emerging wisdom and experience. In particular, the

following techniques represent some of the major developments within the evolution of

software engineering:

• Stepwise Refinement (Wirth, 1971),

• Jackson Structured Programming (Jackson, 1975),

• Structured Systems Analysis and Design (Weinburg 1978, Yourdon and Constantine

1979, Gane and Sarson 1979 and DeMarco 1978), and

• Object Oriented Analysis and Design (OOA/OOD) (Booch 1994, Shlaer and Mellor

1992)

It is undoubtedly the formalisation of these methods that has led to the acceptance of

software engineering as a true engineering discipline.

22

Whilst these methods differ in syntax and semantics, they all essentially encompass the

same prescriptive approach to the development process. Hence, today it is generally

accepted that the software lifecycle model encompasses the following familiar discrete

phases:

• Requirements Capture. This phase is concerned with what is to be designed rather

than how it is to be designed. The system features, performance constraints and

operating environment are established by detailed discussion with the users. Once

these have been elicited, they must be captured in a complete, concise and

unambiguous fashion to form a specification of what is to be designed. Again, due to

the importance and complexity of this phase, it has evolved into an area of study in its

own right. This has come to be known as Requirements Engineering, and is of

primary interest in the remainder of this thesis.

• Software Systems Design. This phase seeks to describe a number of software elements

whose characteristics can be implemented in the target programming language.

• Implementation. In this phase the software design is implemented in the target

programming language. The result is to produce a number of programmed

components or modules, each of which implements a specific part of the software

design.

• Unit, System and Acceptance Testing. In unit testing, the implementers verify that

each of the modules implements its software design correctly. This is generally

followed by system testing, in which all the individual modules are integrated to

produce a complete software system. This completed system is then tested to ensure

that it meets the original requirements of the system. In acceptance testing, the entire

system is installed and brought into partial service, normally for a trial period, to allow

the users to observe the system operating in situ. This provides further confirmation

that the system requirements have been met.

• Operation and Maintenance. Once the user has accepted that the system is fit for

purpose, it will be brought into full operation. It is often the case that throughout this

period (i) problems with the system operation will occur which were not identified in

the testing phase, or (ii) users' requirements will change as their business evolves. If it

23

is to remain useful, the software system must be maintained to improve, enhance or

correct features o f the system.

These phases are normally represented using the general waterfall model o f software

systems development as shown in Figure 1-3:

Requirements

Test

Design

Implementation

Operation and
Maintenance

Figure 1-3: Waterfall Model of Software Systems Development

It is important to recognise that each transition on the software lifecycle model is

associated with the cumulative cost o f completing the previous phases. The model

apparently shows a seamless flow o f information from one stage to the next, starting

from a statement o f requirements through to delivery and maintenance o f the final

system. Using the model, one should therefore be able to predict with a fair degree o f

accuracy the overall cost o f system development. Yet whilst this model is suitable as a

skeletal outline o f the development process, it fails to capture the dynamic behaviour o f

the system under development in any real sense. If development were as straightforward

as is implied by the software lifecycle model alone, then it is difficult to perceive o f any

great problems with controlling the associated cost. However, since it has been

demonstrated that this is not the case, even in mature organisations, there is clearly

hidden cost in this model that needs to be identified.

24

1.2.3 Identifying Costs in the Waterfall Model

An understanding of why software development costs so much more than anticipated, is

key to improving the overall development process. The goal is to establish which of the

lifecycle phases is responsible for the apparently hidden costs, which in turn take the

development over budget for some reason. It is then possible to set about improving the

way in which particular lifecycle phases are managed, to reduce the cost overhead.

The software lifecycle model is interesting from the viewpoint that information is seen

flowing back to previous phases, implying an iterative or cyclic approach to

development. Apparently, this also includes the requirements capture phase. The

implication here is that we may need to revisit certain phases of the lifecycle several

times before we can complete a particular transition to the next phase. Hence the first

glimpse of hidden cost is the fact that the cost of a particular transition may not simply

be the cumulative cost of the previous forward transitions. It may appear obvious, but

many development organisations still make this simplistic mistake when costing projects.

More importantly, it can be seen that changes made during the Operation and

Maintenance phase of the lifecycle may have a direct effect on any of the previous phases

of the system lifecycle, and as such may have a high cost impact.

This then is the essential problem with developments based purely on the waterfall model

as highlighted by McCracken and Jackson (1982) and also by Gladden (1982). The

model assumes that users are capable of stating their requirements at the outset of the

project, and that these requirements will be static during the lifetime of the system.

However as Brooks (1987) points out, users often do not know what their exact

requirements are, and even if they can be determined at some point in time, they are

likely to change.

In order to generate an improved version of the software development lifecycle, it is

therefore necessary to consider the dynamic behaviour of software systems and their

environments over time in order to uncover the true sources of development cost. This

process is termed software evolution.

25

1.2.4 The Implications of Software Evolution for Requirements Engineering

Software evolution (or sometimes Software Maintenance) is the process of changing the

delivered system, either to correct errors introduced at some phase in the software

development or to address the evolving needs of the environment into which the system

was originally delivered.

Lehman (1980), has suggested that there are five rules which govern the evolution of

software systems:

• Continuing Change. A program used in a real world environment must change or

become less useful in that environment

• Increasing Complexity. As an evolving program changes its structure becomes more

complex unless efforts are actively made to avoid this phenomenon.

• Program Evolution. The process of evolution is self-regulating, and measurement of

attributes associated with different releases of software show statistically significant

trends and invariances.

• Conservation o f Organisational Stability. Over the lifetime of a program, the rate of

development of the program is approximately constant, and independent of the

resources devoted to system development.

• Conservation o f Familiarity. Over the lifetime of a system, the incremental system

change in each release is approximately constant,

As Sommerville (1985) points out, these laws are not universally accepted, however it is

certainly the case that the first two laws are probably applicable to every large software

system which has ever been developed. However, the important point is that there is an

assertion that any software system will change, either during its development or after it

has been installed. If this is the case then what are the costs associated with implementing

these changes?

It has already been noted that each phase in the Software Development Lifecycle carries

an associated cost to the developer. In general this cost is dependent upon the nature and

26

complexity of the particular system being developed, however Boehm (1981) has

suggested figures for general types of system based on experimental observations. From

the work of Boehm, the inference is that during the system maintenance phase, the

further it is required to go back in the software lifecycle to implement a given change, the

higher the cost involved. The reason being that maintenance work re-incurs the

cumulative cost of all the intervening lifecycle phases.

For example, consider an error made in the implementation phase that is discovered in

the testing phase. The cost associated with rectifying this problem is the cost of re­

coding and re-testing the incorrect part of the software. However, if the system is

delivered to the user and a feature of the system does not satisfy the requirements of the

customer, then the cost of rectification is much higher. In this case, it is the cost of re-

specifying the requirements, and subsequent re-design, re-code and re-test of the various

components affected by the change.

Boehm’s research has shown, and it is now an accepted view, that the costs associated

with software maintenance are extremely high and in some cases may exceed the original

development costs of the system by a factor of between two and four times. It is also an

accepted view that the majority of maintenance costs originate not from the need to

correct design and implementation errors in the system, but due to changes to the system

requirements.

According to the first law of software evolution, we must accept that the system

requirements will change in the long term. However, in order to reduce the cost of this

effect for as long as possible, it is paramount that every effort is made to establish an

accurate representation o f the users requirements during the initial requirements

capture phase o f the software lifecycle.

We must be clear the Software Engineering process begins with the needs o f the

customer. This involves capturing what needs to be designed at the outset of the

software lifecycle, rather than how it is to be designed. The next task is to explore ways

in which we can improve the lifecycle model to achieve this.

27

1.2.5 Improving the Lifecycle Model

If we are to control the costs associated with the development process, then it is clear

that we must improve our model of the way in which software is developed, and in

particular we must focus on the Requirements capture phase as a key element of

achieving lower cost.

Several ideas have been postulated, perhaps the most pragmatic of which is Boehm’s

Spiral Model (Boehm, 1988), which shifts the emphasis from achievement of

development milestones (as in the Waterfall model), to the analysis of the risks (and

costs) of continued development. Each phase of development is depicted as a loop in a

spiral with the radial co-ordinate representing the actual costs incurred so far. A phase

completes at each transition of the X-axis, at which point a decision is taken on how to

proceed based on an evaluation of objectives, determined constraints, development

alternatives and risk analysis.

As Dorfman (1997) points out, the Spiral model advocates no particular approach to

dealing with each development phase, and makes explicit the idea that the form of a

development cannot be precisely determined at the outset. In this way, the completion of

each spiral loop gives an opportunity to re-evaluate the development from a number of

perspectives, including changes in user perception, changes in technology and ongoing

financial considerations.

The main advantage of the Spiral model is that it is not prescriptive and is applicable to a

wide variety of project pre-conditions. For example, if it is the case that the user

requirements are well understood at project inception and that the associated

development risks are low, then the Spiral model effectively collapses to a standard

Waterfall model. However, in the case where the requirements are less certain, other

development models can be derived from the basic Spiral model, which better reflect the

needs of the particular issues raised.

28

1.2.6 The Case for Prototyping

Whilst the spiral model is a more pragmatic approach to the development of real-world

software systems, it does not in itself improve the process of requirements capture. What

is required is a more dynamic approach to the identification of user requirements.

To address this problem, a further extension to the standard waterfall model, is the

Prototyping model, which Gomaa and Scott (1981) and others advocate as a good

approach to support the requirements analysis phase within the development model.

The term prototype has different meaning to different people, however the definition

adopted here is that of Henderson and Minkowitz (1985) who assert that a prototype is;

".. a skeletal, inefficient, throw-away implementation o f the precise functionality o f the

eventual system.".

In this model, the implication is that some form of skeletal system capability is

constructed with a minimum of formality, which can be demonstrated to, and

experimented with by the user. The prototyping lifecycle model is shown in Figure 1-4:

Revise
Requirements Requirements

Agreed

Prototype

Design Implement
the

Prototype

User
Trial

Prototype

Establish
Requirements

Produce
System
Specification

Design Implement Test 1 Validate

Figure 1-4: Prototyping Lifecycle Model

29

It is seen that the first phase of this model involves an iterative cycle of requirements

analysis, modelling, implementation and then trials against the users’ perception of what

the system should do. This cycle continues until the user agrees that the prototype

system captures the requirements of what the system needs to do. The requirements are

then documented as a system specification, which forms the contractual agreement upon

which development of the product will be based. The development of the product then

continues according to the standard approach described previously.

The idea behind prototyping stems from the recognition that prototyping enhances the

communication between customer and designer about the proposed system. Indeed as

highlighted by Alavi (1984), many developers have commented "The end-users are

extremely good at criticising an existing system, but not too good at articulating or

anticipating their needs".

As stated by Wassermann and Shewmake (1985), a prototype system allows users to

experiment with their ideas, which may even cause them to change their views about

what they want the system to do. More importantly, observing this prototype in

operation, the user is much more likely to notice inadequacies in the specification.

The ultimate aim of prototyping is therefore to improve the quality of the specification of

requirements, which in turn may shorten the development time and reduce unnecessary

costs due to re-work.

As indicated in the IEEE Recommended Practise for Software Requirements

Specifications (IEEE, 1993), many tools and methods have been developed to support

the idea of prototyping, assisted by the evolution of so called Fourth Generation

languages (4GL’s), many of which have powerful, abstract semantics. However, in

recent years researchers have looked to the possibilities of generating a prototype

directly from the system specification. Such research has led to the idea of rapid

prototyping and the development of animation systems and executable specifications.

30

1.2.7 Rapid Prototyping, Animation and Executable Specifications

Whilst the reasoning behind prototyping is sound, the development of a prototype during

the requirements capture phase may itself add an unacceptable cost to the overall project

development. This is especially the case if the prototype will be discarded once

requirements capture is complete. An extension of this idea is therefore the generation of

a rapid prototype (Gomma, 1997).

By the term rapid prototype, we imply a prototype that can be generated on demand by

automated tools. This is especially useful in the case where several cycles of

requirements elicitation are anticipated, as there is unlikely to be enough time in any non­

trivial project to develop several prototypes by hand. Therefore, the major advantage of

rapid prototyping by automated tools is that, in addition to the prototyping benefits

outlined previously, the increased efficiency offered facilitates iterative refinement

(Hartson and Smith, 1991).

Because automated tools allow rapid representation of ideas, it is possible to experiment

quickly with differing scenarios, increasing the possibilities for iterating to a final

specification that meets the user’s needs. The process of producing a rapid prototype

from a specification and then experimenting with it in an interactive fashion is often

termed animation (Knott and Krause, 1988).

The rapid evolution of fourth generation programming languages, AI techniques and

application generators has added considerably to the possibilities for computer-based

rapid prototyping, due to the declarative semantics they embody. However, more

recently, researchers have focused on the possibilities for combining computer-based

rapid prototyping techniques with formal specification as an aid to validating complex

specifications against user requirements.

Since formal specifications embody mathematical semantics, this is seen as an ideal

mechanism for improving the quality of the specification by eliminating ambiguity,

increasing precision and completeness, as well as providing a foundation for validating

31

the requirements embodied. The merits of this approach are well argued by Dick et al.

(1990) as follows:

" Rapid Prototyping is seen as an important method o f validating a specification

against its informally perceived requirements. This is especially so when the

specification language used is not easily understood by the non-specialist reader who,

nevertheless, has a strong interest in the consequences o f the specification. ”

The key issue here is that whilst formal specification languages may bring several

advantages to the requirement engineering task in improving the quality of the

specification, these languages are not easily understood by the non-specialist customer.

However, the specification is a contract between the customer and the developer as to

what is to be developed. If the customer cannot understand the specification, how can

the customer agree that it is a true representation of the system requirements?

1.2.8 The Application of CASE Tools

From the preceding discussion, it is clear that requirements engineering based on the use

of formal methods presents the specifier with several challenges. Not only must the

specifier capture the system specification in a formal notation and be able to manipulate

it efficiently as requirements acquisition proceeds, but the need to validate that the

specification is a true representation of the system requirements is also an important

goal.

To address these problems in the most effective way a computer-based tool is required

to assist the requirements engineer in constructing, manipulating and maintaining the

internal consistency o f a formal specification during the requirements engineering task.

In addition the tool should support the generation o f a rapid prototype o f the system

directly from the formal specification. This rapid prototype may then be loaded into an

animation environment and exercised to demonstrate the expected behaviour of the

system, or discover new properties of the system represented by the specification. This

animation process is referred to as validation o f requirements by execution.

32

However as Dick et al. continue;

“By their very nature specification languages are non-algorithmic, which inhibits direct

execution. Rapid prototyping, therefore, involves making an interpretation o f the

specification in some language that does lend itself to direct execution."

The key point here is that, in general, specification languages are non-executable (Hayes

and Jones, 1989). Hence, it is necessary to transform the formal specification in some

way, in order to produce an equivalent executable representation suitable for use as a

rapid prototype. For a non-trivial specification, this transformation process may be

extremely complex, which generally prohibits the generation of a consistent and accurate

executable representation by hand. As indicated, it is also the case that certain elements

of most formal specification languages do not have a directly executable representation,

requiring the development of a strategy that can be embodied in a computer-based tool

to highlight such problems to the requirements engineer.

With this in mind, the main purpose of the research project described in this thesis is the

development of a computer-based tool to support the use of formal methods in

requirements engineering.

1.3 The Objectives of the Research Programme

This project concerns the support of requirements engineering and the use of formal

methods by computer-based tools. It has been identified that there is a need to ensure

that a complete, unambiguous statement of requirements is developed before system

design begins, in order to minimise project costs and produce the right product. It has

been suggested that use of a formal specification language may help to achieve this

objective, however a more dynamic approach is needed to ensure that the customers can

understand and validate that the specification is indeed a true representation of the

required system.

33

It is proposed that an executable representation of the system specification in the form of

a rapid prototype, may be used to allow users to validate the specification by execution

in an animation environment However, in order to assist the requirements engineer in

producing a rapid prototype, computer-based tools are required to maximise the

efficiency and to ensure the consistency and correctness of the transformation process

involved.

Therefore, the objective of this research project is to research, implement and

critically evaluate a CASE tool for requirements engineering, which will allow the

capture of formal specifications and subsequently produce an executable

representation of the specification, suitable for use as a rapid prototype within an

animation system. The project should make a contribution to knowledge in terms

of addressing the problems association with the transformation of non-executable

specifications.

This is to be achieved by a number of objectives as outlined below:

• Definition of a process model for requirements engineering, which integrates the

proposed toolset.

• Definition and implementation of a computer-based tool which can be used to capture

and store specifications efficiently in a formal notation.

• Definition and implementation of an analysis system for checking the internal

consistency and correctness of the specification which is captured.

• Definition and implementation of a computer-based mechanism to automate (as far as

is possible) the transformation of the captured specification into a procedural or

executable representation, suitable for use as a rapid prototype in an animation

system for the purposes of validating the captured specification by execution.

• Testing and evaluation of what has been achieved including comparison with other

computer-based requirements engineering tools, and demonstration of the efficacy of

the system developed through practical application in an animation environment.

The tool that has been developed to meet these objectives is known as TranZit. It is the

research and development of the TranZit tool that forms the basis of the work presented

34

in this thesis. TranZit is designed to integrate with an animation environment termed

ZAL, which has been developed as part of a parallel research programme. Together

these tools form the key components of an integrated requirements engineering

environment termed the REALIZE Toolset.

35

1.3.1 The Project Plan

The achievement of the project objectives is dictated by the following work plan, which

was agreed with the project supervisors at the outset of the project.

1) Review the current literature to gain knowledge in the field o f Requirements

Engineering.

2) Review current Requirements Engineering Toolsets, with a view to determining the

state-of-the-art, and the advantages that the TranZit tool can bring to this field o f

research.

3) Research and develop a Requirements Engineering Process which will aid in the

process o f specification verification, upon which to base the toolset.

4) Research and develop the Windows-based TranZit editor and specification capture

system based on the Z notation.

5) Sub-system Test, Review and Refine.

6) Research and develop the TranZit Analyser Subsystem (TAS) involving an

integrated syntax and type checker fo r the Z notation.

7) Sub-system Test, Review and Refine.

8) Release the TranZit system for user acceptance testing and peiform early-life

monitoring.

9) Review the possibilities fo r automated transformation o f the Z notation into a

procedural representation. Liase with the development o f the ZAL language to

define an executable subset o f Z, and associated ZAL grammar.

10) Research and develop the TranZit Transformation Engine (TTE), with the objective

o f automating the transformation o f a captured Z notation directly to an executable

representation in the ZAL language.

11) Sub-system Test, Review and Refine.

12) Integration test TranZit with the ZAL animation environment

13) Generate results by exposing the system for user acceptance testing.

14)Review, define possibilities for future work and draw conclusions.

36

1.4 Thesis Structure

The remainder of this thesis reports on the research, development and critical evaluation

of the TranZit tool.

Chapter two concentrates on putting in place the required background knowledge

concerning requirements engineering and formal methods, in particular the Z notation.

In Chapter three, a taxonomy of requirements engineering tools is developed, which

leads into the development of a set of product requirements for an automated tool, based

on analysis of the activities within the requirements engineering task. The chapter

concludes by defining a requirements engineering validation process into which the

TranZit tool is to be integrated. This process is central to developing a foundation for

using the TranZit tool within an integrated animation environment, in order to solve real-

world problems.

In Chapter 4 the realisation of the TranZit tool is explored with a view to understanding

the design and development of the TranZit editor and analyser subsystem (TAS).

In Chapter 5, the realisation process continues with a discussion of the design and

development of the TranZit transformation system, and in particular the approach taken

by TranZit in addressing the transformation of non-executable clauses in the Z notation.

In Chapter 6, the testing and evaluation of the TranZit system are discussed. This chapter

begins by identifying the software test strategies employed to ensure the quality of the

system, before quantifying the usability of the system as perceived by the users. A

comparative evaluation of TranZit with other requirements engineering tools is then

presented in order to identify the contribution made by the TranZit tool to the

requirements engineering task. Finally, the chapter concludes by describing two detailed

case studies, which highlight the use of TranZit as an integrated component of a practical

animation environment.

37

Finally, in chapter 7 general results and conclusions are discussed which identify the

achievements of the research programme against the original project objectives, the

possibilities for future research and general conclusions concerning the application of

animation and formal methods in requirements engineering.

38

2. Requirements Engineering and Formal Specification

Many systems design methodologies have been developed in recent years to assist in

structuring the tasks involved in software engineering, by identifying the processes and

information flows involved at each phase. However, these methodologies do not really

address the issue that systems continue to be delivered late, run over budget and fail to

meet customer requirements. Indeed, in his paper, Robinson (1994) states that as many

as 50% of information system projects may still be considered to be failures due to

inadequate specification of requirements.

Whilst it is widely accepted that all requirements should be fully defined and agreed

before design begins, what are mechanisms required to achieve this? Indeed, what are the

goals of the requirements analysis phase, and how do we know when the phase has been

successfully completed?

To answer these questions, this chapter explores the background to requirements

engineering, formal methods and specification validation, in order to understand the

foundation upon which the subsequent project work is based.

2.1 What is a Requirement?

The first question to consider is what is a requirement? IEEE standard 610-12 (Dorfman

and Thayer, 1990) defines a requirement as:

1. A condition or capacity needed by a user to solve a problem or achieve an objective

2. A condition or capability which must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed

documents.

3. A documented representation o f a condition or capability as in 1 or 2.

Pohl (1993) in his paper ‘The Three Dimensions of Requirements Engineering’ provides

a good definition of requirements engineering as:

39

“Requirements Engineering can be defined as the systematic process o f developing

requirements through an iterative co-operative process o f analysing the problem,

documenting the resulting observations in a variety o f presentation formats, and

checking the accuracy o f the understanding gained. ”

As Macaulay (1996) points out, Pohl’s definition is important because each part of the

definition leads to a number of questions:

"... the systematic process o f developing requirements . . .”

• How can we define a systematic process when there are so many unknown factors at

the beginning?

"... through an iterative, co-operative process o f analysing the problem . . .”

• How do we know when analysis is complete and all the requirements have been

gathered?

• The term co-operative refers to co-operation between people. Who should be

involved in the process? How will they communicate with each other? How will they

reach agreement on the process?

“ ... documenting the resulting observations in a variety o f representation form ats ... ”

• What representation formats should be used and how should the results be

documented?

• What standards and which notations should be adopted?

"... checking the accuracy o f the understanding gained . . .”

• How will we measure the accuracy of understanding and hence know when the

checking process is finished?

40

• Will everyone involved in the requirements engineering process have the same

understanding?

These are important issues to understand and must be addressed by any method

developed to assist in the requirements engineering task.

2.1.1 Requirements Engineering Methods

Dorfman (1997) suggests that Requirements Engineering methods may be roughly

divided into four basic categories as shown in Figure 2-1:

System
Requirements

Process
Oriented

Object
Oriented

Data
Oriented

Control
Oriented

Figure 2-1: Categories of Requirements Engineering Methods

The methods are described as follows:

• Process Oriented: The primary view of the system is that it takes some form of input

and produces some form of output as a consequence. The requirements engineering

task focuses on identifying these transformations. Structured Analysis (Ross and

Schoman, 1977), and model-based formal specification methods using VDM (Jones,

1990) and Z (Spivey, 1992) are good examples in this category.

41

• Data Oriented. The system is viewed as consisting of state-dependent data structures.

The requirements engineering task focuses on identifying the data components which

make up the system. Entity-Relationship Modelling (Reilly, 1997) and JSD (Jackson,

1983) are good examples in this category.

• Control Oriented. The requirements engineering task focuses on identifying the

system control mechanisms, such as process synchronisation, activation and

concurrency. Such considerations are important in the specification of real-time

control systems such as those required for avionics applications. Methods such as the

real-time extensions to SA (Ward and Mellor, 1985) are important examples.

• Object Oriented. The requirements engineering task focuses on the classes of objects

which constitute the system and the relationships between them. Formal methods

approaches using VDM++, Z++ and languages such as object-Z are good examples.

These are well documented by Lano (1995).

As Dorfman himself points out, this categorisation should not be taken as absolute.

Rather, most requirements engineering methods take ideas from all categories, but one

view is mainly paramount.

However, in common with all these approaches, the requirements engineering task can

be considered as the process of constructing a model of the problem domain, and

populating this model with functional, organisational, social and economic factors

elicited from the environment into which the final system is to be delivered. Hence the

modelling process needs to consider much more than the simple technological aspects of

the problem.

Again, the IEEE (1984) guidelines make explicit the difference between the model upon

which the specification is based, and the model upon which the application software is

built, which is likely to be purely technologically based. Hence the model chosen for the

requirements engineering process must possess specialist characteristics which enable it

to capture the diversity of information presented during requirements elicitation.

According to Verheijen and Van Bekkum (1982) these characteristics should include:

42

• A high level o f abstraction: allowing the users’ view of the system concepts to be

captured directly.

• Human Readability: The language in which the model is presented will be used for

validating the contents of the specification with the user. User understanding of the

specification is therefore of prime concern.

• Precision: The language in which the model is presented must be unambiguous and

ideally allow formal checking of consistency.

• Specification Completeness: The model language must be flexible enough to capture

all aspects of the specification, not simply functional aspects.

• Mapping to later Development Phases: The model will be an input to the analysis and

design phases to follow. There should therefore be an efficient mapping to the

methodologies and procedures to be adopted in these lifecycle phases.

Yet how is the information required to build the model of requirements to be gathered,

and what activities constitute the requirements engineering task?

2.1.2 The Activities within Requirement Engineering

In terms of activity, Davis (1993) describes the two main events that occur during the

requirements engineering process as problem analysis and product description.

Problem analysis involves information gathering using techniques such as interviewing,

observation and questionnaires in order to understand the problem domain from the

viewpoints of the users and the constraints of the current system (if one exists). Product

Description is the general process of correlating and organising this information into a

description of the expected external behaviour of the product. It is recognised that these

processes are not completely independent and that there may be several iterations

involved in each phase

Most importantly, the requirements engineering process must consider the complete

environment into which the system is being delivered, not simply technological issues. It

43

therefore follows that whatever process is to be used to capture such requirements, it too

must be based specifically on the particular environment to be analysed.

This is especially relevant where a system is to be developed to meet a particular

organisational need (e.g. a payroll system), as the requirements will be heavily influenced

by the constraints of the work practises employed by the user company.

2.1.3 Factors Affecting the Requirement Engineering Task

The requirements engineering task is also heavily influenced by the motivation for

introducing the new system.

For example, the requirements engineering task involved in developing a specification for

a new, innovative product in the marketplace is likely to be very different to that

employed to define the requirements for modifications to a legacy system already in

widespread use.

In the first case, likely techniques used might include customer interviews, surveys and

group meetings, to try to elicit as many different views on requirements as possible.

These views will then be sorted, prioritised and amalgamated by the developing

organisation, to produce a specification of requirements for a product which meets as

many o f the requirements as possible within cost and time constraints. This means that a

view is taken on the merits of each requirement, which are then prioritised according to

the value that they add to the final product. Thus in this case, the requirements

engineering task inherently includes the idea that not all requirements will be met by the

final system.

In the case of a legacy system, rather than be as open-minded as possible, the initial

approach might be to interview everyone who works with specific components of the

current system in order to build a model from which to develop new requirements. This

model then forms the foundation of the improvements required to the system. The

difference is that in this case, the user is likely to have a much clearer idea of what

44

benefits are expected to be achieved, and the requirements engineering task must attempt

to address all the users’ concerns with the present system.

2.2 A General Approach to Requirements Engineering

Some progress has been made towards generalised processes and methods for the

requirements engineering task. Good examples are the RAISE project (George and

Prehn, 1992), the RACE study (Bustard, 1994), the Cleanroom methodology (Mills et

al., 1987) and meta-methods for generic requirements engineering process models

(Rolland and Plihon, 1996). However, it is generally accepted that it is very difficult to

define a process that is effective in all situations. This is based on the problem that the

process which is undertaken by the requirements engineer will be dictated by a number of

variables including:

• The form or emphasis of the original project inception (e.g. whether the requirements

are for a market driven commercial product, a technology driven project, a service

driven project aimed at the needs of people or organisations, or a project where the

quality of the system dictates the physical safety or well-being of the users)

• The type of system required (whether it is an extension to an existing system, a new

system or a replacement system)

• The organisational, logistical and management ethos of the users’ environment (e.g.

the level of emphasis placed on budgets, resources, working conditions, staff morale,

the presence of an open or closed management hierarchy and the willingness to

change in the organisation)

These factors have established the view that the requirements engineering task is

situation-oriented, in that the techniques and processes adopted must be tailored to the

particular environment into which the system is to be placed. Since there are a huge

diversity of problem situations, this in itself is one of the reasons why the task is seen as a

difficult to define in generic terms.

45

However, whilst it is difficult to define a generic process which fits all problem domains,

it is possible to define a. framework of activities in the requirements engineering task as

shown in Figure 2-2:

Project Inception

Problem Domain
A nalysis

MMiMMiMHtHHMiiHMHIHHMtHHilH

System M odelling

Information
Correlation and

resolution o f conflicts

Validation o f the
external behaviour

with the User

Production o f the
Specification o f
Requirem ents

document

Figure 2-2: Requirements Engineering Process Framework

As pointed out by Macaulay (1996), there are good reasons to want to define a general

approach to the requirements engineering task as highlighted by:

• The need to control projects and produce standardised documentation (Glasson,

1984), and

• The need to improve the process by measuring its effectiveness (Wasserman et al.,

1983)

46

Most importantly, as far as this project is concerned, the development of a standard

approach to requirements engineering makes it possible to consider generalised,

automated computer-based tools, to assist in the process and increase its efficiency.

As already discussed, it is generally accepted that it is not possible to define with any

consistency, a prescriptive process for requirements engineering as can be achieved with

the software lifecycle for example. However it is possible to define the general

characteristics which any method or process for requirements engineering should

promote. Macauley (1996) summarises these characteristics of the requirements

engineering process as follows:

• Requirements Engineering Techniques: The process must support a number of

systematic techniques for problem analysis, modelling, documentation, quality and

automated tools support.

• Human Communication: Amongst others, the process must adopt techniques for

interviewing users, design of questionnaires, observing users, listening skills and

supporting the users’ view in model reviews. It should also clearly define the roles

required in the process and the communication interfaces between them.

• Knowledge Development: The process should allow development of visions of design

proposals and technological options, support knowledge of the current organisation

and likely future changes.

• Documentation Techniques: Amongst others, the process should encourage the

writing of unambiguous requirements, complete specifications, verifiable

requirements, consistent requirements and support requirements traceability. In

addition, it should encourage the development of models with a high level of

abstraction, human readability, precision, completeness and support a mapping to a

design technique.

In addition these areas must be supported by Management Techniques which focus on

defining factors required to achieve the aims of the requirements engineering process,

defining when the process is complete and managing the individuals involved.

47

2.2.1 Roles and Communication in Requirements Engineering

In general it is the human aspect of the requirements engineering task which introduces

the most problems, and not surprisingly many requirements engineering techniques focus

heavily on the roles of the individuals involved and the communication which takes place

between them. As suggested by Macaulay (1996), four groups of techniques have

emerged involving different levels of communication and user involvement:

• Techniques Promoting User Consultation

• Techniques Promoting User Participation

• Techniques Promoting Stakeholder Participation

• Techniques Promoting Stakeholder Co-operation

2.2.2 Techniques Promoting User Consultation

Perhaps the most traditional techniques for requirements engineering take the view that

the requirements engineer is in control of the process, and that users are consulted to

elicit detailed requirements. One of the most widely accepted methodologies for

gathering and analysing requirements in this way is Structured Analysis. Structured

Analysis has evolved over many years mainly due to the contributions by a number of

researchers including Ross’ SADT Model (Ross, 1977), DeMarco’s Structured Analysis

(DeMarco, 1978), McMenamin and Palmer’s (1984) bottom-up approach to DFD’s,

Yourdon Structured Analysis (Yourdon, 1989) and SSADM (Downs e ta i, 1988).

The approach advocates the use of Data Flow Diagrams (DFD’s), in order to capture the

flow of information between system components and thereby define the system

interactions. Structured analysis defines a stepwise refinement process, which eventually

forms a high-level logical design specification for the system, and as such it provides a

useful method for partitioning the system requirements.

In recent years, Object Oriented Analysis (OOA) techniques have gained in popularity,

supported by a number of methodologies and tools. Coad and Yourdon (1991) have

48

proposed a stepwise method for creating an object model of requirements and more

recently requirements elicitation and analysis techniques such as OMT have been

proposed by Rumbaugh et al. (1991).

Proponents of OOA techniques argue that the approach is simple to understand as it

deals in real world entities or objects which in turn have attributes and behaviour.

Objects are organised into Classes, which embody defined methods and data elements

accessible to other objects by contractual interfaces. It is argued that OOA and OOD

(object-oriented design) provide a framework for component-oriented models, in which

data hiding is primary thereby allowing objects to be re-used. This is because, as the

system evolves its functions tend to change but its objects in general do not (Davis,

1993).

OOA approaches are often referred to as hard analysis, process or function-oriented as

they aim to improve the communication between the requirements engineer and the

design team, rather than promoting the involvement of the user in the decision making

process. Hence the user is consulted rather than being central to the requirements

engineering process. As such, if the problem domain is well defined and the deliverables

at each stage of the process are well understood, these can be very effective techniques.

This view is supported by Flynn (1992) who proposes that because OOA is based on a

real-world view of the system, a specification consisting of objects “can be agreed upon

more readily by all involved in the development process.

Indeed, SA and OOA are probably the most widely used analysis techniques, and have

been implemented in a number of computer-based tools, for example Cadre’s

TEAMWORK tool (Cadre Technologies Inc, 1990). However, the depth to which the

requirements engineer can understand and encapsulate the problem domain heavily

influences the success of 0 0 approaches.

A number of formal specification techniques for requirements capture such as VDM++

and Z++, which are based on OOA have been proposed by Lano (1995). In addition,

49

Semmens et al. (1992) and Semmens and Allen (1991, 1992) have reported results

toward the integration of Yourdon structured analysis and the Z notation.

2.2.3 Techniques Promoting User Participation

Perhaps the earliest requirements engineering technique involving user participation was

ETHICS (Effective Technical and Human Implementation of Computer-based Systems),

a methodology originally proposed by Mumford and Weir (1979) and developed over

many years since. It is a so-called participatory approach as defined by Avison and

Wood-Harper (1991) in which the users of the system participate in its development,

thereby increasing the chances of project success. The idea behind ETHICS is from a

socio-technical viewpoint, which postulates that for the system to be effective the

technology employed must fit closely with the social and organisational factors

influencing the user. The methodology emphasises the need to ensure that improved

quality of work and job satisfaction are a key concern in defining the required system.

Mumford argues this case by stating that the cause of many project failures is that the

requirements process is driven purely by technical and economic concerns. As

highlighted by Avison and Fitzgerald (1988), the socio-technical approach is

characterised by Mumford as:

“one which recognises the interaction o f technology and people and produces work

systems which are both technically efficient and have social characteristics which lead

to high job satisfaction ”,

Another important contribution in this area is Soft Systems methodology (SSM)

(Checkland, 1981), which evolved almost as a rebellion against the clinical, scientific or

hard approach to systems analysis proposed by many in the early 1980’s. Hard analysis is

essentially goal-oriented, and aimed at defining an approach to achieve a given physical

objective in the most efficient manner. In contrast, Soft Analysis assumes that there is

more to the analysis than simply satisfying some arbitrary physical goal, and concentrates

more on the real-world environment in which the system operates. The people and

50

objects with which the system will interact therefore heavily influence the approach. The

system is also said to have a mission to improve the problem domain rather than to meet

some arbitrary defined goal.

One of the main advantages of SSM is that it can be applied to a wide variety of

problems, as the rich pictures technique is embodies is abstract enough to address almost

any real-world situation. Thus it is more amenable to situations where the problem is ill

defined or fuzzy, which is a recurring theme in many requirements engineering problems.

Rich pictures are the main communication interface between the user and the

requirements engineer. They will usually show people, controlling factors, conflicts and

concerns, sources and sinks of information and relationships, which are usually captured

in the terminology of the user. These pictures form a Weltanschauung or world-view

from which the requirements engineer extracts problem themes. These themes are then

used to define the overall requirements of the new system, called the root definitions.

The root definitions, together with selection guidelines (termed CATWOE criteria) are

then used to develop conceptual models of the system. These models are not intended as

a direct representation of what the system currently does or what it ought to do, rather

they are “epistemological devices serving coherent discussion” (Checkland, 1995). The

models are then validated to ensure they represent a viable human activity system, and

are then compared with what currently happens in the real world. From this comparison

the requirements engineer then makes recommendations concerning change, and selects

from these recommendations on the basis or feasibility and desirability. The final stage

then suggests actions to address these recommendations.

The advantage of SSM is that it is a truly flexible approach and can be applied to many

different problems. However, in terms of a process it suffers from several problems:

Firstly it is difficult to define the skills required for the requirements engineer to use this

approach and thereby train such a person. Secondly, it is unclear at which stage the

requirements engineering process is completed, as there are no clear deliverables.

Proponents argue that this is a good thing, as there are no pre-conceived solutions and

the approach forces the requirements engineer to intimately understand the nature of the

system. It has therefore been argued (Avison and Fitzgerald, 1988) that SSM is a good

51

front-end to the requirements engineering process, before moving into a hard

methodology such as SSADM. Similarly, (Bustard and Dobbin, 1996) have proposed an

approach to requirements engineering based on the integration of SSM and OOA, as a

two-stage process combining the identification of business improvement with computer-

oriented analysis.

Other so-called participatory design (PD) or user-centred design (UCD) techniques in

which there is a strong user involvement in Requirements Analysis and Systems Design

have been proposed by Floyd (Floyd et al. 1989), Bhabuta (1989) and Greenbaum and

Kyng (1991).

2.2.4 Techniques Promoting Stakeholder Participation

Techniques in this category extend the notion of the customer beyond the concept of a

simple end-user, to the concept of all those individuals who have a stake in the success of

the delivered system. This involves those people directly responsible for the development

of the system, those with a financial risk, those responsible for managing the change to

the new system (e.g. installers, maintainers, trainers and support staff), together with

those who will actually use the system. Such individuals are grouped under the generic

term stakeholders.

As identified by Sommerville and Sawyer (1997), the aim of techniques in this category

is to promote a shared understanding of the system being specified. If you do not

consider everyone who is likely to be affected by the introduction of the system,

important requirements are likely to be missed. In addition, consulting all stakeholders

makes them feel part of the requirements elicitation process, and they are then more

likely to be sympathetic to the introduction of the new system and hence volunteer more

information about their requirements.

In the late 1980’s and early 1990’s a number of researchers (Hsia and Yaung 1988,

Holbrook, 1990) introduced the concept of scenarios as an aid to promoting shared

understanding of the system and validating stakeholder requirements. Scenarios are

52

intended to capture the required system environment as perceived by the stakeholders

using elicitation, formalisation and prototyping techniques.

A scenario is a collection of partially ordered events, which define transitions from one

system state to another. A scenario is initiated or invoked by an entity called an Agent,

and each scenario defines an invariant condition, which must hold true throughout the

scenario. By means of simulation and user interface techniques, scenarios allow a rapid

prototype of the required system to be built, whose operation can then be validated by

demonstrating the prototype to the users.

Several tools and methods have been constructed based on this approach including a

Screen-based, Scenario Generator (Hsai and Yaung, 1988), and a methodology termed

Scenario Based Requirements Elicitation (SBRE) proposed by Holbrook (1990).

2.2.5 Techniques Promoting Stakeholder Co-operation

If it is agreed that the main role of requirements engineering is to maximise customer

satisfaction with the delivered product, then the requirements engineering process can be

considered part of an on-going quality function. This is the approach advocated by

Zultner (1993), Brown (1991), Hauser and Clausing (1988) and others, where the

emphasis is placed on the voice o f the customer or stakeholder.

In these cases, requirements engineering techniques focus on providing a framework for

discussion and decision making, with the emphasis on mapping customer requirements to

product characteristics. Perhaps the most important technique in this category is Quality

Function Deployment (QFD). QFD was developed around twenty five years ago, and

originated at the Mitsubishi Kobe shipyard. Since then, other companies such as Toyota

and AT&T (Brown, 1991) have developed it in numerous ways and have applied it to

many markets including software development, consumer electronics, construction

equipment and clothing manufacturing.

As defined by Brown (1991), QFD focuses on four strategic concepts:

53

• Preservation o f the voice o f the customer. QFD ensures that the customer needs are

not translated or distorted in the development process.

• Cross-Functional Realisation Teams. QFD ensures that all areas of the business are

included in the process and are given opportunity to air their views.

• Concurrent Engineering. QFD allows for those activities which would traditionally

begin later in the development cycle to begin planning earlier, thus shortening the

time-to-market.

• Graphical Presentation o f Information. QFD focuses on a specific graphical tool

termed the house o f quality (HOQ) matrix (named for its apparent shape), which is a

representation of the product which defines links to explicit customer needs and

product realisation decisions.

Whilst the QFD method itself will not be described here, it is interesting to note some

points which are explicit in QFD and are not highlighted in other requirements

engineering processes.

Firstly, QFD focuses very much on time-to-market by recognising that the traditional

approach to product development is highly sequential, involving a learning curve at each

boundary. For example, the designers will need to learn about the specification of

requirements when it is passed on from the requirements engineer, before work can

begin. QFD highlights the need for all parties involved in the development process to be

involved at the very start of the requirements engineering process.

Secondly, and perhaps paradoxically, the QFD approach advocates that not all

requirements are equally important. It is argued that in traditional approaches, all

requirements are treated equally and resources are stretched to try to address them alL In

this way the same amount of effort may go into developing a less significant requirement,

than an important one, and in this way the quality of the overall product is diluted.

Instead emphasis is placed on those requirements which will maximise customer

satisfaction.

These ideas are derived from Kano’s model (Kano et al., 1984) shown in Figure 2-3,

which suggest that there are three types of requirements to attend:

54

Satisfaction

Exciting
Requirements Normal

Requirements

Don’t Fulfill Expectations Fulfill Expectations

Expected
Requirements

Dissatisfaction

Figure 2-3: Kano's Model of Customer Requirements

• Normal Requirements: The difficulty with some requirements engineering processes is

that they only ask the customer what they want. The easiest of these requirements to

uncover are normal requirements. These requirements satisfy (or dissatisfy) in direct

proportion to their presence (or absence) in the delivered system. An example of this

type of requirement is the speed at which the system produces results; the faster (or

slower) it is, the better the customer likes (or dislikes) the system.

• Expected Requirements: In order to avoid disappointing customers the system must

deliver on some basic expectations which in many cases are not explicitly stated.

Many customers find it difficult to articulate these requirements. Whilst their presence

meets expectations, they do not themselves generate satisfaction. However, their

absence is very dissatisfying to the customers. An example might be that the system

requires some form of on-line help. This is so obvious for most systems that

customers may assume it without explicitly stating the requirement. Eliciting and

meeting the expected requirements is a pre-requisite fo r successful requirements

engineering.

• Exciting Requirements: Perhaps the most difficult requirements to uncover are those

that are beyond the customers expectations, yet are highly satisfying when delivered.

The absence of these requirements does not generate dissatisfaction because they are

not expected, however their presence generates deep satisfaction in the customer, and

excites them about the system. It is suggested by Zultner (1991) that “a truly

successful system delivers at least a few wows!”.

55

QFD has become popular in industrial applications as a requirements engineering

approach, and several successes are documented (Brown, 1991). Advocates of QFD

claim that understanding of the customer needs is improved and importantly, more of the

customer’s critical needs are met. Requirements initially missed are quickly uncovered,

and enhanced communication and parallelism improve the speed of development of the

product. Perhaps, most importantly, users of QFD claim that credibility with customers is

enhanced by use of the process, thereby increasing the likelihood of future development

contracts.

2.2.6 The Specification of Requirements

Whichever of the approaches described above is adopted, the objective of the

requirements engineering process is the production of a document termed the

Specification o f Requirements. In general, it is not defined how this document is

presented, however according to the IEEE (1993) a ‘good’ software requirements

specification should contain requirements which are:

• Correct (the customer or user determines that the specification reflects their actual

needs)

• Unambiguous (each requirements has one interpretation)

• Complete (all significant requirements, responses and terms are included)

• Verifiable (there exists some finite, cost-effective process which can check that each

requirement is satisfied in the final product).

• Consistent (no subset of the requirements defined are in conflict)

• Modifiable (structure and style are such that changes can be made easily, completely

and consistently).

• Ranked in importance or stability.

• Traceable (the origin of the requirement is clear, and can be identified in any

subsequent development or documentation).

These objectives have some far-reaching implications for the production of the

specification. For example, the term ‘unambiguous’ implies that the document is

presented in some format other than natural language. By definition, natural language is

56

open to interpretation by the reader since it has no formal semantics. The term ‘correct’

implies that there is some way in which the requirements can be tested for understanding

before the document is considered complete. The term ‘modifiable’ again places a

constraint on the format of the document to ensure that it can be maintained with

minimal effort throughout its lifetime. There is also the implication that some form of

consistency checking is built into the production of the specification. Hence it can be

seen that the production of such a specification document is far from simple for any non­

trivial problem.

The question is therefore, what mechanisms should be employed in the preparation of the

specification of requirements to achieve these objectives?

Many researchers, too numerous to mention, have suggested was of achieving these

objectives, however it is generally accepted that the process leading to the specification

of requirements can be divided into two parts (Davis, 1981). Firstly, the process of

eliciting (Goguen and Linde, 1993) and capturing an unambiguous statement of

requirements from the user, and secondly the process of validating that the set of

requirements elicited represents a complete, consistent and correct representation of

what the user requires.

One approach suggested in addressing this problem is to capture the requirements

informally, and then transform the requirements definition into some formal notation

based on discrete mathematics. Due to its mathematical and logical nature, such an

approach emphasises precision and lack of ambiguity in the specification produced. The

application of such techniques is known by the term formal methods.

2.3 Approaches Based on Formal Methods

Formal methods are perhaps becoming one of the most important fields of research in

computer science. The last two decades have certainly seen an increase in the use of

formal methods within the construction of software systems, but the rate and scope of

their use in industrial application is still unclear. However, Vienneau (1997) asserts that

57

formal methods are becoming increasingly popular and are dramatically altering the way

in which software is developed. As a note of caution, he himself admits that most

organisations still have little experience of their use, and those which have are likely to

have an SEI process maturity framework rating of three or above.

Leveson (1990), provides a definition of Formal methods as:

“a broad view o f formal methods includes all application o f (primarily) discrete

mathematics to software engineering problems. This application usually involves

modelling and analysis where the models and analysis procedures are defined by an

underlying, mathematically precise foundation.”

The term Formal Methods essentially comprises two components: Formal Specification

and Verified Design (Jones, 1990). The methodology underlying these terms is to first

precisely specify the behaviour of the system in a formal notation, and then prove that the

subsequent implementation is a true reflection of the original specification.

The early uses of formal methods concentrated on proving that an implemented software

component met its specification, be it formal or informal In general this is a non-trivial

problem and is the subject of much research work in its own right, with early

contributions from Hoare (1969) and Morgan et al. (1988). However, more recently

attention has turned to the use of formal methods for the development of formal

specifications, rather than formal design verification (Hall 1990, Place et al., 1990).

Inherent in the use of formal methods for the purposes of Formal Specification is the

primacy of declarative over imperative forms of thinking, in that the mathematics deals

with notions of what the system should do, rather than specifying a prescriptive approach

of how it should do it. This view does not suggest that formal specifications are any less

precise. On the contrary, the formal specification can be viewed as a set of formulae in

the chosen formal language, which describe a rigorous model of the desired behaviour of

the system. Most importantly, the formal specification does not commit to details of how

the model should be implemented. It is this abstraction from implementation detail whilst

preserving essential properties of the system, which is the power behind the approach.

58

Several well-documented formal specification languages and notations have been

developed over the years including:

• The Z Notation (Spivey, 1992)

• Communicating Sequential Processes (CSP), (Hoare, 1985)

• The Vienna Development Method (Jones, 1990)

• LARCH (Guttag and Homing, 1993)

These specification languages can be classified (Wing, 1990) by their semantic domains

(set of symbols and grammatical rules) as:

• Abstract Data Type Specification Languages (ADT)

• Process Specification Languages

• Programming Languages.

An ADT defines the formal properties of a data type without defining implementation

features (Vienneau, 1991), examples being Z, VDM and LARCH. Process Specification

Languages (PSL) specify state machines, event sequences, streams and partial orders,

CSP being the best known PSL.

It is perhaps interesting to note at this stage that not all member of the computer science

community share this faith in the application of formal methods to software development.

A case in point is the view advocated by Abelson and Sussman (1985),

" The computer revolution is a revolution in the way we think and in the way we express

what we think. The essence o f this change is the structure o f knowledge from an

imperative point o f view, as opposed to the more declarative view taken by classical

mathematical subjects. Mathematics provides a framework for dealing precisely with

notions o f "what is". Computation provides a framework for dealing precisely with

notions o f "how to".

59

However, it cannot be ignored that the tide of opinion is in favour of declarative methods

of computing, as indicated by the plethora of formal methods notations and tools which

have been developed over the years (Eisenbach 1987, Bowen and Hinchey, 1995).

2.3.1 Formal Specification Techniques

As highlighted above, Formal specification languages and notations have been researched

over a number of years, and have grown out of the fields of program verification and

program semantics. However, two important distinctions can be drawn in the way that

they are applied (Avizienis and Wu, 1990).

Firstly, Operational techniques have been described as constructive or model-oriented

(Wing, 1990). A formal specification based on operational techniques describes the

desired system directly by providing a model of the system. Typically, this model uses

abstract mathematical structures such as sets, relations and functions. In contrast,

definitional techniques are described as property-oriented or declarative (Place 1990),

and embody algebraic and axiomatic techniques in which the properties of the desired

system are restricted to equations in certain algebras.

An early example of an operational, model-based approach is the Z notation, which was

initially introduced by J.R Abrial in his paper “Data Semantics” in 1974. Since then the

Z notation has been considerably expanded and enhanced by several researchers since the

early 1980’s, particular by the Programming Research Group at Oxford University. The

Vienna Development Method or VDM is another example of a model-based approach,

and was also developed in the early 1980’s by IBM and later by Cliff Jones at the

University of Manchester, This work resulted in the development of the Mural Toolset

for the application of VDM (Ritchie, 1993).

Both Z and VDM have been the subject of much subsequent research including

approaches to modularising Z specifications (Sampaio and Meria, 1990), and object-

based extensions including HOOD (Iachini and Giovanni, 1990) and the B Abstract

Machine Notation (Haughton and Lano, 1995). Since Z is a model-based approach it has

60

also been suggested that this naturally lends itself to object-orientation. Several object-

oriented extensions to Z have been proposed including Object-Z (Carrington et al.,

1990), Z++ (Lano, 1991) originating from the ESPRIT REDO project, ZEST (Cusack,

1991), MooZ (Meira and Cavalcanti, 1991) and OOZE (Alencar and Goguen, 1991).

VDM has also been the subject of object-oriented extensions culminating in the

production of the VDM++ language (Durr et al., 1994). This includes concepts from the

original VDM (Jones, 1990), SmallTalk (Goldberg and Robson, 1983), the DRAGOON

extensions to Ada (Atkinson et al., 1991) and real-time extensions from Hayes (Hayes

and Mahoney, 1992). In addition SmallVDM has also been developed (Lano and

Haughton, 1993).

Whilst object-orientation is more in keeping with current approaches to system

development, as Lano (1995) points out, several of these extensions suffer from a lack of

formal semantics. This makes it difficult to reason about specifications written using

these languages (however formal semantics and reasoning systems have been provided
4

for Object-Z, Z++ and MooZ).

Alternative definitional approaches to formalisation include the use of Algebraic

Notations such as OBJ (Goguen and Winkler, 1988), PLUSS and FOOPS (Goguen and

Wolfrum, 1990). These use equational logic to represent implicit and abstract

requirements within the system. Whilst they are easier to convert to executable forms

(because of their limited language semantics), they tend to lack expressive capacity and

thereby produce very algorithmic specifications akin to functional programming styles.

The key problem addressed by the use of formal specification languages in the

requirements engineering process, is that of ensuring that requirements are unambiguous,

complete and consistent. The main argument is that requirements captured in natural

language or diagrammatic form are open to ambiguity and cannot express the semantic

details of the required system with the same precision as a formally defined notation.

These formally defined notations utilise mathematical concepts in order to define

precisely the properties and constraints of the system to be designed. The implication is

that if system requirements are captured in a natural language, these will contain inherent

61

ambiguity and therefore are a possible source of error in the later implementation phases.

The aim of formal specification is to eliminate this possibility.

To assess the success of this goal, several researchers have assessed the applications of

formal specification techniques in commercial development projects. Documented

studies include:

• Formal specification and re-engineering of part of the CICS information system at

IBM using the Z Notation (Collins et al., 1988).

• Development of the floating point unit for the INMOS T800 transputer (May, 1990)

• Formal Specification and Test case generation for communication systems at British

Telecom using the ZEST Notation (Cusack and Wezeman, 1993).

As reported by Lano (1995), benefits claimed include a 9% reduction in costs for the

CICS system and a one-month reduction in time-to-market for the INMOS Transputer.

Hence, there is some evidence that the application of formal specification techniques can

lead to lower development costs since re-development and re-work is minimised, even

though analysis and specification costs may themselves increase.

2.3.2 The Z Notation

Perhaps the earliest and most widely known formal specification notation is the Z

notation, originally introduced by Jean-Raymond Abrial in 1974. Since then the notation

has been developed by the Programming Research Group at Oxford University, and has

now evolved to the point where it contains all the essential features necessary to address

a large variety of specification problems.

The Z notation is a model-based, mathematical approach based on set theory and first-

order predicate calculus, and includes a well-defined type system. Whilst the Z notation

is well documented (King et a l 1988, Spivey 1989, Diller 1990, Potter et a l 1991) the

definitive guide to the notation is that produced by Spivey (1992). More recently the Z

Base Standard (Brien and Nicholls, 1992) has been produced in an effort to increase the

62

level of communication and portability of Z specifications, and provide a basis for CAE

tools development.

A specification written in Z is :

" a mixture o f formal, mathematical statements and informal explanatory text. Both are

important: the formal part gives a precise description o f the system being specified,

whilst the informal text makes the document more readable and comprehensible, linking

the mathematics to the real world" (Potter et al., 1991).

The technique underlying Z is the use of declarative modelling without concern for

efficiency or ease of implementation. The specifier describes the system in Z using

operational and representational abstraction. That is, abstract mathematical structures

such as sets, relations, functions, sequences and bags, for example, are used to

characterise the desired behaviour of the system within logical predicates. These

predicates and associated declarations are organised into schemas, which are the basic

building blocks of a Z specification. A schema represents a logical specification unit,

making it possible to divide the specification into manageable pieces. The contents of a

schema should be self-explanatory without need to refer to other parts of the

specification. Z also includes a powerful schema calculus, making it possible to

construct new schemas by reference to others already defined. In addition, to aid

understanding, a Z specification will also include sections of narrative text describing the

purpose of the various components of the model it contains.

An extract from a simple Z specification defining a banking operation is shown in Figure

2-4. This extract demonstrates the use of mathematical objects to model elements of the

banking operation in a formal way. For example, customer ACCOUNTS are modelled as

a partial function which relates an account number from the given set ACCNOS, to the

amount of money in that particular account (modelled as an element of the set N). The

fact that a partial function has been chosen for this purpose imposes additional

mathematical formalism, for example each account number is related to at most one

amount of money. To define invariant conditions and operations using this model,

variables of the appropriate type are declared, and properties defined over them. It is

63

convenient to group related definitions into a single specification object termed a

Schema. For example, in the extract shown in Figure 2-4, the Bank schema defines the

invariant conditions that are to remain true in this particular banking operation.

[ACCNOS1

MONEY == N

/* define a representation of a Bank Account as a function

mapping an account number to an amount of money*/

ACCOUNTS == ACCNOS -+> MONEY

/* Model a queue of transactions as a sequence of Account

numbers */

QUEUE == seq ACCNOS

REPORT : := withdrawal Refused

/* The main Bank schema defines an account and a queue */

r Bank

a : ACCOUNTS

q : QUEUE

/* you can’t be in the queue if you don't have an account */

ran q Q dom a

/* your account must have some money in it */

V n : ACCNOS | n e dom a • a(n) > 0

/* You can't be in the queue more than once */

V i j : N | i e dom q A j e dom q • i * j => q(i) ^ q(j)

/* The queue is at most 10 accounts deep */

#q < 10

Figure 2-4: Example Z Specification

64

Z has been shown to be useful in specifying a wide variety of problem domains (Hayes,

1993), and has also applied to a number of industrial applications, perhaps the best

documented of these being the attempt to re-specify IBM Hursley's highly successful

Customer Information and Control System (CICS) described previously (Collins et al,

1988).

2.3.3 Formal Specification and Bridging the Communication Gap

It is widely accepted that the use of formal specification languages and notations can

help in eliminating ambiguity from the requirements engineering process and therefore

uncovers errors at a much earlier stage in the project definition. Inevitably, the

requirements engineering process is extended due to the inherent complexity associated

with the mathematical notations. However, the gain in terms of the reduction in the

amount of re-work and maintenance far outweighs the extra work at the front-end of the

development cycle.

Yet, in previous discussion we have made much of the need for requirements engineering

techniques to promote stakeholder participation and communication. If we analyse the

contribution of requirements engineering techniques based on formal methods, we find

that they are strong in the areas of process definition (having well defined semantics and

scope), but are weak in the area of human communication. In general this is due to the

highly mathematical notations involved, and the consequential specialist knowledge

required in interpreting them.

In turn this has led some commentators to propose that the mathematical content of

formal specifications prohibits effective communication during the requirements

engineering task. As highlighted by Saiedian (1997), this negative perception of the role

of mathematics in requirements engineering is unfortunate. In other disciplines, engineers

naturally turn to mathematics for assistance when large, complex problems arise.

However, many software engineers take the view that formal methods are for academic

interest only, and that real problems are too complex to be handled by mathematical

65

tools. Chemiavsky (1990) supports this view in a report released through the U.S. House

of Representatives Committee on Science, criticising inadequate education for software

engineers.

However, the lack of adequate education in formal methods for software engineers is

only one problem. More importantly, the formal specification forms a contract between

the developers and the Stakeholders of the required system. The Stakeholders are even

less likely to possess the necessary mathematical skills to validate that the specification is

indeed a true statement of the system requirements.

Hence, this problem presents us with a dichotomy: How is it possible to make use of the

obvious benefits of formal techniques in improving the quality of the system

specification, whilst at the same time bridging the communication problems which

accompany the use of a mathematical notation?

It is proposed that one solution to this problem is the use of Rapid Prototyping and

Animation o f Formal specifications for the purposes of validation by execution as

discussed in Chapter 1. However, to achieve this by the most efficient means requires

either that the specification itself supports direct execution within a computer system, or

that it can be transformed into a representation capable of being executed in some

animation environment. This in turn has lead researchers to investigate the possibilities

for executable specifications.

2.3.4 Related Research into Executable Specifications

The use of formal methods allows us to verify that a particular implementation satisfies

some formal specification. However, the use of a formal methods approach does not in

itself validate that the system specification has met the perceived need. That is, the use

of formal specification does not provide a mechanism to prove that the specification

captures the user’s perception of the required system.

66

To achieve this goal it is suggested that rapid prototyping of the formal specification is

required to allow the user to explore the behaviour and properties of the specification

directly. The most efficient means of achieving this is by executing the specification

directly although, in the case of a formal specification, this in itself may present several

problems as discussed later. These problems arise since, depending upon the particular

formal language chosen a formal specification may contain non-computable clauses that

inhibit direct execution (Hayes and Jones, 1989).

In general, executable formal specifications bridge the gap between the traditional

approach to software prototyping and the application of formal methods. That is they

supply a direct relationship between the rapid prototype of the system and the formal

specification documentation.

As Fuchs (1992) describes, an executable formal specification can be regarded as an

abstract program which allows abstract requirements and designs to be formulated,

explored and validated at an early stage of software development. Using this approach

the system interaction with its environment can be demonstrated and observed,

preserving the link to the formal specification documentation. Indeed, in some cases, the

executable specification may form the only relevant document for all development

phases, such as the use of executable specifications within transformational approaches

(Berzins et al., 1993).

One of the earliest approaches advocating the use of formal specifications for the

construction of prototypes was that of Goguen and Meseguer (1982), who suggested the

use of the algebraic specification language OBJ, combined with a system of equational

interpretation. Since then, there have been several approaches proposed to execute

formal notations for the purposes of rapid prototyping. These approaches divide into

three broad categories:

• Approaches Using Declarative Programming Paradigms

• Proprietary Executable Specification languages and Code Generation Tools

• Environments to Support automatic prototyping of specifications

67

Firstly, the use of declarative programming paradigms (including functional and logic

programming), has been widely researched (Turner 1985, Henderson 1986, Kowalski

1985). Proponents argue that declarative programming techniques combine the clarity

required for a formal specification, with the ability to validate by execution. As such they

are ideal for rapidly prototyping a design as it is developed. Indeed, the prototype is also

effectively the final implementation since the languages used coincide.

A logical extension to this idea, investigated by several researchers is to provide a

translation from a model-based formal notation such as Z or VDM into a functional or

logical based programming language. In particular, Hekmatpour (1988) suggested

extensions to LISP to achieve this. In addition, Johnson and Sanders (1990) have

described the transformation of Z into functional implementations, O’Neill (1992) has

shown how the ML language can be used to prototype VDM specifications, and Sherrel

and Carver (1993) have researched the translation of Z into Haskell. In addition, Knott

and Krause (1992) have used program transformation systems to implement Z

specifications. The PROLOG language has also been extensively researched as a

prototyping language by the likes of Dick et al. (1990). Indeed, the starting point for this

project concerns the use of the LISP language and the provision of suitable extensions to

transform Z specifications into executable prototypes (Siddiqi et al. 1991, Morrey et al.

1992).

The second category of note embodies research into “proprietary” executable

specification languages designed specifically to embody executable semantics. In general,

these languages are either embedded in an existing programming language which in turn

provides the execution mechanism, or are translatable directly to a programming

language. Notable research in this area includes:

• the work of Henderson and Minkowitz (1985) in the development of the Me-too

language embedded in LISP

• the ASSPEGIQUE environment (Bidiot and Choppy, 1985) for the development of

large algebraic specifications

• the GIST specification language (Balzar, 1985), and

68

• the OBSCURE language (Lehmann and Loechx, 1987) which is intended as an

executable specification language independent of the specification method used.

There are also a number of systems capable of translating abstract data type

specifications into executable programs (Belkhouche and Urban 1986, Jalote 1987,

Bergstra et al. 1989). In addition, a number of results have been reported in the

development of C++ translators for Z++ (Lano, 1991) and VDM++ as part of the

AFRODITE ESPRIT project (Lano, 1995). Perhaps the most effective code-generation

tools based on formal methods currently in existence are those for the B Abstract

Machine Notation within the B Toolkit (B Core UK Limited, 1994). In addition the

RAISE toolkit provides C++ and ADA translators for the RSL notation (George and

Prehn, 1992).

The final area of research is that characterised as the development of environments for

automatic prototyping of specifications. The initial work for this project (Siddiqi et al.,

1991), was influenced by the work of Hekmatpour and Ince (1988), who developed the

EPROL language (based on VDM), to facilitate the execution of VDM specifications

using constructors implemented as extensions to LISP. Work allied to that presented

herein includes the automatic prototyping of Z (Doma and Nicholl, 1991), and VDM-SL

(Elmstrpm et al., 1994). Others, such as Valentine (1995) have focused on producing a

computational subset of Z, as in the Z— language.

2.4 Summary

In this chapter, the background to requirements engineering, formal specification and

executable specifications has been explored.

The case has been made for the use of formal specification techniques to ensure that the

specification of requirements is concise, precise and unambiguous. However, it has been

noted that the use of formal specification techniques introduce communication problems

as the user is unlikely to be able to validate that the specification as presented is indeed a

69

correct statement of the requirements of the desired system. This is due to the specialist

mathematical notation employed.

It has been proposed that rapid prototyping of the system specification may assist in this

process by allowing the user to explore the behaviour and properties of the formal

specification directly, thus validating the specification by execution. However, to

maximise the efficiency of the approach demands that such rapid prototypes be generated

directly from the original specification by some automated tool This in turn has led to

suggestions for executable specifications and animation environments, requiring that a

tool be able to produce an executable representation directly from the system

specification

However, in order to design an automated tool to achieve these objectives, it is first

necessary to develop a requirements engineering process into which the tool will

integrate. In addition is it necessary to understand the relationships between different

tools that can address the requirements engineering task, and also the value that such

tools might be in assisting the people directly involved. In order words is it necessary to

understand the interplay between requirements engineering tools and the stakeholders

involved in the requirements engineering process. These issues are explored further in

Chapter 3.

70

3. Requirements Engineering Tools and Processes

It has been suggested (Saiedian, 1997) that one of the main factors limiting the use of

formal methods is the lack of investment in automated tools to reduce the effort involved

in applying them. In contrast, a key factor in the acceptance of high level languages for

development purposes is the presence of a comprehensive set of tools to support their

use. It follows that if formal methods are to achieve the same level of acceptance within

industrial software development organisations, they too require a similar level of

automated tool support.

However, before beginning to describe the foundation for the development of a formal

methods toolset, it is necessary to consider the needs of the requirements engineering

task itself. Too often in complex development programmes, toolsets and methodologies

are chosen purely on the basis of the skill set of the developers, without much thought to

the needs of the development itself. Traditionally, the choice of a development toolset is

dictated by factors such as:

• Existing or legacy software development processes,

• The human skills available,

• The availability of existing tools,

• stipulation by the system sponsor or external accreditation bodies,

• timescale and budgetary considerations.

However, the selection of a toolset based purely on the availability of existing systems,

or rigid development processes may have dire consequences for the success of the

project. For example, an organisation may stipulate that Object Oriented techniques are

to be used for all developments, even though a particular problem domain may not

naturally embody semantics making this approach effective or even practical Toolsets

must therefore be chosen based on the problem domain itself, and consequently tools

suppliers must understand how their tools support the processes involved in solving such

problems.

71

As described previously, the classical approach to Requirement Engineering has

developed with no real underlying processes. This is due to a number of factors

discussed previously in section 2.2. The main reason for this is that requirements

engineering is situation-oriented, the process involved being dictated by the nature of the

problem domain being addressed. Due to this problem it is generally accepted that the

requirements engineering task is normally associated with a three-phase approach based

on:

• elicitation: The process of forming an understanding of the needs of the system.

• capture: The process of documenting requirements in some defined format.

• validation: The process of confirming that the captured requirements are a true

statement of need.

Yet this classical approach to requirements engineering raises some important questions:

• Is it possible to define individual processes associated with these three phases?

• If so, which components of these processes can be assisted by automated tools?, and

• What features should be implemented in these tools to add value to the process?

This chapter considers the issues associated with establishing how automated tools can

assist within the requirements engineering task. This is achieved by the development of a

requirements engineering tools hierarchy, based on an analysis of the concerns of the

stakeholders involved in the task. Having established this hierarchy, the activities within

the requirements engineering task are explored in order to derive a set of product

requirements for a tool supporting formal specification in Z. Finally, the chapter

concludes by defining a requirements engineering validation process into which the

TranZit tool will be integrated.

3.1 Developing a Requirements Engineering Tools Hierarchy

The first question to consider is what is the perceived need for a requirements

engineering tool?

72

As Brackett (1990) describes, users select tools based on their perception of the single

expected major source of complexity in the system to be designed. For example, whether

the system has many co-operating functions, has a complex data hierarchy or has

particular control characteristics such as real-time interactions. On the basis of this

analysis, a user might then select Cadre’s Teamwork tool (Cadre Technologies Inc,

1990) for SASD to address functional complexity, or iLogix Statemate Tool (Harel,

1987), for Statechart descriptions, depending upon the characteristics of the perceived

complexity.

Such tools embody a well-defined process framework, and as such if used correctly they

will add some value to the development process. Similarly, if it is to be useful, a

requirements engineering tool must add some value to the requirements engineering task.

As Jarke and Pohl (1994) describe, in the early characterisation of the requirements

engineering task several fundamental assumptions were made:

• that there exists a well-defined problem, that can be clearly scoped and described,

• that the system specification forms the basis of a contract between the user and the

developers,

• that each problem is different from others,

• that users are typically computer illiterate, but are domain specialists, and

• that methods used in requirements engineering are generalisations of methods used for

systems development.

Whilst it is still accepted that the specification is the basis of a contract between the user

and developer, experience has shown that many of the other assumptions no longer hold

true.

In the first instance, it is recognised that in many cases no well-defined problem exists at

the beginning of the requirements engineering task. As has already been discussed, users

are much better at criticising existing systems rather than articulating their needs from

first principles, and this may present serious problems for the requirements engineer

73

during the elicitation phase. Although Goguen and Linde (1993) have done much work

in establishing techniques for requirements elicitation, the process involved is largely

dictated by the particular problem domain and the experience of the individual

requirements engineer. This in turn makes it difficult to devise automated tools that can

add value to the elicitation phase itself.

Secondly, it is no longer the case that users are computer illiterate. As such the

expectations that users have at the outset of a software project are correspondingly

higher that at any time in the past. As described by Lubars et al. (1993), this has caused

the requirements engineering task to expand beyond traditional problems which are

customer or service focused, towards a need for market driven requirements

engineering in which the components of the output specification are offset against the

needs of the marketplace. Thus the requirements engineering task is moving away from

compartmentalising problems which can be addressed purely by traditional computer

science techniques, into more real-world models which correspondingly describe more

abstract entities such as organisation structures, communication mediums and working

practices.

It is also the case that the rate of technological advances continues to increase year on

year, and that in order for systems to survive they must be able to deal with the pressure

for continuous change. This is not only a consequence of the increase in technology

availability but also economic considerations, a prime example being the rapid increase in

E-Commerce.

All these issues places further emphasis on the requirements capture process, which must

be sufficiently abstract and flexible to assimilate complex system descriptions both at

project inception and also as the system evolves.

Finally, the need to be able to validate that the captured specification of requirements is

indeed a true representation of the desired system is paramount is ensuring that the right

product is developed and that user requirements are met, thus avoiding costly re-work.

74

Based on these issues it is possible to identify general considerations for requirements

engineering tools as follows:

• There is a need for requirements engineering tools to capture a worldview of

problems, rather than a constrained or system-oriented view. In this context they must

be able to model abstract entities, rather than simply the technological (functional or

data) components of a required system.

• Any requirements engineering tool must deal with the need for continuous change

• Requirement engineering tools must be able to partition problems into manageable

units. In particular with object-oriented techniques increasing in popularity, the need

to be able to re-use specification components is likely to be a desirable property in the

future.

• There is a need for requirements engineering tools able to demonstrate a working

model of the required system for the specifier to be able to validate the specification

with the sponsor. Ideally, the tool should aim to hide the underlying computer

technology as much as possible. The sponsor may then agree or disagree with the

model as required, or may mitigate certain requirements on the basis of cost or market

need.

3.1.1 Identifying the Users of Requirements Engineering Tools

The next consideration is that of identifying:

• Who are the potential users of requirements engineering tools?

• How do users expect requirements engineering tools to add value to their contribution

to the requirements engineering task?

It follows that the users of requirements engineering tools will potentially be any of the

stakeholder roles associated with the project development. In this respect we are dealing

with the following roles:

1. The end users. The set of people who will operate the system on a daily basis.

75

2. The system maintainers. The set of people who will support/develop the system in the

future.

3. The system developers. The set of people concerned with developing the completed

system.

4. The development management. The set of people concerned with delivering the

completed system.

5. The customer. The sponsor of the system. This may either be an external customer or

an internal customer such as the marketing department originating the system request.

6. The dependants. The set of people who do not directly use the system, but who’s well

being may depend on it.

7. The establishment. The set of people who may have existing or developing systems

which are required to inter-work with the new system.

Each of these stakeholder roles will present a different perspective or viewpoint to the

requirements engineering task.

The impact of viewpoints on the requirements engineering task is well documented by

Sommerville and Sawyer (1997), who suggest various approaches (such as PREview) to

ensure that all viewpoints are considered. However, taking a slightly different

perspective and introduce practical experiences, we can expand these ideas to deduce

whether a requirements engineering tool is likely to impact on the effectiveness of a

particular stakeholders contribution to the overall task.

The major stakeholder viewpoints or concerns are summarised in Table 1. This table has

been established by researching the behaviour of stakeholder teams addressing real-world

product development issues in an industrial environment within a major development

organisation. The stakeholder concerns are ranked by importance:

76

M B
End User Functionality (and Usability)

Performance

Reliability

Expandability

Interoperability

Maintainer Reliability

Debugging, maintenance and training aids

Interoperability

Expandability

Developer Functionality

Performance

Portability

Reuse

Management Costs

Resources

Schedule

Customer/

Marketing

Functionality (and Usability)

Costs

Schedule

Interoperability

Performance

Dependants Reliability

performance

Establishment Interoperability

Reliability

performance

portability

Table 1: Stakeholder Concerns

77

It can be seen that the primary concerns intrinsically polarise the stakeholder team into

three distinct groups.

1) The group consisting of the User, the Customer (especially in the case of market-led

products) and the developer who are primarily concerned with the system

functionality (and the dependent goal o f usability).

2) The group consisting of the maintainer, the dependants and the establishment who

are primarily concerned with the system reliability and maintainability.

3) The management (and to some extent the customer) who are primarily concerned

with system costs and schedule.

The behaviour characterising each of these groups has been observed to some degree in

all stakeholder teams researched. Not surprisingly each stakeholder presents a viewpoint

which is primarily concerned with the factors which most affect the likelihood of

achieving the stakeholders functional objective. However, from the perspective of tools

development, this research can also be used to identify concerns and problems within the

requirements engineering task which can be addressed by tools.

3.1.2 Identifying Requirements Engineering Problems from the Primary

Viewpoints

From the preceding discussion, using these three primary viewpoints it is possible to

deduce a taxonomy of requirements engineering problems:

• Problems associated with the description of system functionality and usability ,

• Problems associated with ensuring system reliability and maintainability,

• Problems associated with controlling system costs and project schedule.

Each of these requirements engineering problem groups offers an opportunity for

automated tools to assist the appropriate stakeholders in achieving their given objectives.

However, what are the characteristics of such tools to address these problem groups, and

what value can they add to the requirements engineering task?

78

3.1.3 Tools to Control the Relationship Between Requirements and System Costs

Firstly, consider a hypothetical tool that helps in evaluating how a set of requirements

impact on the system costs and project schedule.

The premise here is that all requirements have a cost o f development. The issue is

whether that cost is justified given the contribution that achievement of the requirement

would bring in terms of overall customer satisfaction. Such market-led requirements

analysis, effectively rank requirements in order of desirability and cost/benefit analysis.

However, having made this ranking it is necessary to have an objective measure of

whether the ranking is justified, or even sensible in the context of other requirements in

the system (for example, whether system performance can be increased at the expense of

portability). Since these relationships can be quite complex, and in some cases rely on

expert knowledge, a tool to store these relationships and evaluate the judgements made

would be very useful in resolving conflicts.

In their paper Quality-Requirements conflicts, Boehm and In (1996) describe a tool to

assist in this task, terming it the Quality Attribute Risk and Conflict Consultant

(QARCC). QARCC is a knowledge-based tool, which captures the relationships between

stakeholders and their primary concerns (or quality attributes as Boehm terms them),

how these quality attributes are manifested in the required system, and the strategy

introduced to describe the relations between them. The system uses a negotiation model

as its core component, in which stakeholders identify their desired quality attributes. The

system then uses a knowledge base to identify software architectures or strategies for

achieving that goal The system then uses another part of its knowledge base to identify

any potential conflicts in the quality attributes if this strategy were to be employed, and

then provide suggestions as to how to resolve them.

A similar tool for resolving ‘interference’ between viewpoints, based on the Semantic

Index System (SIS) is described by Spanoudakis and Finkelstein (1997).

79

In general, such tools aim to add value to the requirements engineering task by

improving the management of people and resources involved in the development.

3.1.4 Tools Which Capture Requirements for System Reliability and

Maintainability

The question here is what are the characteristics of a requirements engineering tool

which will show that the set of requirements developed will produce a reliable and

maintainable system?

Requirements involving terminology such as reliability and maintainability come under

the general term of Non-Functional requirements or NFR. In practical terms, it is not

enough to simply fulfil the, functional requirements of a system. The system subsequently

developed might work as intended, but it may be difficult to use or may exhibit poor

performance under particular conditions (User-centred NFR). In addition it may be

difficult to maintain or modify (developer-centred NFR) (Ebert 1997). Typically NFR’s

include:

• performance factors

• reliability factors

• usability factors

• System limitations and degradation criteria

• maintainability

• extendibility

• operational correctness (a measure of the extent to which the software satisfies the

specification of requirements; especially in safety-critical applications).

Whilst the fundamental distinctions between functional and non-functional requirements

have been well documented (Davis 1993, Myopoulos et al. 1992), there is still no

comprehensive quality measure for ensuring that non-functional requirements are

captured and implemented in the final system. As highlighted by Ebert (1997), this is

largely due to the fact that in general, implementation of NFR’s cannot be qualitatively

80

measured during the design phase. Rather we must wait until the System test and

acceptance phases to see how the system performs in the real target environment.

Although several simulator tools have been developed to model such characteristics as

performance prior to design (e.g. MODSIM), they can only provide a limited level of

confidence, since they intrinsically rely on empirically defined information on which

model assumptions are based. Similarly, prototyping tools are also likely to be of limited

use, since they are explicitly based on an inefficient model of the system, which is

unlikely to exhibit the performance characteristics of the delivered system.

Hence, the majority of work in this area of requirement engineering tools has focused on

traceability of requirements. Traceability is concerned with showing that a particular

requirement has been implemented by some component of the delivered system (Ramesh

et al., 1997), and also in proving implementation correctness. In addition, some work has

been done to produce automated test case generators, which can produce test suites

directly from specifications. These can then be used by developers to test the final

implementation (Richardson et a l, 1992).

3.1.5 Tools Which Capture Requirements Associated with System Functionality

The question here is what are the characteristics of a requirements engineering tool

which will show that the set of requirements captured is a true representation of the

required system functionality? In this context we refer to functional rather than non­

functional requirements.

This is probably the area in which tools support has traditionally focused within

requirements engineering, largely because the system functionality is a quality

appreciated to a greater or lesser degree by all the stakeholders. It is also the case, that

the challenges offered in attempting to capture the System functionality are amongst the

better-understood problems that can be addressed by computer-based tools.

Areas in which tools can assist in capturing the system functionality are:

81

• Assisting in the manipulation, control and management of specification documents,

which embodying the system functionality. This includes document formatters, Pretty

printers and layout tools such as LaTeX (Lamport, 1985) for the Z formal notation

(Spivey, 1992). In addition, there has been much work done in producing tools

assisting in the translation of informal specifications (such as those written in natural

language) into languages with more precise semantics. These are well documented by

(Vadera and Meziane, 1997).

• Structuring requirements into organised, logical groupings and providing a basis for

traceability. An example of a commercial tool in this context is DOORS (QSS Inc,

1998),

• Analysing the internal consistency of captured specifications. Many of these tools are

dependent on the particular specification language used. For example, the TranZit

tool described herein provides a syntax and type checker for the Z notation to ensure

that the captured specification is both syntactically correct and its objects are of the

correct type.

• Assisting in the validation of captured specifications. Whilst parsers and type

checkers can check the internal consistency of specifications for language usage, they

cannot in themselves show that the contents of the specification describe the

customers requirements. Such tools are said to address the area of Specification

Validation.

3.1.6 Tools for Specification Validation

The development of automated tools to assist in the process of specification validation

has drawn much research interest in recent years.

Specification validation is the final phase of the general requirements engineering task,

which is concerned with determining whether the specification is correct in some sense

(Barden at al., 1994). Inevitably, this work has grown out of the definition of languages

in which to capture specifications, and as previously discussed many of these embody

formal semantics which can be analysed by computer to a greater or lesser degree. To

82

this extent, automated tools research into validating specifications has focused on

Theorem provers, Model Checkers and Animation Engines.

Theorem provers help to reveal what is implicit in specifications rather than explicit

(Ciancarini et al, 1997). For example, a theorem prover for a formal specification

language such as Z may automate the computation of pre and post conditions over

operations, and verify these against declared system invariants. The aim is to increase

the quality of the specification and thus increase the confidence in its correctness. Whilst

a formal proof for a specification is a worthwhile goal, even with tools support, in many

cases the effort involved in generating the proof may well exceed the effort of actually

capturing the specification itself. Thus, as Jackson (1994) points out, a value judgement

must be made in assessing the need for a formal proof against the cost of actually

performing one (for example, if the specification relates to a safety-critical system).

Automated Theorem prover Tools such as Z/Eves (Saaltnik, 1989), the Larch Tools

(Guttag and Homing, 1993) and the integration of Z with HOL (Higher Order Logic)

(Bowen and Gordon, 1994, 1995), have been well documented. However, they are often

criticised for the amount of user involvement and level of mathematical understanding

required to make effective use of them.

In contrast, model checkers do not require user involvement, but inevitably constrain

themselves to a particular requirements capture approach. A particular tool of interest is

NitPick (Damon and Jackson, 1996), which is a model checker based on the Z notation

capable of performing exhaustive analysis of finite state machines.

Finally, animators and execution engines attempt to transform (generally) non-procedural

specification representations into some executable form. This approach usually involves

the use of rapid prototyping to build an inefficient, yet functionally complete executable

representation of the system embodied by the system specification. Animators are seen as

a practical alternative to formal system provers, where the cost of a formal proof cannot

be justified. Using the executable prototype, the stakeholders can explore properties of

the system embodied by the specification, to verify that it exhibits the required behaviour.

83

Again, the premise is that stakeholders are much better at criticising existing systems

than articulating their needs from first principles.

Several purists (Hayes and Jones, 1989) argue that since the conversion of an abstract

(non-executable) representation to an executable one is generally non-computable, there

is no merit in attempting to pursue this line of tools research. In contrast it has been

argued in this work (Siddiqi et al. 1998, Morrey et al. 1994, 1998) and by several other

researchers (Dick et al., 1990), that it is possible to develop animation tools which have

demonstrable, practical benefits in the area of specification verification.

3.1.7 A Requirements Engineering Tools Hierarchy

From the preceding discussion, it is now possible to define a tools hierarchy for

Requirements Engineering as shown in Figure 3-1.

84

Requirements
Engineering

Tools

Tools for Verifying
Specifications.

Tools for Manipulation
and Management of

Specification
Documents

Tools for Checking the
consistency of

Specification Documents

Tools for:
• Theorem Provers
• Model Checkers
• Amimation and Execution

engines

Tools for developing
Requirments defining

Reliability,
Maintainability, and

other NFRs.

Tools for:
• Capturing/Formatting/Pret

ty Printing
• Translating between

languages
• Refinement

Tools for capturing,
validating and verifying

Functional
Requirements

Tools identifying the
impact of Requirements
on Costs and Schedule

Tools for:
• Type Checking
• Syntax Checking
• syntax-directed editing

Tools for:
• Performance

Analysis
• Requirements

Tracability
• Automated Test

case Generation

Tools for:
• Management of

Resources
• Resolution of

conflict
• Managing costs of

development

Figure 3-1: Requirements Engineering Tools Hierarchy

Whilst most tools choose one of the three main branches as a starting point, in general a

tool may implement different features to a greater or lesser degree as the branch

descends. For example, most functional requirements definition tools will commonly

implement some form of capturing/formatting interface together with consistency

checking functions such as a syntax analyser. One the other hand, there are well-

85

documented tools such as ZTC (Jia, 1994), (a pure type checker for Z), which defer the

job of capturing and formatting the specification to other tools such as LaTeX (Lamport,

1985).

3.1.8 Requirements Engineering Tools Limitations

It is important to recognise that a tool cannot solve all the problems associated with the

requirements engineering task. A tool exists to assist the stakeholder team in arriving at

their goal. For example, a tool cannot (as yet) really assist in the human communication

process of requirements acquisition and elicitation. Although there are many well-

documented approaches to addressing the issue of requirements elicitation (Goguen and

Linde, 1993), it is still largely down to the experience of the requirements engineer to

adopt appropriate techniques on the basis of individual discussions. Perhaps in the future

it may be possible to address this issue with knowledge-based Al tools, although this

area requires more detailed research.

3.2 Developing Requirements for a Requirement Engineering Tool

So far this chapter has identified the likely users of requirements engineering tools and

the particular viewpoints that these users present. This information has been used to

define a taxonomy of requirements engineering tool types, which address the three

primary viewpoints. These are:

• Tools for capturing system functionality and usability in a high quality and verifiable

specification document.

• Tools for capturing non-functional requirements addressing system reliability,

performance and maintainability

• Tools which analyse competing or conflicting requirements and derive associated

system costs and scheduling information for project management

Having identified the characteristics of requirements engineering tools, it is now

necessary to consider specific requirements for a tool to assist in the requirements

engineering task. To achieve this it is first necessary to appreciate the component

86

processes of the requirements engineering task, with a view to establishing the specific

requirements that these processes place on tools to support them.

Pohl (1993) describes the component processes of the requirements engineering task,

using the analogy of three-dimensional space as shown in Figure 3-2. According to Pohl,

the process of refining requirements and the subsequent degree of completeness of the

specification forms the specification dimension. Similarly, the process of decision

making and the subsequent degree to which the stakeholder team agree that the

specification is a true representation of the system requirements is termed the agreement

dimension. Finally, the process of capturing requirements and the subsequent degree to

which the requirements are technically described using formal semantics is termed the

representation dimension.

Using this model, any particular requirements engineering process can be described by

tracing its path in three-dimensional space using the associated co-ordinate system.

Specification

complete

/ '

Agreement

common viewopaque

frsonal view

informal semi-formal formal Representation

Figure 3-2: Pohl’s Three Dimensions of Requirements Engineering

As Jarke and Pohl (1994) describe, the overall requirements engineering process

normally begins near the origin of the framework. This point represents the state of the

87

process at project inception, characterised by differing personal views of the system held

by individual team members, opaque system understanding and an informal

representation. The goal of the process is to reach common agreement on a well-

understood and complete specification, captured using formal semantics. In the course of

achieving this goal, the track taken through the model describes the way in which

particular issues relating to the problem domain are resolved by the requirement

engineering process adopted. Clearly, the shortest route to achieving this goal is a

straight line, implying that an effective requirements engineering process should maintain

a balanced view all three component processes.

Therefore, to maximise the value added to the process by a requirements engineering

tool it is clear that any tool should aim to support the agreement process, the

specification process and the representation process in equal capacities.

3.2.1 Developing Requirements for a Tool to Support the Representation Process

The first question is what are the requirements for a tool to assist in maximising the

efficiency of the representation process? In essence, the particular language chosen to

capture the specification largely influences these requirements. The goal of the

representation process is the production of a specification that is:

• complete

• implementation independent,

• unambiguous, precise and internally consistent,

• verifiable

• modifiable

• understandable by all stakeholders

• organised with built-in traceability.

It is interesting to note that in addition to these generally accepted properties of a quality

specification, (Davis et al., 1993), add further properties as follows:

• Electronically Stored

• Executable/Interpretable/Prototypeable

88

• Re-usable

The most obvious choice for a representation language is natural language itself, since

this is the mode of communication we use in everyday life. However, natural language

specifications suffer from some serious drawbacks. Traditional specifications represented

in natural language tend to run anywhere from a single page to many thousands of pages.

However, as Davis (1988) points out, the size of the specification rarely has any

relationship to the complexity of the problem. Rather, the inherent ambiguity of natural

language statements means that in order to introduce completeness, the specification

must be written in more verbose terms. This is not to say that natural language is not a

powerful abstract communication medium; it is simply the case that it embodies

ambiguous semantics. Similarly natural language does not embody any descriptive

formalism. A particular reader may deduce any number of subjective implications from a

simple natural language statement, which may or may not be true. Whilst this problem is

well recognised, in their attempts to resolve the problem, natural language specifiers may

well produce over large and complex documents which are difficult to assimilate and

verify. Hence, it is suggested that natural language is unsuitable as the basis of a

representation process for requirements engineering because,

• it is inherently ambiguous,

• it contains no formalism leaving the reader free to make subjective judgements about

the meaning of the specification,

• it is difficult to check the completeness of a natural language specification,

• natural language specifications are inherently complex, the complexity increasing with

attempts to resolve the problems highlighted previously.

All told, whilst the use of natural language meets the important criteria for specification

readability and intelligibility, it should be clear that there is a need to introduce formalism

into the representation process to address the important issues of completeness,

ambiguity and verification.

89

3.2.2 Introducing Formalism Within the Representation Process

By formal we mean the introduction of a language into the representation process which

has unambiguous descriptive semantics, and about which we can reason to deduce

properties of the specification. In this way, the major goal of defining the system

requirements in such a way that there is only one interpretation can be achieved.

Secondly, as discussed later, one of the major problems identified is the need to maintain

the interfaces between individual specification objects in a coherent and cohesive

manner. This is associated with the need to group related requirements together,

reducing the burden on the reader in retaining a number of different concepts in

foreground memory simultaneously. This is difficult to achieve with natural language,

since there is no concept of a specification object, nor any formal mechanism for defining

the interfaces between them. Thus a key requirement for a representation language is the

ability to break down complex specifications into manageable units, which have well-

defined interface properties. These specification construction units can then be reasoned

about individually and subsequently combined in a formal way to produce a complete

specification.

3.2.3 Justification for the Use of the Z notation

Whilst there have been many formal specification languages proposed, for this project it

has been decided to use the Z notation (Spivey, 1992). The reasons for this are as

follows:

• Z is a well-developed and accepted formal notation, which has been standardised.

(Brien and Nicholls, 1992).

• The Z notation embodies powerful modelling abstractions that can be used to address

a wide variety of requirements engineering problems.

• Z is based of set theory and first order predicate logic, which are well-understood

mathematical formalisms.

90

• Most importantly, Z specifications are modular being constructed from abstract data

types known as Schemas. These can be used as the building blocks of more complex

specifications in conjunction with the Z Schema calculus.

Whilst the use of Z constrains the representation process to a model-based approach, Z

has been shown to be applicable in a wide variety of problem domains including a

number of industrial applications (Collins et al., 1988). In addition, the ability of Z to

modularise specifications into schemas is central to the specification process upon which

the TranZit tool is based.

In terms of supporting the representation process, the requirements for a tool can be

distilled to the need to be able to capture specifications written in the Z notation at the

computer. Most users now expect some form of full-screen editor capability using a

WYSIWSG GUI, driven by mouse and keyboard input. Given the conventions embodied

in most Windows™ editor programs for example, users expect standard features to be

available such as cut and paste, delete, select and insert, as would be found within a

standard text editor.

However, in addition to these essential features, there is a need to add support for

representational aspects of the chosen notation, in this case Z. At a simplistic level,

many of the specialist mathematical Z characters are not available within standard

computer character sets, and must therefore be made accessible to the user. Also, even

the most experienced of Z writers can forget the notation symbols for various operators,

and the tool must therefore support the efficient location of Z notation characters by

functional group. The tool must also be capable of drawing schema outlines, and since

the graphics associated with these objects are of no interest to the user, the tool itself

should control these. To this extent, if the user wishes to enter further information within

the predicates of a schema body, the body should expand accordingly without the need

for the user to re-draw the schema graphic outline manually.

91

3.2.4 Product Requirements for a Tool to Support the Representation Process

From the preceding discussion, Table 2 identifies a list of high-level product

requirements for a requirements engineering tool to maximise the efficiency of a

representation process using the Z notation.

Representation Process Need Tool Requirement

Ability to capture the specification efficiently => Full-screen, WYSIWYG editor combining

mouse and keyboard input

Provide support for the chosen representation

language

=> Support for Z notation character set

=> Automatic generation of notation graphics (e.g.

schema outlines)

Ability to modify the specification efficiently => Support for standard editor functions:

=> Cut, paste, insert, delete, select, search and line

goto, with appropriate notation support (i.e.

cut, paste, delete of complete schemas)

Table 2: Product Requirements for a Tool to support the Representation Process

These requirements ensure that features are present in the tool which support the

representational elements of a high quality Z specification. However, it is also necessary

to identify how the tool will assist specifiers in refining Z specifications. This is the

domain of the specification process.

3.2.5 Developing Requirements for a Tool to Support the Specification Process

Having chosen a formal notation for the representation process, it is necessary to

consider how a requirements engineering tool should support the specification process

itself. This involves support for the specification refinement process, beginning with a

blank piece of paper and moving towards a complete set of requirements captured within

the system specification.

There are several considerations involved in this process, as highlighted in the Figure

3-3:

92

Specification
Process

Specification User
Interface

Specification
Maintenance

Specification
Refinement

Specification Checking
Tools

Figure 3-3: Considerations in the Specification Process

On great importance is the way in which the tool presents the specification to the user.

Regardless of the internal sophistication of any tool, if the user interface is inadequate the

tool itself will be viewed as inadequate. One of the most popular and arguably the most

successful of computer user interfaces available to date is the Microsoft Windows™

Graphical User Interface (GUI) (Microsoft Corp, 1992). Indeed, such is its proliferation

throughout the desktop PC market that the interface is now readily available to everyday

users on relatively cheap PC hardware.

Whilst other platforms such as the SUN OpenWindows GUI and the Apple Mackintosh

GUI were considered, none of these can compete with the Microsoft Windows GUI on

the basis of general accessibility.

Most importantly, the Windows GUI imposes a consistent presentation method for

Windows applications, in that the set of objects available to manipulate the application,

i.e. menu bars, scroll bars, buttons and controls, are well understood by Windows users.

93

It is therefore often unnecessary for a user in this environment to begin learning each

new application GUI from scratch, since all Windows applications offer a common

interface style. On this basis, most experienced Windows users exposed to a new

program can find their way around the basic manipulation tools very quickly, based on

the conventions which have been adopted by Windows program designers.

From the preceding argument, the toolset presented in this project has been based on the

Microsoft Windows platform, since it was felt that this environment offered the greatest

accessibility for users and, most importantly, sufficient GUI flexibility to embody the

design concepts of the proposed tool.

From the general considerations for requirements engineering tools discussed previously,

the tool must recognise explicitly that the generation of a specification of requirements is

a creative process. It is implicit within the creative process that some form of refinement

is taking place, and that it is necessary to be able to manipulate, save and retrieve

specifications and specification fragments independently as the specification task evolves.

In order to maintain the specification, there is a need to import or export information

from the tool to other parts of the development environment. For example, developers

may need to export specification fragments to a word processor in order to be able to

generate supporting documentation for the project. Again the windows environment

chosen supports well-defined mechanisms for achieving this. Similarly, the tool must be

able to produce hard-copy of the specification for the purposes of discussion and review.

Finally, the tool must embody some form of support for the chosen specification notation

and implement features to assist in the development of a specification in this notation.

These features are different to the representation features such as standard editor

facilities discussed previously, in that an efficient specification process is concerned with

manipulating and refining elements of the specification whilst at the same time retaining

internal consistency. However, to fully appreciate the issues associated with this

problem, it is necessary to examine the process of developing a specification itself.

94

3.2.6 Understanding How Specifications are Developed

Whilst no definitive process exists for constructing Z notation specifications efficiently,

several suggestions have been documented based on ideas developed by IBM Hursley

(Wordsworth, 1987) and the Oxford University Programming Research Group

(Wordsworth 1989). In general, these aim to offer a proforma for developing

specifications in a consistent style, and are largely self-evident.

However, rather than be constrained by a prescriptive proforma, it was decided to use

real-world problems to investigate the process of specification construction, using both

introspective and observational techniques. The objective was to gain a better

understanding of the specification development process, and thereby be able to refine the

functions offered by the tool, to maximise its efficiency. This work was based on two

large industrial projects within a major development organisation, concerning definition

of user interfaces for desktop terminals.

In this organisation, the specification phase (or definition phase as it is sometimes

referred to) is driven by two major product-level inputs:

• The Marketing Requirements Specification (MRS)

• The Product Requirements Specification (PRS)

The MRS is a high-level description of the perceived need for the product. It may outline

the requirements for major features (functional requirements), but will not specify them

in detail In addition it may stipulate a number of Non-functional requirements (NFRs),

relating to reliability, performance, interoperability and maintainability. The MRS will

also stipulate schedules and cost targets, which will need to be met by the project. The

document is written in natural language to a defined document structure. In conjunction

with the business case, the MRS is a key component in assessing the feasibility of the

product.

95

Once the product feasibility has been established the domain experts write the PRS in

response to the MRS. The PRS is a detailed low-level specification of requirements for

the system to be developed, written from the viewpoint of the major components or

complexes which the system requirements demand. For example, in a

telecommunications system, the PRS may stipulate changes to the PABX core software

(which in itself would be defined as a complex), and would identify the need for new

hardware or software components. It may also identify the requirements for peripheral

equipment such as desktop terminals or PC Applications associated with the overall

product. In addition, it will clarify NFR’s associated with such factors as performance,

MTBF and out-of-box quality.

Once the PRS is agreed by the stakeholders, domain specialist will become involved to

develop a number of Product Functional Specifications (PFS) for the individual

complexes identified by the PRS (e.g. system software changes, user interfaces for

desktop equipment or new applications). The PFS documents are the definitive

specifications from which the system designers will develop the required system. The

process is summarised in Figure 3-4:

96

Perceived Need

Stakeholders
Concept Review

Proceed

Product
Requirements
Specification

Stakeholders
Project Review

Product
Functional

Specification

Product
Functional

Specification

Marketing \
Requirements
SpecificationJ

Market Analysis

Concept/Feasibility Analysis Business Case
Development

Figure 3-4: Industrial Specification Process

Whilst the processes involved in the definition phase are fairly straightforward, what is

not clear is how the domain experts go about generating a specification from first

principles, and the thought processes involved.

Whilst the organisation does not use a formal specification notation, experience with the

DOORS tool (QSS Inc, 1998) for organising natural language requirements in an object-

97

oriented fashion, has identified a number of interesting points associated with writing the

specification itself. Of particular interest are the thought processes involved, which

appear to go through three main phases as described below:

3.2.7 The Usability Phase

On asking domain experts how they go about producing a specification from first

principles, most will explain that they start by thinking about the major objects or

complexes which make up the system to be specified. These objects are initially described

not by their internal interactions, by how they interact with the system environment.

Thus, in the case of a desktop terminal, the domain expert first considers the keyboard,

the display and the audio interface as individual components and specifies how these

should interact with the system environment, Le. the user. This usability phase, seems to

be a key phase in focusing user interface ideas, upon which many of the later decisions

concerning detailed functional requirements will be based. Indeed it is not uncommon for

a usability prototype to be generated at this stage which models the interface to the

system environment, without concern for the detailed features to be offered. The

usability phase also seems to highlight the major system constraints, from which the

domain expert will ultimately generate a set of NFRs.

By this stage, the specification will be a skeleton document that describes:

• The required layout of the display/user interface (usually diagrammatically),

• The required layout of the features buttons/menus on the GUI or user interface,

• A high-level description of system features,

• A description of interface requirements to the external system environment,

At this stage a usability review of the specification is normally be held, to ensure that all

stakeholders agree with the major objects being included in the specification, and to

ensure that no gross functionality or interfaces have been overlooked.

98

3.2.8 The Functional Phase

Following the usability phase, the domain expert then focuses mainly on the specifying

the features to be implemented as functional requirements. Interestingly, this is normally

seen as a serial task, with each feature being described in turn, without reference to

existing definitions. The important task of resolving feature interactions is deferred until

the end of this phase, or more often the resolution phase described later. The aim of this

functional phase is to set in place how the features of the system will operate and modify

the states of the system objects defined in the usability phase. This ultimately generates

relationships between these objects, which in turn define their interfaces. A common tool

used to support this phase is the generation of an Entity Relationship diagram (ERD).

This phase tends to take the most time, since it is at this point that the detailed

requirements for individual features and functions are defined. The specifier’s aim at this

phase seems to be to produce as much detail as possible concerning individual features,

however the specifier seems less concerned with how these features will interact. This

appears to be the case even when there are several specifiers working on the same

specification.

3.2.9 The Resolution Phase

Once all the functional requirements are completed, a detailed review is normally held,

involving all member of the stakeholder team. This review has two main objectives:

• To ensure that all functional requirements are specified in sufficient detail

• To highlight interactions between functional requirements which need resolving

Until this point, the specifier(s) will have made only a passing attempt at resolving

interactions between features. This is normally deferred to this review when all members

of the stakeholder team can bring their own expert knowledge to the discussion.

Interestingly, it was observed that at this review the expert specifier is often content to

take a passive role, and let other members of the stakeholder team identify

inconsistencies and propose solutions. There are perhaps several reasons for this:

99

• The expert specifier feels that he will have discovered all the inconsistencies he is

likely to discover in the functional phase, and needs the assistance of a fresh point of

view.

• The expert specifier feels that by this point he has become too close to the system

functionality, and the system needs to be re-assessed from a higher level.

• The expert specifier wishes to devolve ownership of the specification back to the

stakeholder team.

This review is by far the most intensive, and as it progresses it may become quite heated

as individual stakeholders attempt to impose their viewpoint on the system specification.

A strong chairman is vital, and in addition Marketing authority must also be present to

make decisions concerning trade-offs between conflicting requirements. If necessary,

ranking of requirements by the Marketing authority will also be undertaken, where

project schedules are unlikely to be achieved given the complete set of requirements.

The ultimate result of this review may have several outcomes.

1. The stakeholder team agrees that the PFS’s produced are a true representation of the

system requirements. The PFS’s are then approved as the primary input to the

development team to begin implementation. It is noted that this outcome is unlikely in

the first pass of the specification review, for anything other than a trivial project.

2. The stakeholder team determines that either functionality is missing, is badly defined

or that conflicts cannot be resolved without rework to the functional aspects of the

specification. Another review will then be scheduled once the requirements have been

refined by the domain expert(s). In general it is found that at least one repeat review is

required.

3. The stakeholder team determines that a major system component or interface is

missing, and it is necessary to revisit the usability phase of the project. In general this

outcome should not occur, as it is indicative of poor communication between the

stakeholders and a lack of understanding of the high-level product requirements.

100

3.2.10 Conclusions from the Study of Specification Development

The research into the development of specifications has highlighted a three phase

iterative model consisting of the usability phase, the functional phase and the resolution

phase, as shown in Figure 3-5:

Product
Requirements
Specification

Usability
I Phase I

Functional
Phase

Resolution
Phase

Major system
objects identified
and external
interfaces defined

Detailed system
features described,
and relationships
between system
object established

Conflicts between

\ *
feature specifications

1 *identified and
/ resolved. Stakeholder

team agreement
reached

Product
Functional

Specification

Figure 3-5: The three phases of Specification Production

101

Having understood how these phases come about, it is now possible to consider how a

tool should go about supporting these phases in an efficient manner.

The specification itself is considered to consist of a number of descriptive abstract

specification objects (i.e. natural language statements or formal descriptions of schemas

in Z, for example). The development of a specification is the process of manipulating

these objects to form a complete description, accepting that:

• It is natural that the specification will change throughout its construction, and that

the process o f its development is inherently iterative and refining.

• The specification is complete when these objects are related in such a way as to

produce a consistent and complete statement o f requirements upon which all

stakeholders can agree.

Accepting that the specification process is inherently creative, each of the specification

objects can be in a particular state, either:

• Created (i.e. known to be needed but not yet defined in detail),

• Evolving (i.e. in the process o f detailed definition), or

• Finalised (i.e. a complete object whose internal and external behaviour is defined in

sufficient detail as required by the specification).

The essence of a tool to maximise the efficiency of the specification process is therefore

the ability to manipulate and maintain consistency between these evolving specification

construction objects.

3.2.11 Managing the Interfaces Between Specification Components

From this research it is believed that one of the main problems with specification

construction is managing the interfaces between the individual complexes or

specification objects. When these interfaces are confused or too complex, problems such

as ambiguity, redundancy and opaque understanding begin to occur.

102

It is clear from the investigation that specifications evolve in much that same way as

software designs evolve, since this is the most natural way to break down and assimilate

problems. Thus, in much the same way as a design tool, a tool to support the

specification process must manage the interfaces between specification objects and

support the evolution of these objects through their individual lifecycles in an organised

and methodical way.

The purpose o f a tool supporting the specification process is therefore to reduce the

workload o f the specifier, associated with maintaining the interfaces between the

specification objects in a consistent fashion, and to support the use and manipulation o f

the chosen specification language (in this case the Z Notation).

3.2.12 Assessing the Impact of Formal Methods on the Specification Process

It has already been deduced that the major work associated with developing a

specification involves maintaining the interfaces between individual specification

construction objects. Yet the use of a formal notation such as Z imposes additional

considerations in achieving this goal

To understand where the work associated with maintaining these interfaces arises, it is

instructive to use the analogy of cohesion and coupling from structured design

methodologies (Sommerville, 1985). In a similar way that these design criteria affect the

workload associated with maintaining a program, they also provide a framework to

assess the work impact for a given change to the system specification. Clearly, where a

modification has a large work impact on (or is tightly coupled to) the existing

specification objects, this is where a tool should attempt to minimise the effort required

to maintain the specification in a consistent state.

Within the TranZit tool, the specification construction objects are components of the Z

notation (e.g. given sets, schemas, predicates, global variables, e.t.c.). Using experience

in developing Z specification and applying the three-phase specification development

103

model discussed previously, leads to the following conclusions concerning the

development of formal specifications in the Z notation.

• The usability phase associated with developing a Z specification is concerned with

identifying the given sets and axiomatic definitions required to model the problem.

This process is likely to be highly iterative, as the specifier is attempting to establish a

coherent set of specification construction objects representing the external view of the

system. However, as this iteration within the usability phase progresses, the

introduction of new given sets and axiomatic definitions tends to have little impact on

what has gone before. This is because, given sets invariably represent the introduction

of a complete object (or complex) within the specification, which is likely to have its

own functionality and requirements (Le. it is a self-contained problem, with little

impact on existing requirements). Similarly, axiomatic definitions place constraints or

limits on the overall specification, rather than affecting individual components. Hence

it is suggested that given sets and axiomatic definitions are not tightly coupled to the

specification process, and a tool need not place much emphasis on assisting the user

to maintain them.

• Whilst the given sets and axiomatic definitions identified within the usability phase are

generally independent objects, the development of general theories captured as

system invariants are more tightly coupled to the specification process. These system

invariants are represented as schema objects, and represent major decisions

concerning constraints on critical components of the system state. Hence any

modification to these schemas once the functional phase has begun is likely to have a

large effect on the work completed so far. For example, consider the effect of

changing the declarations section of some schema representing a system invariant,

which is in turn included by many other schemas. General theories and associated

schema definitions are therefore tightly coupled to the specification operations, and a

tool must assist the user in maintaining them throughout the specification process.

• During the Functional phase, components are introduced to the specification that

model operations on the system state. We introduce functions, relations and abstract

104

data types to represent the system state, which in turn build relationships between the

given sets identified as basic components of the model in the usability phase. In order

to define operations we introduce schemas that collect together a set of predicates,

which in turn define a mathematical description of changes to these elements

representing the system state. The structure of the elements representing the system

state may therefore permeate many schemas, as each must operate on the system state

to perform some operation. Changes to the type of a function for example, may

therefore invalidate many operations using that function. The elements of the system

state are therefore tightly coupled to the specification as one might expect, and may

undergo many modifications as new features are modelled and the interactions

between features are resolved. The tool therefore needs to support the user in

checking the internal consistency of the elements representing the system state as the

functional phase progresses.

• In the Resolution Phase, the emphasis is on resolving the interactions between

operations represented as schemas. The work associated with achieving this will be

heavily influenced by the cohesiveness of the way in which schemas have been

written. In the same way as it is possible to write badly structured programs, it is

equally possible to write badly structured specifications in Z, which increase the

maintenance effort required. For example, if schema inclusion has not been used

effectively, the scope of any modifications required may be quite widespread. It

therefore follows that the tool must support the schema inclusion and schema hiding

semantics of the Z notation.

105

3.2.13 Product Requirements for a Tool to Support the Specification Process

From the preceding discussion, it is now possible to draw up a list of product

requirements for a tool to maximise the efficiency of the specification process using a

formal notation such as Z. The list is shown in Table 3.

Specification Process Needs Tool Requirements

Provide support for evolutionary development and

refinement of the specification

=> Ability to load and save work to hard disk or

floppy drive.

=> Ability to print the specification on standard

printers

Provide support for exchanging information with

other components in the development environment

=> Support interworking with other specification

documentation packages (e.g. MS Word).

Support the process of specification development

by refinement of specification units
=> Provide automated support for the generation

of schema components within the specification

Support the generation of concise and cohesive

specifications

=> Provide automated support for the semantics of

schema inclusion and schema hiding

Support the evolution of the abstract state model. => Provide automated support for type generation

and checking within the Z notation

specification.

Support the functional modelling process to ensure

internal model consistency

=> Provide Automated tools for syntax checking of

Z notation specification

Table 3: Product Requirements for a Tool to support the Specification Process

It is interesting to note that these requirements call for some form of internal consistency

check (syntax or semantic analysis) within the tool. Several tools of this type, e.g.

Formaliser (Logica Inc, 1995) offer syntax-directed editing, in which the tool only

allows syntactically correct constructs to be entered as defined by the specification

language parse tree. The alternative approach is akin to the conventional compiler, in

which an off-line syntax checker is provided as a separately invoked function.

106

The research into specification writing in Z revealed an interesting point on this subject

in that, although Z specifications have formally defined syntax, getting the syntax correct

is not the primary concern during the initial usability phase o f the specification process.

Rather, at this point the specifier is more concerned with capturing the essence of the

model than syntactical correctness, and may find that the need to concentrate on

complicated syntax is a source of distraction. Hence to support this finding and to

enhance the creative processes involved in the early phases of the specification process, it

was decided to provide an off-line syntax checker, rather than enforce a syntax-directed

editor on the specifier.

A similar argument applies to the type checker. It is noted that many users find the Z

type system the most difficult part of the notation to understand. Hence, most users tend

to defer this problem until later stages of the specification process, when the model

concepts are more firmly defined. Moreover, users can usually identify syntax errors

more readily than type errors, and hence these tend to get resolved first. Therefore, the

tool should not only provide a separate syntax checking phase, but the user may select

whether this check is to include type checking or not. In this way, the user may take the

process of generating internal consistency within the specification in easy stages.

3.2.14 Developing Requirements for a Tool to Support the Agreement Process.

As discussed previously, each stakeholder involved in the requirements engineering task

will present a different set of concerns and viewpoints. The requirements engineering

process must foster a common understanding of the system specification, and in addition

must foster an environment within which agreement on its contents can be reached.

Without this agreement process the requirements engineering task can never be

concluded to the satisfaction of all stakeholders.

Whilst the representation and specification processes will assist in the production of a

high quality specification, they cannot prove that the specification is a true reflections of

what the stakeholders actually want. Secondly, they cannot prove that the specification

can be implemented by a computer system. This leads to two key problems in

107

requirements engineering which will be termed the semantic gap and the implementation

gap.

3.2.15 The Semantic and Implementation Gaps

But this book cannot be understood unless one first learns to comprehend the language and interpret

the characters in which it is written. It is written in the language o f mathematics... without which it is

humanly impossible to understand a single word o f it.

Galileo Galilei

II Saggiatore

The specification is a contract between the stakeholders and the developers. The use of

mathematical formalism helps to make this contract more precise, but is does not address

the crucial issue central to the agreement process, that of communication. Indeed, since

the Z notation used in the specification process is of an abstract mathematical nature, it is

unlikely to be understood by non-technical members of the stakeholder teams. Therefore,

how can agreement be reached if the stakeholders cannot understand what is being

proposed? This is a crucial limitation brought about by the mathematical nature of

formal specifications.

In addition, formalism can be used to verify that an implementation meets the

specification (Gries, 1981), but it cannot show that the specification can be implemented

on a physical computer. This problem arises from the gap between the abstract nature of

the objects used in the specification model, and the concrete structures available to

computer programmers. For example, the set objects involved in modelling a

specification may be legitimately infinite is size, however a computer does not have

infinite memory and cannot feasibly complete a search of an infinite object in finite time.

It is also the case that the types of objects used may be assumed to have infinite precision

(e.g. real numbers), but may be constrained to the size of the machine word in a physical

implementation.

Hence, to support the agreement process, a tool must support and foster a common

understanding o f the meaning o f the captured specification, at a level which all

108

members o f the stakeholder team (both technical and non-technical) can readily

assimilate. The achievement o f this objective is termed the common view. Secondly, the

tool must give some confidence that real world objects such as computer software and

hardware can implement the specification objects captured.

As discussed previously, this project addresses the first problem by the use of Animation

o f specifications. This process involves the provision of an environment in which the

user can populate the state space represented by the specification model with candidate

data. The user may then invoke operations from the specification on the candidate data,

and observe the changes to the state space. If the behaviour is as expected, then there is

a fair degree of confidence in the fact that the specification meets the requirements of the

user. In addition, the user may also be able to deduce additional properties of the

specification by animating “what-if scenarios.

Clearly, this animation process requires that the specification itself be transformed from

the non-executable Z notation into some language that can be executed by the animation

system. Since it is pointless for the users to do this by hand (since they would be in effect

building the required system), we expect that a tool should be capable of performing this

task. The executable form of the specification is essentially a rapid prototype, since it

generated automatically by the tool on demand and it is a skeletal representation of the

objects defined in the original specification. Hence the ability to transform a formal

specification into an executable representation is a key requirement for the tool If this

can be achieved, then we also implicitly address the implementation gap by showing that

we can implement the specification as a rapid prototype in computer software.

109

3.2.16 Product Requirements for a Tool to Support the Agreement Process

From the preceding discussion, it is now possible to draw up a list of product

requirements for a tool to support the agreement process using a formal notation such as

Z. The list is shown in Table 4.

Agreement Process Needs Tool Requirement

• Provide a mechanism for communicating the

meaning of the specification in terms that all

member of the stakeholder team can

understand.

• Provide a mechanism for ensuring that the

specification can be implemented by physical

objects (computer hardware and software).

=> Ability to transform the specification from its

non-executable form, to an executable

representation, suitable for validation in an

animation environment.

Table 4: Product Requirements for a Tool to Support the Agreement Process

3.3 A Process for Requirements Engineering Using TranZit, ZAL and ViZ

Thus far, we have investigated the requirements for a requirements engineering toolset to

address the generic representation, specification and agreement processes, and from this

work produced a set of high-level product requirements based on research into the

behaviour of stakeholder teams and the mechanisms involved in Z specification

construction.

Based on this research a toolset has been defined which aims to support a requirements

engineering process based on the capture of formal specifications written in the Z

notation and specification validation by execution. As discussed previously, the toolset

does not attempt to assist the elicitation process, since this process focuses on human

communication techniques that are difficult to support by computer-based tools.

110

The toolset associated with this project consists of three integrated, complementary

tools, which are loosely coupled to provide a complete requirements engineering

workbench based on the Microsoft Windows™ Operating System.

The requirements defined previously to support the representation and specification

processes are implemented by a tool called TranZit. TranZit is a Windows-based

requirements engineering tool for capturing Z specifications, and automating their

transformation to an executable representation. It incorporates powerful features

supporting the construction, manipulation and maintenance of Z specifications, as well as

tools for checking the internal consistency of Z specifications including a complete

Syntax Analyser and Type Checker. In addition, TranZit incorporates a novel

Transformation Engine, which allows captured specifications to be automatically

transformed (as far as possible) into an executable representation, suitable for input to an

associated animation environment called ZAL (Z Animator in LISP).

In addition, the animation environment is supported by a tool known as ViZ

(Visualisation in Z), which allows graphical representations of specifications to be

animated. This level of animation is at a higher level than ZAL and allows stakeholders

to view the operation of the system, using icons and graphics representing the real-world

objects modelled in the specification.

The agreement process is supported by TranZit, ZAL and ViZ as a co-operating,

integrated animation environment. The ZAL tool provides the execution engine for the

animation environment, accepting Z specifications that have been transformed into the

ZAL language by TranZit. ZAL provides a user interface to allow stakeholders to

populate the state space with candidate data, and investigate the properties of the

specification by use cases. This process is termed validation by execution.

Whilst reference is made to ZAL and ViZ in what follows, it is the research and

development of the TranZit tool which forms the basis of the work presented in this

thesis. A complete description of ZAL and ViZ is beyond the scope of this thesis, and in

what follows they shall be treated as separate entities to TranZit that export an interface

111

accepting transformed Z specifications in the ZAL language. In this way, TranZit need

only know the grammar of the ZAL language and the exported communication methods

to be able to interwork with the ZAL and ViZ applications. This has the additional benefit

that TranZit is independent of ZAL and ViZ and can be used as a stand-alone tool in its

own right. For further details of ZAL see Morrey et al. (1998) and Siddiqi et a l (1997).

For further details of ViZ see Parry et a l (1995).

112

3.3.1 The REALiZE Process

The REALiZE process (Requirements Engineering by Animating LISP incorporating Z

Extensions), has been developed to formalise the interplay between requirements

acquisition, requirements formalisation and requirements validation, as embodied by the

TranZit, ZAL and ViZ toolset.

The process fits into the standard software lifecycle model at the requirements analysis

phase as shown in Figure 3-6:

Software Lifecycle

REALiZE Process

Operation and
Maintenance

Design

Implementation

Requirements
Formalisation

Visualise
Animation

Requirements
Acquisition

Construct
Animation

Execute
Animation

Requirements
Analysis

Requirements
Validation

Figure 3-6: The REALiZE Process

Following an initial requirements acquisition phase involving techniques such as

interviewing domain specialists and user questionnaires, the specifier enters the

requirements formalisation phase. In this phase, the requirements are captured by the

113

specifier in the Z notation using the facilities provided by the TranZit tool. Once the

specifier is content that the formalisation is complete and that the specification captured

in TranZit is the best representation of the requirements possible at this stage, then the

specifier enters the requirements validation phase.

In this phase, the specifier first uses the transformation engine built into the TranZit

tool, to produce an executable representation of the captured Z specification in the ZAL

language (based on extensions to LISP). The TranZit tool then forwards this executable

representation to the ZAL environment. This representation can then be executed by the

specifier within the ZAL animation environment, for the purposes of demonstrating

properties of the captured specification to members of the stakeholder team. This can be

achieved by a number of methods:

• Scenario Walkthrough, in which use-cases are investigated representing the normal

operation of the system.

• Provocative Investigation, in which attempts are made to make the specification fa il

to exhibit some desired property.

• Exploratory Investigation, in which “what i f scenarios can be proposed and

investigated.

This process can take the form of either a formal review in which all stakeholders

participate, or simply at a peer review level. The aim is two-fold: Firstly to clarify

understanding of the specification itself for the benefit of all stakeholders, and secondly

to improve the quality of the specification by ensuring that the requirements embodied

are a true representation of what the system needs to do.

Finally, in order to make the system specification accessible to others outside the direct

stakeholder team, who may not possess detailed knowledge of the system proposal, the

ViZ visualisation tool can be used to produce a graphical representation of the required

system. This further enforces the validation process.

114

The logical interfaces between the individual tool components associated with the

REALiZE process are shown in Figure 3-7:

Interface to ZAL

Validate and Refine

ZAL
TranZit

ViZ

Validate and Refine

LISP

Execution
Environment

ZAL Animator

Z Notation Editor

Transformation
Engine

ZAL to Graphics
Visualisation

Engine

Syntax and Type
Checker

Figure 3-7: The Logical Interfaces between TranZit, ZAL and ViZ

It can be seen that the essence of the REALiZE process involves an iterative cycle of

validation and refinement of the captured Z specification using TranZit, ZAL and V7Z in

a co-operating environment. In this way the process retains the benefits of capturing the

specification in the formal Z notation, whilst at the same time offering an environment

which fosters effective communication between all members of the stakeholder team.

Thus the aim of the toolset is to maximise the benefits of the techniques chosen, in order

to produce a set of quality requirements embodied in a formal notation.

3.4 Summary

This chapter has explored the need for computer-based requirements engineering tools,

and developed a taxonomy of tools by analysing the needs of the stakeholders and the

115

viewpoint they present in the requirements engineering task. This research has been used

to develop the three primary uses for requirements engineering tools as:

• Tools for capturing and validating system functionality,

• Tools for managing conflicts between requirements and resources

• Tools for improving system reliability and maintainability

From these initial groups, a requirements engineering tools hierarchy has been developed

which identifies where tools can assist in the requirements engineering task.

Using Pohl’s model of the component processes within the requirements engineering

task, a set of high-level product requirements for a requirements engineering tool based

on the use of the Z notation have been developed. These requirements have been based

on research into the process of specification construction itself, and the thought

processes used by domain specialists in developing specifications in an industrial

environment.

Finally, the development of the REALiZE process has been discussed, which is

supported by a toolset consisting of TranZit, ZAL and ViZ. Together, these tools form a

powerful integrated environment supporting the capture, animation and visualisation of

formal specifications written in the Z notation.

The remainder of this thesis focuses on the research and development of the TranZit

tooL The next chapter begins this process by exploring the detailed design and

implementation of the TranZit Editor and Analyser subsystems.

116

4. Realisation of the TranZit Editor and Analyser Subsystem

This chapter discusses the research and development of the TranZit editor and the

TranZit Analyser Subsystem (TAS). TranZit provides the user front-end to the

integrated REALiZE toolset, as well as supporting checking and transformation of the

captured specification for use in animation. As well as being a member of the REALiZE

toolset, TranZit is a sophisticated requirements engineering tool in it’s own right,

addressing many issues associated with the representation and validation phases of the

generic requirements engineering lifecycle.

The main features of TranZit are as follows:

• TranZit includes a powerful, full-screen Z editor that presents a WYSIWYG GUI in

which the user can construct Z notation specifications from user requirements. The

editor is language-aware, allowing it to automate many of the formatting and

specialisations required in the use of the Z notation, without constraining the creative

process of specification development itself.

• TranZit includes a complete Z notation syntax analyser based on an optimised version

of Spivey’s (1992) original grammar, which has also been extended to meet the

requirements of the Z base standard V1.0 (Brien and Nicholls, 1992).

• TranZit includes a complete Z notation type checker, again derived from Spivey’s

language definition.

• Most importantly, TranZit includes a novel transformation engine, which has been

designed to automate (as far as is possible) the process of converting the Z notation

specification into a procedural representation in the ZAL Language. It is this feature

which provides integration with the other animation tools in the REALiZE process.

In this chapter it will be shown how existing graphical user interface and compiler design

techniques have been combined with research into the requirements engineering

representation and validation processes, to develop a tool which assists the specifier in

producing a high quality specification from ad-hoc user requirements.

117

The research and development of the TranZit Analyser Subsystem (TAS) is also

described, which is a highly efficient syntax and type checker for Z. The TAS makes use

of traditional compiler design techniques coupled with innovative research into object-

oriented data structures to support internal consistency checking of Z notation

specifications.

4.1 Research and Development of the TranZit User Interface

The interface that a program presents to the user is perhaps the most important part of

any professional development tool, or indeed any program in general. The reason for

designing a computer program to perform any task is to save time and effort. Hence the

aim of the user interface is to ensure that the effort required to enter data into the

program, manipulate it within the program, and collect results from the program is

performed in the most effective manner possible.

As highlighted by Thimbleby (1990), user interface design is a very difficult business as it

combines two awkward disciplines; psychology and computer science. These disciplines

have very different cultural backgrounds: Psychology is concerned with understanding

people, whilst computer science is concerned with understanding computer machinery.

Good user interface design therefore requires that both these perspectives be considered.

With many early programs, users were often faced with the intellectual challenge of

having to work out how to make the program accept information, and then how to

manipulate that information, even before any results could be obtained. This often led to

user frustration and dissatisfaction, overshadowing the usefulness of the program itself.

A good example of this problem is the Vi editor tool, which is a standard component of

the UNIX® operating system. In itself, this is an excellent full-screen editor with many

powerful features and a long-established reputation for reliability. However, the user

interface of the program is so complex as to be very difficult to learn, requiring multiple

combinations of key presses to perform tasks, and knowledge of special command line

syntax. To users who have taken the time and effort to learn Vi, the full power of the

tool is readily available to them and the majority hold the tool in high regard. However

118

the learning curve involved in acquiring the skills to use the tool in the most efficient

manner, leaves the full power of the tool inaccessible to many would-be users.

This type of problem is typical of many programs designed by domain specialists, in

which the designer focuses on the internal algorithmic complexity dictated by the

features that the tool must provide, to the detriment of the user interface design. The

result is often a very powerful program with a well-defined set of facilities, but which can

be very difficult to use.

Some would argue that it is the quality of the user documentation that ultimately dictates

the usability of a program. However, experience suggests that the majority of users,

especially technically-minded users, will begin by trialling the program by

experimentation. This is an attempt to get a feel for the program before resorting to the

user documentation for a detailed explanation of its operation. This trial phase is often

critical in colouring the user’s perception of the program, and ultimately influencing

whether they intend to continue to use it.

Hence it is important that as many of the program’s facilities as possible are intuitively

available to the user, without needing to address the documentation reference. Whilst the

quality of the documentation and training associated with a program are very important,

many users view the ease with which they can immediately begin getting results from a

program as a benchmark of whether they will continue to use the program. Indeed it

could be said that the essence of the usability problem, or the achievement of a user-

friendly program, is mainly concerned with building intuition into the user interface.

In general, the principles of a good user interface design include:

• Well laid-out and clearly presented screen designs, making appropriate use of

graphics to enhance presentation, delineate features and improve understanding.

• A well thought-out, intuitive input mechanism (utilising common keyboard characters,

commands or mouse input).

• A well-defined boundary between input mechanisms which control the way the

program operates and the entry of program data (this is one of the reasons why the

119

use of a keyboard and mouse is such a powerful input combination. Users associate

the mouse with program control and the keyboard with data entry).

• Flexibility in the way in which data can be entered.

• Tolerance to user uncertainties and mistakes.

• Clear use of language and symbols to identify features.

• Appropriate user-guidance by the program.

• Appropriate and clearly understood error reporting.

• Readable and comprehensible output, presented at a rate which can be readily

assimilated by the user.

The amount of effort required to engineer a well-designed user interface should not be

underestimated, and can often contribute a large amount of intellectual prototype work

as well as detailed design time to the project. However, since this is the only part of the

program that the user will ever interact with, it is vitally important that the right level of

abstraction is attained between the program function and the user interface it presents.

A complete discussion of user interface principles is beyond the scope of this work, and

the goals of user interface development have been well researched. For an excellent

introduction to the subject see Thimbleby (1990).

The majority of popular user interfaces, such as the Microsoft Windows™ user interface,

employ some form of graphical user interface (GUI) to increase the expressive power of

the program by utilising screen designs and icons easily assimilated by the user. Indeed,

this style of user interface now dominates the PC market due to the proliferation of the

Windows operating system. The remainder of this section describes how features of the

Windows user interface have been used to present the GUI of the TranZit tool,

associated with capturing and manipulating Z notation specifications.

4.1.1 The TranZit User Interface Design

The TranZit screen design is based on the principles of the Microsoft Windows™ GUI.

This is a well-established, well-understood interface, which embodies particular

conventions that experienced users expect to find as part of a Windows application. As

120

far as possible, these conventions have been observed in the screen design of TranZit,

allowing experienced Windows users to begin using the program with the minimum of

training.

The philosophy behind the TranZit user interface is to offer the user a comprehensive set

of tools for capturing and manipulating Z specifications, and to be able to use the

captured specification in the wider context of animation. However, on a practical level,

the tool is intended for use by both a novice user unfamiliar with Z, and also an

experienced requirements engineer.

To accommodate these goals, the TranZit user interface is designed to present the

features of the tool in a hierarchical fashion based on the experience level of the user, as

show in Figure 4-1:

121

Experience
Cut

File
AccessPrint

Delete

-Generate Z
Notation
Characters

Insert
Schema box "•<

Cut/Paste
Schema Search for

Definition

Type
.Checker

Syntax
Analyser

Animation
.Analysis

Transformation
Engine

Standard Editor Tools for
Capturing Z Specifications

Tools for Animation Support

Enhanced Editor Tools for
Supporting the Z Notation

explicitly

Tools for Specification Quality
Checking

Figure 4-1: Hierarchy of TranZit Features

The aim of this approach is firstly to accommodate different levels of user experience

with the Z notation, and secondly to provide a learning vehicle to increase the user’s

understanding and experience of formal methods through using the tool itself.

4.1.2 The TranZit Main Editor Window

On executing, TranZit presents the main editor window, which consists of a Menu bar

from which features are selected, and a client area where the specification itself is

constructed. The main editor window is shown in Figure 4-2:

122

Access to Editor
Features

Access to Standard
File Features

Access to Navigation Access to Z notation
and Viewing Features Symbols Access to Tools

(TASandTTE)

Access to Z Notation
Features

Menu/ToolBar

Fie Edit View Symbols Took Notation

/ * P e r s is te n t Object S to r a g e m anager CPOSM) * /

ID, TYPE, STATE , MESSAGE, VALUE, NAME, PREDICATE]

o b jec t == ID -* * STATE

in stV ar == NAME TYPE

o p era tio n == ob ject x MESSAGE ■+» ob ject

n O peration == NAME -+» o p era tio n

== TYPE P VALUE

CONSTRAINT PREDICATE

classp rop sC O N S T R == CinstVar x nO peration) X CONSTRAINT

Specification
Construction Area

Scroll Bars

Figure 4-2: TranZit Main Editor Window

At this level the TranZit user interface appears much the same as any other Windows

application, and this is a deliberate design aim to ensure that the tool adopts the

conventions o f the environment in which it is intended to operate.

The functions o f the tool are grouped on the menu bar according to standard Windows

conventions. For example, under the FILE menu are tools to load, save and print the

contents o f the specification. Under the EDIT menu are tools to manipulate the contents

o f the specification during an editing session. Similarly, under the VIEW menu are tools

to navigate around the captured specification efficiently. However in addition the system

presents specialist menus accessing functions to manipulate Z specifications specifically

such as the NOTATION, TOOLS and SYMBOLS menu.

123

4.1.3 The Use of Object-Orientation to Support the Capture of Z specifications

Whilst one would expect TranZit to include a basic set of editing tools (e.g. cut and

paste), TranZit is much more than a simple editor system and incorporates enhanced Z

language-supporting features within the user interface design.

Normally, basic editors deal with simple character objects. However, to achieve the

language-supporting features, additional specification construction objects are made

known to the system, which can be used by both the editor, syntax analyser, type checker

and transformation system.

In particular, TranZit treats schemas as objects in their own right. The object is created

when a schema is created in the editor, and additional attributes are then added as more

sophisticated tools are employed (Le. types are added by the type checker). The editor

recognises three derived classes of the virtual base class Schema, as in Schema box,

Generic Schema and Axiomatic Schema. The editor has knowledge of how to create the

graphical outline of these objects, and can manipulate them as individual editor objects.

The editor is responsible for maintaining the integrity of these objects within the system,

and provides methods to manipulate them. For example, the only way to create a schema

box in TranZit is to use the OPEN_SCHEMA tool from the NOTATION menu bar. The

user is then presented with a dialog in which to enter the attributes of the required

schema object, as shown in Figure 4-3.

124

Open Schema Box

Schema Name

SortList

Schema Type-------------

(* Schema Box

Generic Schema

f’ Axiomatic Defintion

C Short-foim Schema

OK Cancel

Formal Parameter List

r Declarations Only

Prefix

I- Delta Convention

r Psi Convention

Figure 4-3: TranZit Open Schema Dialog

Once the relevant parameters are entered, TranZit will create, draw and maintain the

integrity o f this schema object internally. In particular, the editor will automatically

expand the schema graphical outline as information is inserted into the declarations and

predicates sections. This allows TranZit to help the user to maintain the specification in a

consistent state, as the user cannot access the attributes o f the schema object directly (for

example, the user cannot edit the schema box outline manually).

This object-oriented approach also yields additional benefits, as the user can manipulate

entire schema objects within the editor in the same way as conventional characters (e.g.

the user can cut and paste whole schemas simply by placing the cursor within the schema

object). Using an object-oriented approach thereby expands the capabilities o f TranZit

beyond a simple text editor, to a sophisticated capture tool for the Z notation, supporting

language features to maintain the consistency o f the captured specification.

4.1.4 Accommodating the Learning Potential of the User

Another important characteristic o f a mature user interface design, is the ability o f the

user interface to accommodate the learning potential o f the user. Initially, the program

and user interface should try to lead the novice user through the task o f completing

125

operations within the program environment. However, as the user learns how the

program works and becomes more adept at controlling it, the program should not

constrain the user to working at this primitive level. Thus the program should offer

alternative facilities whereby so-called power-users can use the program in a more

efficient manner.

To support this view of TranZit as a learning aid for the Z notation, elements have been

incorporated in the user interface to aid in the selection of specialist Z notation

characters. Undoubtedly, one of the most daunting problems faced by any newcomer to

Z is the need to understand the mathematical principles of the notation. This is not

helped by the strange character set that must be learned in order to express these

principles. Whilst TranZit cannot teach the mathematics explicitly, it can aid the novice

user in locating the relevant characters and providing a basic description.

To this end, Z notation characters are accessible from the SYMBOLS menu and are

arranged in dialogs according to their functional grouping, to allow users to easily locate

the character required.

An example of a symbol selection dialog, highlighting the functional grouping for

expression symbols is shown in Figure 4-4:

126

Expression Symbols

C IP Power Set

P x C artesian Product

f.................... I
i Cancel

P * S et Comprehension

r \ Lambda E xpression

P j l Mu E xpression

P 0 Binding Formation

Figure 4-4: TranZit Symbol Selection Dialog

The user may now insert the required symbol at the current cursor location simply by

clicking on the symbol, or its description, with the mouse. This menu structure aids the

notation learning process by guiding the user from the general functional grouping to the

specific symbol required. However, as the user becomes more proficient in the notation,

this two-level menu access procedure may become tedious. Therefore, for power-users,

TranZit also makes symbols available as Windows Accelerator keys. In this case, all the

special characters are available from the standard keyboard using combinations o f the

ALT and CONTROL keys (for example, the AND character ‘ a ‘ is accessed by the

virtual key ALT ‘A ’). Indeed the entire menu system may be navigated in a similar way

for those users who have advanced to this level o f proficiency. Thus, the power and

efficiency o f the tool grows with the learning capability o f the user.

As a point o f interest, in order to increase the efficiency o f Windows graphics usage,

TranZit uses its own TrueType font designed specifically for this project, which contains

all the standard character set plus additional specialist Z notation characters within the

same Windows font object.

127

4.1.5 Considerations in Designing the GUI for the TranZit Analyser Subsystem

In addition to capturing Z specification within the computer system, TranZit includes

additional tools to support internal consistency checking of the captured specification. In

essence, this involves a syntax analyser and type checker, which together form the

TranZit Analyser Subsystem (TAS). However, the mechanisms used to integrate these

tools into the TranZit user interface are of great importance.

Similar tools to TranZit supporting formal specification, e.g. Formaliser (Logica Inc,

1995), take that approach that input to the editor system is syntax-directed. In this

paradigm, the editor tool uses an internal representation of the Z notation grammar to

determine whether the user input is syntactically correct in the context of the current

specification state. In this way, the user cannot enter syntactically incorrect constructs, as

the tool will automatically prevent this. The argument for syntax-directed editing asserts

that the specification is always in a correct state, which therefore eliminates the iterative,

and sometimes tedious, edit-compile-correct cycle associated with most separate syntax

analyser/compiler phases.

From a purist viewpoint there is certainly merit to this argument, as formal specification

is concerned with ensuring the consistency and improving the quality of specifications.

However, recall that the major design principle of the TranZit user interface takes the

view that the system should be usable by a novice user. If one is well versed in the Z

notation syntax, then a syntax-directed editor is an ideal tool for ensuring that minor

mistakes do not slip through unnoticed. However, this approach requires that users

possess a fair degree of knowledge of the Z notation syntax before the tool can be used

at all.

From the research discussed previously in section 3.2.6 associated with the way we think

when constructing specifications, it has been noted that many people adopt an almost

TDSR approach to constructing a specification, involving an iterative cycle of

specification object identification and refinement. Thus, the construction of an abstract

specification proceeds very much along the lines of program design, as people tend to

128

find this way o f thinking more approachable than beginning from a purely mathematical

standpoint. It is interesting to note that even the Z notation itself has evolved to include

these more imperative constructs (e.g. the Z construct if predicate then expression else

expression). It is believed that this is a direct response to the way in which people think

during specification construction. It therefore follows that, since syntactical correctness

is not the primary concern o f the majority o f users during the early stages o f specification

construction, it would be an unnecessary constraint o f the TranZit tool to make syntax-

directed input a requirement o f the editor system. The TranZit system therefore includes

separate syntax and type checker phases, which can be invoked at any point in the

specification construction process, as the user requires.

The TranZit analyser subsystem is also flexible in the way it can be invoked to meet the

requirements o f different users. The associated control dialog is shown in Figure 4-5:

Analyser and T ransformation System

Syntax Analyser

100 Maximum Number of Syntax Errors Reported

P Report Undefined Functions W Enable Type Checking

Transformation System

P Transform Z to ZAL
r W rite to C lip b o a rd F? W rite to File

ZAL

l - l
[a3w data]
[alluse~1] - d

Start Cancel

Figure 4-5: TAS Control Dialog

The syntax analyser can be programmed to output a maximum number o f errors (meeting

the standard user interface requirement that the program output can be adjusted to meet

the rate required by the user), and also whether it is to report undefined or implicitly

defined functions (e.g. Z library functions).

129

In addition, it has been noted from experience with the tool and from teaching exercises

that novice users initially find the Z type system more difficult to assimilate than the

syntax. There is therefore an option in TranZit to independently disable the type system

whilst the user concentrates on resolving syntactical problems.

The output o f the syntax and type checker is amalgamated into a TAS Results Window as

shown in Figure 4-6, which is displayed independently o f the main editor window.

? TranZit Syntax Analyser Errors in C:\WINDOWS\POS.ZED

jWarning at line 34, column 3 : Standard Z Library Function 'dom' assumed

Error at line 34, column 7 : Identifier objecfnfo Undefined

Error at line 34, column 7 : Argument Type Mismatch in Function Application... != P CC ?X)

Figure 4-6: TAS Results Window

This gives a detailed description o f each problem and its location. Again, to improve

efficiency, the results window and editor window are internally coupled such that if the

user double-clicks on a line in the results window, the editor window will automatically

go to the location in the file where the problem has been identified.

In the case o f a type error, the type checker will also generate a type mismatch summary,

which shows the pure types o f the objects it was attempting to resolve at the point when

an error was detected. An example is highlighted in Figure 4-7.

? TianZit Syntax Analysei - Eiioi* in C:\REQENG\BANK.Z
6, column 16 ■ Type Mismatch in Binary Relation... P ((ACCNOS) x (P (N))) != P ((?X)

if

Figure 4-7: TAS Type Mismatch Summary Example

This information can in turn be used to identify the particular abstract object whose type

is in error. As shown in the example above, the type checker identifies the generic type it

is expecting to the right o f the c!=‘ indication, indicating unbound variables using the

130

‘?X’ nomenclature. The bound type string is shown to the left of the *!=* indicator,

showing the mismatch which occurred.

An interesting side-effect of implementing a separate syntax and type checker subsystem,

which was not anticipated, was observed when trialling the system with students

performing a specification exercise from first principles. It was noted that the users seem

to view the syntax and type checkers as a challenge to achieving a syntactically correct

specification. This appears to give a very clear goal in the specification construction

process, and users were in fact heard to use the term “compiling the specification”, as

one would use in the context of general program development. There is little doubt that

in their efforts to overcome this challenge, users are forced to address the issue of

learning the Z syntax and type system. However, with the approach fostered by the

TranZit design, this can be taken a step at a time and can be adjusted to grow with the

learning capacity of the user.

4.1.6 The User Interface to the TranZit Transformation Engine (TTE)

The TranZit Transformation Engine (TTE) is the key tool that integrates TranZit with

the rest of the REALiZE toolset. This is a sophisticated component which automates the

transformation (so far as is practicable) of a captured Z specification into the executable

ZAL language (extended LISP) for input to the REALiZE animation tool called ZAL.

A detailed description of the TTE is deferred until Chapter 5: Research and Development

of the TranZit Transformation Engine. However, as far as the user interface to the

Transformation engine is concerned, this is viewed as an integral part of the process of

producing a syntactically and semantically correct specification. Thus the control of the

transformation engine is built into the user dialog associated with the analysis subsystem,

as shown previously in Figure 4-5.

To ensure the correctness of the transformation and to obviate the need to add additional

internal error detection, the transformation engine can only operate on a syntactically and

semantically correct Z specification. Thus, the transformation engine will only output

131

information if the syntax and type checks pass. This output is formatted (the

transformation engine output phase incorporates a LISP pretty printer) and can either be

stored to a file for input to the ZAL system, or it may be placed on the Windows

clipboard for pasting into other suitable applications (e.g. for documentation purposes).

A sample output window showing a transformed specification in the executable ZAL

language is shown in Figure 4-8:

1 Z to ZAL Transform ation for C :\R E Q E N G \B U R E A U .Z

(SCHEMA Bureau
:PREDICATE

1
(SCHEMA Join

:? new?
:PREDICATE

(and

)
(SCHEMA Marry

:? (p i ? p2?)
: PREDICATE

(and

(eqz (inter married unmarried] 0]

(eqz (inter married unmarried) 0]
(not-mem new? (unionz married unmarried 0
(eqz unmarried' (unionz unmarried (new? }))
[eqz married1 married]

(eqz (inter married unmarried) 0]
(eqz couple (p1?p2? })
(subset couple unmarried)

J J

Figure 4-8: Example Transformation Output Window

An important design decision in TranZit is that the user cannot edit or manipulate the

transformed specification in the ZAL language using the TranZit tool. This is because it

is paramount in the REALiZE process that it is the captured Z specification that is the

primary source o f information for the system developers. The transformation does not

exist to support exploratory prototyping directly in the ZAL language. Rather, it exists to

support the requirements engineering agreement task within the REALiZE process, by

providing an executable representation o f the captured specification for the purposes o f

animation. If the user were allowed to change the ZAL representation directly, this

132

potentially creates inconsistencies between the animation results and the original Z

specification, which cannot be traced. Thus the whole basis of the REALiZE process

would be flawed, as it would not be possible to show that the specification is a true

reflection of the customer requirements. Since the process of producing a ZAL

transformation is automated in so far as is possible, then there is little effort required to

produce a new version from a refinement of the original Z specification, and hence no

need to modify the ZAL representation. Similarly (even were it possible), there is no tool

to convert a ZAL representation back into the corresponding Z notation, as some

semantic information is lost in the conversion to an executable representation which

cannot be adequately regenerated. Thus the tool enforces the rule that the transformation

process is one-way (Z to ZAL) and that no manipulation of the ZAL representation is

allowed other than by corresponding changes to the original Z specification.

4.1.7 Evaluating the TranZit User Interface

The research and development of the TranZit user interface has been evaluated by

exposure to students and staff at Sheffield Hallam University (SHU) with a variety of

experiences in constructing Z specifications. The analysis of these results has been

formalised by the production of a questionnaire, which canvasses user opinion

concerning the success of the various design decisions made. A discussion of these

results is presented in section 6.2.

4.2 Research and Development of the TranZit Syntax Analyser

The next major component in the development of TranZit involves the addition of a

syntax analyser for the Z notation. The addition of internal consistency checking to the

system is a vital component in the process of generating a procedural representation.

This is because a procedural representation cannot be developed until the original Z

specification is both syntactically (and semantically) correct. In addition, the syntax

checking process generates symbol table information, which is required by the

transformation process as discussed later. Together with the type checker discussed in

section 4.3, the syntax analyser forms a component of the TranZit Analyser Subsystem

(TAS).

133

Syntax analysis is concerned with the structure of a language, and not the meaning

(semantics). In this case, the essence of the syntax analyser is the ability to recognise

sentences in the Z notation. That is, the syntax analyser has an understanding of the

grammar of the Z notation. However, before it is possible to discuss development issues,

it is necessary to introduce the concepts and basic definitions (based on Gries, 1971)

which will be used in the description of the syntax analyser.

4.2.1 The Parsing Problem

In the first instance, we are concerned with defining, designing and implementing a

program that is capable of recognising or parsing sentences in the Z notation.

Consider the English sentence "The big dog ate the biscuit". Knowledge of English tells

us that this is a sentence of the language. English grammar identifies that sentences in

English consist of subjects, predicates, nouns and verbs amongst others, which can be

put together in a variety of ways in order to construct valid English sentences. In the

case of the sentence above it is possible to show the derivation diagrammatically, using

the basic rules of English grammar as shown in Figure 4-9:

<Sentence>

<Subject> <Predicate>

<Article> <Adjective> <Noun> <Verb> <Direct Object>

<Article> <Noun>

The big dog ate the biscuit

Figure 4-9: Example Syntax Tree

134

A diagram like the one shown in Figure 4-9 is called a syntax tree and describes the

syntax or structure of an English sentence by breaking it into its constituent parts. That is

<sentence> is composed of <subject> followed by <predicate>, <subject> is

composed of <article> followed by <adjective> followed by <noun>, and so on.

In order to describe the structure of the language, new symbols or syntactic entities are

introduced, such as <sentence>, as nodes of the syntax tree. These symbols are enclosed

in angular brackets to distinguish them from the basic or terminal words of the language.

Any node in the tree that has more branches emanating from it is called a non-terminal

symbol The nodes forming the leaves of the tree are terminal symbols, which are actual

words in the language.

To mechanically decompose sentences by computer algorithm, it is necessary to define

formal and precise rules governing the general structure of the language rather than

particular sentences. Such a general language description is called a grammar.

It is important to differentiate between the syntax (or structure) of the language and its

semantics (or meaning). For example, we could generate a different sentence from the

syntax tree shown previously which is syntactically correct, but which is nonsense in

English, e.g. "the big biscuit ate the dog". This is because the diagram shown in Figure

4-9 conveys no meaning.

However, diagrams like the one in Figure 4-9 are cumbersome to handle and hence

various meta-languages have been proposed in order to express grammars in a more

succinct manner. The particular notation used in the definition of the Z notation grammar

is that due to John Backus (1959).

This particular notation is called BNF, which is an abbreviation for Backus-Normal or

Backus-Naur form. In BNF notation, "may be composed o f1 is abbreviated by the

symbol Hence, the information in Figure 4-9 can be represented in Backus-Naur

form as shown in Figure 4-10:

135

<sentence>
<subject>
<predicate>
<direct object>
<article>
<adjective>
<verb>
<noun>

<subject> <predicate>
<article> <adjective> <noun>
<verb> <direct object>
<article> <noun>
the
big
ate
dog | biscuit

Figure 4-10: Example BNF Notation

Once such a set of grammar rules exist, they can be used to derive or produce any

sentence in the language. For this reason, the rules are often called productions. Clearly,

some symbol is required to start the production, and in this case the start symbol is

<sentence>. The production system operates by identifying a rule with <sentence> to the

left of and proceeds by replacing this symbol with what is on the right. This

expansion is shown in Figure 4-11:

<sentence> => <subject> <predicate>

It is important to note that in the derivation of the sentence the left-most rule is replaced

first. This will be important in describing the implementation of the TranZit parser.

At this point, it is noted that using this notation, non-terminal and terminal symbols are

easily distinguishable without the need for the <..> notation, since a symbol is non­

terminal if it appears to the left of a symbol. Symbols not appearing to the left of

in some production are therefore terminal symbols in the grammar, as they have no

production rule to re-write them.

=> <article> <adjective> <noun> <predicate>
=> the <adjective> <noun> <predicate>
=> the big <noun> <predicate>
=> the big dog <verb> <direct object>
=> the big dog ate <article> <noun>
=> the big dog ate the biscuit

Figure 4-11: Expansion by the Production System

136

4.2.2 Definitions for Languages and Grammars

From the preceding introductory discussion, definitions can now be made as follows:

Informally a language is a subset of the set of all sequences of “words” or symbols taken

from some basic vocabulary. Note at this point that no meaning is attached to these

sequences. An alphabet is defined as being a non-empty, finite set of symbols, and a

finite sequence of symbols from the alphabet is called a string, including the empty string

s. Powers of an alphabet A can also be defined as in:

A° = {s}, A' = A, A“ = AA<°'1) forn>0

• Definition: The closure A* and positive closure A+ of set A, are defined as:

A+ = A*u A2 u .. An u A(n+1)

A* = A0 u A+

Thus if A = {a,b}, A* includes the strings e, a, b , aab, aaabbbbb, bbbb..

It is now possible to define some rules or productions that organise the symbols of the

language.

• Definition: A production is an ordered pair (U^c), written U ::= jc, where U is a

symbol and jc is a non-empty finite string of symbols. U is the left part, and jc is the

right part of the production.

Hence, the definition of a grammar follows as:

• Definition: A grammar G[Z], is a finite, non-empty set of productions. The

distinguished symbol Z is a symbol that must appear as the left part of at least one

production. The set of symbols used in all the left and right parts form the

vocabulary v. Where it is obvious from the context or the distinguished symbols Z is

unimportant, G may be written instead of G[Z].

137

• Definition: Given a grammar G, those symbols appearing as a left part of a rule are

called non-terminals or syntactic entities. The set of non-terminals is termed VN.

The remaining symbols not in the set VN are called terminal symbols. These form the

set VT such that v = VN u VT.

It is now possible to define the language that corresponds to some grammar. That is, it is

necessary to define the sentences that belong to the language. This is achieved by

defining three new symbols, =>, =>*and =>+. Informally, a => p if we can derive P from a

by replacing a non-terminal in a by the right hand side of some corresponding

production.

• Definition: Given a grammar G, the string a directly produces the string p, written a

=>P, if a = jc U y and P = x u y, for some strings x and y, where U ::= u is a

production of G. Alternatively p is a direct derivation of a , or p directly reduces to

a .

• Definition: a produces p, or p reduces to a, written a =>+ p, if there exists a

sequence of direct derivations:

Of- — Xo —^ %1 —^ %2 —^—^ X» — P» for n > 0

The sequence is termed a derivative o f length n. The string p is said to be a word for a .

• Definition: a =>* p, if a =>+ P or a = p.

Informally, a language is simply a subset of the set of all terminal strings VT. The

structure of a sentence in the language is given by the grammar. It is important to note

that several different grammars may generate the same language. Hence:

• Definition: If G[Z] is a grammar, a string x is called a sentential form if x is derivable

from the distinguished symbol Z, i.e. Z =>* x. A sentence is a sentential form

consisting of only terminal symbols. Hence the language L(G[Z]) is the set of

sentences:

138

L (G[ZJ) = { jc I Z =>* x a x g VT"}

4.2.3 Language Classes

Formal language theory developed mainly out of the work of Chomsky (1956) who

performed much of the early mathematical analysis that led to the understanding of

modem computer languages. Chomsky was not directly concerned with the problems of

analysing the syntax of a programming language, however the mathematical results

generated address a number of issues with the development of a program for recognising

grammars. In summary, Chomsky defined different classes of language in which certain

properties are evident. The languages are defined in terms of grammars that generate

only languages in that class, and automata (or machines) which recognise only languages

of that class.

Chomsky defines four basis classes of language in terms of grammars, which are 4-tuples

(v,x,p,Z), where v is the alphabet, x is an alphabet of terminal symbols in v, p is a finite

set of production rules, and Z is a distinguished symbol (Le. Z g v - t) . The difference in

the four types of grammars is in the form of the production rules p.

• Definition: A grammar G is type 0 or phrase-structured if the rules of p are of the

form:

x ::= y with x in v+ and y in v*

That is jc can also be a sequence of symbols and the right part y can be empty. In general

grammars of this type are of little practical use.

• Definition: A grammar G is type 1 or context-sensitive if the rules of p are of a more

restricted form:

jc U y ::= jc u y with U in v - x, jc and y in v \ and u in v+

The term context-sensitive refers to the fact that U can only be re-written as u in the

context jc .. y.

139

• Definition: A further restriction defines that a grammar G is type 2 or context-free if

the rules of p are of the form:

U ::= u with U in v - x, and u in v*

The term context-free refers to the fact that U can be re-written as u regardless of the

context in which it appears. Put another way, any U in a sentential form can be expanded

using a production of the form U ::= u, regardless of what strings surround U in the

sentential form.

• Definition: A final restriction defines that a grammar G is type 3 or regular if the

rules of p are of the form:

U ::= N or U ::= WN with N in t, and U and W in v - x

Regular grammars play an important role in language and automata theory since

languages derived from them can be recognised very efficiently. Unfortunately, regular

languages are quite limited and are incapable of describing quite simple programming

constructs. For this reason their use is generally associated with recognising basic

symbols or tokens in a program, forming the basis of a scanner or lexical analyser.

The four classes of grammars defined are increasingly restrictive; that is there are phrase-

structured languages which are not context-sensitive, context-sensitive languages which

are not context-free, and so on. The ability to define a language in terms of one of the

classes defined by Chomsky allows mathematical analysis of the associated grammar to

determine properties of the language. Such analysis then allows the definition of

corresponding automata, which is an important step in designing efficient and practical

parsers for a language.

4.2.4 Grammars and Automata

As already shown, the syntax of the majority of programming languages and notations

can be defined using the BNF notation. Indeed, the Z notation itself has been formally

140

specified in such a way by Spivey (1992) and in the Z Base Standard (Brien and Nicholls,

1992).

It is therefore possible to apply the theory of languages and grammars to the BNF form

of the Z notation, in order to determine the properties of an automata to recognise

sentences of the Z notation.

It is noted that BNF effectively corresponds to limiting the left-hand side a of each

production a => p in a type 0 grammar, to be a single non-terminal symbol. From the

previous definition, such a type 0 grammar with this restriction is a type 2 or context-free

grammar. Hence the representation of the Z syntax in Spivey (1992) is given in terms of

a context-free grammar (CFG).

It can be shown (Rayward-Smith, 1995), that any regular grammar G = (v,x,p,Z) can be

represented as a directed graph with arcs and nodes, such that each node is labelled with

an element of v. If there exists a production a => ap in p, then the node labelled a is

connected to the node labelled p with an arc labelled a. Such a graph augmented with an

additional start and finish node, describes a Finite State Automata (FSM). If there are

any nodes with more than one arc leaving it with the same label, then the finite state

automata is said to be non-deterministic.

• Definition: A non-deterministic finite state automaton (NFSA) is a 5-tuple, M =

(K,T,t,ki,F) such that:

> K is a finite set of states.

> T is a finite input alphabet.

> t is a total function K x T ^ > 2K called the transition function.

> h e K is a designated start state.

> F c= K is a set of final states.

A non-deterministic Pushdown Automata (NPDA), can be informally described as an

NFSA with a stack, the top element of which can influence the transition function. Hence

in an NPDA the set of next possible states depends upon the current state, the input

141

symbol and the symbol which is popped off the top of the stack. When changing to a

new state an NPDA may also push any finite number of symbols onto the stack.

• Definition: A non-deterministic PushDown automaton (NPDA) is a 7-tuple, M =

CK,T,V,p,ki, Ai'F) such that:

> K is a finite set of states.

> T is a finite input alphabet.

> V is a finite set of stack symbols.

> p is a total function K x V x T —» 2KxV* called the pushdown function.

> ki g K is a designated start state.

> A;.e V is a designated start symbol on the stack

> F c K is a set of final states.

It can be shown (Rayward-smith, 1995), that every regular language L c f can be

accepted by some NFS A, M = (K,T,t,ki,F). From this NFS A we can construct a NPDA,

M1 = (K,T,{l},p,k],lF), (where 1 is a special bottom of stack marker), such that

T(M1) = L. In this case M1 simulates the action of M by ignoring the contents of the

stack.

To ensure this condition, p is defined by:

p (k,l,a) contains (k’,±) iff k' e t(k,a) for some input symbol a.

Thus the stack remains at 1 throughout the moves made by M1. So,

x e T(M‘) i f f , x) r \ (F x {±}) *{}

i f f t(ki, x) r \F *{}

i f f jc e T(M)

i f f jc g L

This argument shows that every regular language can be accepted by some NPDA. By

example, we know that an NPDA can be used to construct a language which is not

regular, e.g. T(M7) = {jcjcr I jc g [a , b}+} for some input a and b, hence we know that

NPDA’s will accept a strictly greater class of languages than a FSA.

142

Hence, this result shows that NPDAs are the acceptors for Context-Free Languages

(CFLs). That is for every CFL, L, such as the Z notation, there exists an NPDA that

accepts that language. This is an important result, which will be used in determining the

parsing technique to be adopted in the TranZit syntax analyser.

4.2.5 Grammars and Ambiguity

In the example discussed in section 4.2.1, the syntax tree and production rules showed

that it was possible to produce two sentences in the language, namely:

1) “the big dog ate the biscuif

2) “the big biscuit ate the dog”

Thus this grammar produces two unique sentences and there is no way within the

specified rules in which to derive any other sentence. However, consider the following

grammar:

<sentence>
<sentence>
<subject>
<direct object>
<predicate>
<noun>
<verb>

<subject> <predicate>
<predicate> <direct object>
<noun>
<noun>
<verb>
time | flies
time | flies

The problem here is that the sentence "time flies" can be generated in two different ways:

<sentence>

or alternatively,
<sentence>

:> <subject> <predicate>
=> <noun> <predicate>
:> <noun> <verb>
=> time flies

:> <predicate> <direct object>
=> <verb> <direct object>
=> <verb> <noun>
=> time flies

143

Each way, the sentence makes sense in English; "time flies by very quickly" or "go and

find out how to time flies". The problem is that, out of context, it is not possible to tell

what the sentence part "time flies" means. That is whether 'time' is being used as the verb

'to time' and 'flies' is being used as the plural of winged insect, or 'time' is being used as a

noun and 'flies' as the direct object of the verb 'to fly'. Effectively, it is not possible to tell

what this part of the sentence means unambiguously. Clearly, this would be a major

problem for a computer language if a particular statement meant different things

depending upon the statements surrounding it.

Hence, if a compiler is to be able to translate all valid source programs in a language, the

grammar of the language must be unambiguously defined. Note it is the grammar that is

ambiguous, not the language.

• Definition: If for all x e L(G), any derivation of x yields the same derivation tree, the

CFG ,G, is unambiguous. If however, two of more distinct derivation trees exist for

some jc g L(G), G is ambiguous.

In some cases, it is possible to rewrite the grammar for a language in such a way that it

can produce the same set of sentences in the language, but the grammar is no longer

ambiguous. Conversely, there are languages which are inherently ambiguous, that is

there is no unambiguous grammar for the language. Unfortunately, on analysis the Z

notation as defined by Spivey (1992) turns out to be one of these languages, as explained

below.

As Spivey himself points out, the syntax for set expressions in the Z notation, as shown

below, is ambiguous.

Set-Expression ::= { /Expression,..., Expression/}

I { Schema-Text/• Expression/}

144

The problem is that if S is a schema, then the expression {S} may be either a (singleton)

set display, or a set comprehension equivalent to {S • GS}. Spivey makes the point that

the expression {S} should always be interpreted as a set comprehension and a set display

should be written {(S)}. However, this arbitrary convention is not enforced by the

grammar definition itself. However, understanding that this problem exists means it is

possible to make allowances for it in the parsing algorithm defined for TranZit.

4.2.6 Developing a Parser for the Z Notation Syntax

In the preceding discussion, grammars have been used to derive sentences of the

language represented by the grammar. However, it is also possible to take a sentence and

see if that sentence fits into the grammar of some language. This is called a parse. The

parse of a sentential form is essentially the construction of the derivation (and possibly

the syntax tree) for it, from the grammar of the language.

A parsing program or a parser is often called a recogniser since it recognises only those

sentences that can be derived from the grammar in question. This is of course, the

problem at this point; how to recognise specifications written in Z.

Previously in section 4.2.4, it was shown that NPDA’s are the acceptors for CFLs. As

identified by Rayward-Smith (1995), due to the non-deterministic nature of these

machines, a parser for a CFL will always involve some level of backtracking. The

algorithm itself proceeds deterministically, and at some point is presented with a choice

of possible alternatives represented by branches of the syntax tree. This means that it is

inherent in the design of the algorithm that the wrong choice will occasionally be made,

and backtracking will be required.

There are two ways to approach the task of parsing an arbitrary string x = aia2a3.. a„ e

L(G). The first approach is to start from the root node and build a syntax tree to work

down to the leaf nodes aia2a3.. an. This is called a top-down parse. Alternatively, it is

possible to start with the leaf nodes, and attempt to derive the intermediate syntax tree

nodes in order to arrive back at the root node. This is called a bottom-up parse.

145

On of the principle methods used in modem compilers is termed LL parsing. This is a

top-down approach, although for an LL parsing algorithm to be applied with maximum

efficiency to a language, certain constraints are placed on the grammar defining it. In

practise these limitations are not too severe and the approach can be applied in a wide

variety of compilation problems.

The theory of LL(fc) grammars, addresses the problem associated with determining which

branch of the syntax tree to select when a choice occurs. This clearly increases the

efficiency of the parsing algorithm by eliminating unnecessary backtracking.

• Definition: An LL(k) grammar (k > 1) is one where given any sentential form, oAy co

e f , A e N, y e (N u T) *, generated by a left-most derivation, at most a fc-symbol

look-ahead is required to uniquely determined which of the productions A on the left-

hand side should be applied next.

Hence, in an LL(k) grammar the production to apply next relies not only on the input

non-terminal symbol A, but also on the next k unmatched input symbols. If this is the

case in its own right, the LL(fc) grammar is said to be strong. However, if the production

to apply also relies on the string co e T* before A in the sentential form, and the string y

e (N uT)* after A, then LL(k) is not strong.

If it is known that the grammar of L(G) is LL(fc), then it is possible to write a parser for

L(G) using a well-known technique termed recursive descent. Although this technique

does not use a stack explicitly as for the implementation of a straightforward NPDA, it

makes use of the stack implicitly by constructing the parser from a set of procedures that

are inherently recursive. It follows that if the Z grammar is LL(k) then it is possible to

make use of this technique explicitly.

However, it can also be shown (Rayward-Smith, 1995) that if a grammar G = (v,x,p,Z)

is an LL(£) grammar, then G is unambiguous. Since we know that the CFG representing

146

the Z notation as presented by Spivey is ambiguous, it follows that this grammar cannot

be LL(fc).

Computer language designers often strive to represent the syntax of a language in such a

way that it is LL(fc), or the more important sub-class LL(1). Even if this is not the case,

as in the case of Spivey’s syntax for the Z notation, it is possible to apply transformations

to the grammar rules to bring the grammar closer to LL(fc) and thereby make use of

standard recursive descent techniques. Even if this cannot be fully achieved, the majority

of the parser can then be designed using recursive descent techniques, whilst the

remaining syntax rules are dealt with in a more ad-hoc manner.

4.2.7 Applying Iteration and Factoring Transformations to the Z Notation

Grammar

The basic Z notation grammar is presented in Spivey (1992). On examination of this

grammar, several things are immediately obvious. Many of the productions have right-

hand sides that contain more than one non-terminal symbol. Moreover the grammar is

clearly not LL(fc) for any k. To make the grammar more LL(fc) in nature requires the

elimination of several characteristics of the grammar, so as to reduce the value of k

required to determine the next branch of the syntax tree to develop the parse.

For example, examining Spivey’s original grammar for the production Predicate-1, it is

seen that there are three non-terminals on the right-hand side of the production, each

representing a possible progression of the syntax tree.

Predicate-1 ::= Expression Rel Expression Rel

I
I Schema-Ref

I Predicate-1...

147

Moreover, it is noted that the definition of Predicate-1 is of the form:-

X ::= X \ Y \ Z

Using a left recursive algorithm (i.e. try each possibility in the order given), the first thing

which will happen is to call X again, which in turn calls X again, and so on. Thus the

parser algorithm would loop indefinitely. However, since the T operator is associative,

this rule can be re-written as:

X ::= Z \ Y \ X

However, this still doesn't solve the problem, as there is no way of detecting loops in Z

or Y which might bring the derivation back to X. Moreover, Z and Y might themselves be

defined in a similar way, causing regeneration of the original problem. This issue is

generally termed the direct left recursion problem.

Clearly, the Z notation grammar must be re-written in such a way that these problems do

not occur, but which also preserves the original meaning of the grammar.

Two approaches are available (Gries, 1971), which are termed iteration and factoring.

These are mathematical transformations which can be applied to grammar rules, which

preserve the meaning of the rule but which help address the problem of direct left

recursion and so make the grammar closer to LL(k).

Consider the following rule exhibiting the direct left recursion problem:

E ::= E + T I T

Thinking about what this actually means leads to the result that the rule for E defines a

string consisting either of T on its own, or any number of Ts separated by the '+' symbol.

If we introduce some new notation "{ x }" meaning “zero or more occurrences of string

x ”, we can rewrite the rule for E as:-

148

E T { + T }

Note that the characters '{' and '}' are simply meta-symbols and are not part of the set of

terminal symbols used in the grammar.

Hence in the transformed version, direct left recursion has been eliminated from the

production without changing the meaning of the rule by the use of iteration. This

therefore ensures that the parse progresses at this point and does not enter an infinite

loop.

A simple example of where this rule can be applied in Spivey’s Z notation grammar is the

rule for Expression-2:

Expression-2 ::= Expression-2 Expression-3

I Expression-3

Which can be rewritten using iteration as:

Expression-2 ::= Expression-3 { Expression-3 }

Such a production is said to be in Griebach normal form. More formally, if all the

productions in a CFG are of the form:

A -> aa, A g N, a g T, a g (N u T)*

then the CFG is said to be in Griebach normal form.

If in a CFG there exist left recursive productions of the form,

A ::= Aa, A g N, a g (N u T)*

it can be shown that if,

A-» Aoti I Aa2 1 Aot3 1 ...Aam

are all the left recursive productions, with A on the left hand side, and

149

A —> Pi I P2 I ...Pn

are the remaining productions with A on the left hand side, then an equivalent grammar

can be constructed by introducing a non-terminal A’, and replacing all these productions

by;

A’—» oci I a 2 I (X3 1 ...amI oti A’l a 2 A’l a 3 A’l ...amA’

A - > p 1 ip2 l.. .p„lpi A’l p2 A’l ...pnA’

The second possibility for transformation is called factoring. This involves the

identification of productions of the form:

U ::= x y I x w I ... I x z

Using factoring, the symbol x can be taken out as a factor from the production in much

the same way as it would in a mathematical formula. Hence, U is re-written:

U ::= x (y I w I I z)

where the symbols X and 7 are also meta symbols.

An example where this can be applied in Spivey’s Z notation grammar is part of the

Predicate-1 rule, as shown below:

Predicate-1 ::= X

I Predicate-1 a Predicate-1

I Predicate-1 v Predicate-1

I Predicate-1=> Predicate-1

I Predicate-1 <=> Predicate-1

Which can be rewritten using factoring a s:-

150

Predicate-1 ::= X

I Predicate-1 (7\lv I => I <=>) Predicate-1

To eliminate direct left recursion, we can again apply iteration to produce an equivalent

production:

Predicate-1 ::= (X) < (7\lv I => I <=>) Predicate-1 >

where < a > denotes that a is optional.

As can be seen, factoring and iteration also help to reduce the size of the grammar,

increasing the efficiency of the associated parser.

Once factoring and iteration transformations have been applied, there can exist at most

one direct left recursion right-hand part for a non-terminal in any particular production.

If this is the case then the production must be re-written, such that the direct left

recursion right-hand part is last in the list of possibilities to try.

For example, consider the following rule for U:

U ::= x I y I ... I z I Uv

This rule says that members of the syntactic entity U are x,y or z followed by zero or

more v's. Applying factoring and iteration transformations rewrites the rule for U as:

U ::= (x \ y \ z) { v }

Thus, we have again eliminated the left recursion problem, and in this case, the

production for U now becomes iterative instead of the previous recursive form, making it

much simpler.

Using the iteration and factoring transformation described, Spivey’s original grammar

has been re-written in LL(fc) form, as shown in Appendix I: LL(k) Grammar for the Z

Notation. Thus, in designing the parser, these transformations ensure that the production

151

to apply next relies on the input non-terminal symbol A, and on the next k unmatched

input symbols. Indeed the grammar is now almost LL(1), which allows the use o f

recursive descent techniques in the development of a TranZit parser for the Z notation.

4.2.8 Recursive Descent Techniques

A complete description of LL(fc) grammars and recursive descent techniques can be

found in Backhouse (1979), hence the discussion below is constrained to issues relevant

to parsing the Z notation.

If G is an LL(fc) grammar, then a parser for G can be written using a technique known as

recursive descent. In essence this defines a mechanism of implementing a recogniser

program for an LL(fc) grammar G = (N,T,P,S), such that there is one procedure call pS

for every symbol S e N u T, where that procedure is designed to recognise any string

derivable from S. If R g T, then pR simply checks that the next unmatched input symbol

is R.

This type of parser is goal-oriented. It predicts that it can execute a sequence of

procedures pXi; pX2;... pXm, which will attempt to recognise the sequence of

unmatched symbols Xi; X2;... Xm,in the Z specification.

The parser is driven by a lexical analyser or scanner which converts symbols read from

the Z specification into an internal representation termed a token. In particular, the

TranZit scanner allows for the inclusion of comments or notes, enclosed within ‘C’-like

comment delimiters, to be embedded within the captured specification. This is an

extension of the original syntax, but it is considered an important feature for the specifier

to be able to improve the readability of the captured specification by supplementing the Z

notation with natural language descriptions. The TranZit scanner is a standard state-

based implementation supplemented by the additional lexical rules for the Z notation

defined by Spivey (1992).

152

Each sequential procedure pXj defined in the parser, accomplishes its goal by comparing

the next token in the Z specification at the current point in the parse, with the right hand

part of the rule for Xi. Other procedures are called to recognise sub-goals for non­

terminals in the right hand part of the rule for Xi as necessary.

Even though the transformed Z grammar is suitable for processing by recursive descent

techniques, it is still not LL(1). Unfortunately, the actual value of k for this grammar

cannot easily be determined. Also, since the Z notation is continually being modified and

enhanced, it would be a mistake to implement a parser system which relied on some

value of k for the derived grammar as this would be difficult to modify should future

enhancements exceed this constraint. The Z notation parser implemented in TranZit is

therefore designed to deal with an LL(fc) grammar, and implements fc-lookahead, where

the value of k is constrained only by the depth of the stack available to the host machine.

The function of the look-ahead procedure is to deal with the problem of determining the

next procedure pS to call, in cases where the syntax tree represented by the grammar at

non-terminal symbol R offers a number of possible choices. We assume the existence of

some function qS which is identical to pS, but which does not consume symbols in the

input stream. The procedure qS essentially stores the state of the derived syntax tree at

the current input symbol R , and then proceeds to match input symbols in the same way

as pS. The procedure qS will either succeed in matching the sequence of input symbols to

the non-terminal S, or it will fail. In either case, on termination, it restores the state of the

derived syntax tree and returns the result of this process to its caller function pR. On the

basis of this result, pR will then call the function pS, which succeeded in parsing the

sequence of unmatched input symbols. The only minor problem with this approach is that

qS and its derived sub-procedures must not store semantic information, as this would-

invalidate the context of the semantic information should the particular parse attempt fail.

This approach assumes that G is unambiguous. Since it is apparent that the Z notation

grammar is ambiguous then the approach must be modified slightly. Essentially, it is

known that the Z notation grammar is only ambiguous in a very specific context (i.e. Set-

expression).

153

Expression-3 ::=

I Set-expression

I (Expression-O)

Set-expression { < Expression,..,Expression> }

I { Schema-Text < set-comprehension

Expression> }

The problem arises because of the need to differentiate between parenthesised

expressions:

(Expression-0)

and a tuple set display of the form:

(Expression,..., Expression).

To avoid this ambiguity the rule is imposed in the re-written grammar that at least two

expressions must appear in a tuple (i.e. there is no way to write a tuple containing less

than two components). Similarly, in order to avoid ambiguity with a set comprehension

using a schema reference, the list of expressions in a set display must not consist of a

single schema reference.

{Schema-Ref < set comprehension Expression > }

This must also be the case to avoid ambiguity with a schema reference used as an

expression within a set.

{Expression,..., Expression }

It is therefore possible to write special procedures to deal with these specific contexts,

which implement the assumptions identified. Since type checking semantic routines will

154

also be added, this mitigates any problems associated with erroneous output due to

confusion of the recogniser by the ambiguous grammar.

4.2.9 Recovery From Errors

The primary disadvantage associated with recursive descent techniques is that of

developing a consistent recovery mechanism, which allows the recogniser to continue to

remain synchronised with the input stream when syntax errors are encountered. The

problem is that syntax errors can be discovered at any level of the grammar and it is quite

likely that at this point the parser is nested some way down within the derived syntax

tree.

Most compilers for block-structured programming languages take the view that when an

error is found they will simply fail the parse all the way up to the next statement. That is,

the rest of the input is ignored until the next BEGIN, END block (in the case of

PASCAL) or semi-colon (in the case of C) is found. This prevents additional spurious

errors being generated which are simply a consequence of the first error being detected,

and the fact that until the parser reaches the leaves of the erroneous syntax tree is has

embarked on deriving, it cannot resynchronise with the input stream.

One of the problems in using this technique with the Z notation is that there is no suitable

'statement level' in the Z notation syntax which to fail back to. In general the recogniser

cannot resynchronise with the input stream until it returns to the paragraph level, which

is much higher in the derived syntax tree than is ideal Hence it is sometimes the case that

the TranZit syntax analyser may generate additional errors, which are dependent on the

resolution of some earlier error.

There is no ideal solution to this issue, however in practice this does not seem to cause

too much of a problem, providing users appreciate that the errors generated by the

TranZit syntax analyser should be resolved in strict sequence.

155

4.3 Research and Development of the TranZit Type Checker

The techniques described previously have been used to implement the recogniser

function of the Z notation parser implemented in TranZit. However, to be able to fully

type check the Z notation specification requires the addition of Semantic Routines within

the pXi functions defined by the syntax analyser. Together with the syntax analyser

described in section 4.2, the type checker forms the second component of the TranZit

Analyser Sub-system (TAS).

Essentially, the type checker embodies functions to store and derive the type of objects

defined within the specification. In addition functions are provided to support features of

the Z notation explicitly such as schema inclusion, scope checking, A and E conventions

for schemas and a database of signatures for standard Z library functions which may not

be explicitly defined. The majority of these functions form interface methods on the

TranZit Schema ObjectBase, as described in section 4.3.1.

4.3.1 Rationale and Design Criteria for the TranZit Schema ObjectBase

The core data components used to build the semantic routines associated with the TAS

reside in an abstract data type termed the TranZit Schema Objectbase. The TranZit

Schema ObjectBase is an important component in the realisation of the TranZit system.

Initially, the concept evolved from treating schemas as specification construction objects,

which forms the foundation for language intelligence required in the editor subsystem.

However, as the project developed, it became clear that this structure could also form

the basic database for the analysis and transformation subsystems. The TranZit Schema

ObjectBase is shown conceptually in Figure 4-12.

156

X '
i grammar

Schema y
Schema x

Maintenance
Layer

Interface x

Schema
ObjectBase

Maintenance
Layer

Interface p Schema z

Maintenance
Layer

Interface a

Analyser
Sub-system

(TAS)

Transformation
Engine
(TTE)

Editor
Sub-system

Figure 4-12: TranZit Schema Objectbase Concept

The schema objectbase has evolved during the research of the system, to provide the

core interfaces that allow the sub-systems of TranZit to exchange information in an

efficient manner. This interface represents the database Maintenance Layer, but rather

than being homogenous (as in a traditional compiler symbol table), the maintenance layer

is structured in an object-oriented fashion to provide different views of the objectbase

data to different elements of the TranZit system.

For example, to the TAS it presents methods to view the information present as a block-

structured symbol table, although since there is no equivalent of a “block” in the Z

notation syntax it is actually a schema-structured symbol table. However, to the editor it

presents interface methods that allow schemas to be treated as independent editor

objects, and be moved around en-bloc within the Z specification. To the transformation

engine, it provides symbolic type information used to supplement the productions used

157

to develop the procedural representation of the captured specification in the ZAL

language.

Although the schema objectbase is essentially a database, it is also the core component

linking individual sub-systems of TranZit together. Using experience gained from

traditional compiler design (Holub, 1990), the schema objectbase should therefore have

the following characteristics:

• Speed. Because the objectbase is referenced every time an identifier or type is

referenced, look-up time must be as fast as possible. The entire structure must

therefore be memory resident.

• Ease o f Maintenance. Since the symbol table includes complex data structures, this

complexity must be hidden behind a functional or object-oriented interface.

• Flexibility. A notation like Z does not limit the complexity of variable declarations,

so the design of the symbol table must be able to accommodate any arbitrary type.

The symbol table must also be able to grow dynamically as new symbols are added to

it.

• Duplicate entries must be supported. Because Z allows variables to be introduced

locally to a predicate (e.g. by universal or existential quantification), it is possible that

these variables have the same name as others declared at higher or lower levels of

nesting. The scoping rules of the Z notation dictate the set of variables active at any

given point in the parse. Hence a distinct symbol table entry is required for each

variable, and the objectbase methods must be able to identify the referenced variable

from the current scope.

• Data manipulation. Methods of the schema objectbase must allow quick deletion or

insertion of arbitrary elements or groups of elements within the structure. For

example, it must be able to delete all references to local variables associated within a

particular predicate, once that predicate has been parsed.

Whilst the concept of the schema objectbase evolved early in the development of

TranZit, the implementation of the component has been through a number of iterations

to improve the speed and efficiency of algorithms it embodies.

158

4.3.2 Implementing the TranZit Schema ObjectBase

The schema objectbase consists of a number of schema data objects that export methods

associated with schema definitions made within the original specification. The editor

creates objects within the objectbase when a schema is defined. At this point, basic

information is stored such as the name, type and generic parameters (if any) of the

schema, together with location information which is used by the editor to control

presentation aspects of the schema graphic. In the process of checking the schema by the

TAS, the objectbase is updated with additional information such as the names and types

of variables declared within the schema, which is used by the type checker and ultimately

the transformation engine.

The schema objectbase is therefore akin to a symbol table in compiler terminology.

However, by imposing an object-oriented structure reflecting the view of schemas as

specification construction objects, this allows a number of Z notation language-

supporting features to be easily constructed within the editor, analyser and

transformation sub-systems. The structure of the schema objectbase is shown in Figure

4-13:

159

Schema
n+1

Schema n

Schema Attributes
• Schema Name
• Schema Parameters

Methods • Schema Start Line
• Schema End Line

Symbol Data
• Root Node

// \
-----------*--------

Editor
1is Checker

Subsystem 1 Subsystem

Transformation
Engine

element
n+1

element n

symbol 1

symbol n+1

symbol n

Symbol Attributes
Methods • Symbol Name

• Symbol base type
• Symbol location
• Flags
Symbol Type
• Root Node

Methods
Type Element
Attributes
• Z Type of element
• element name
• parenthesis level

element 1

Figure 4-13: TranZit Schema Objectbase Internal Structure

It can be seen that the Schema object base is constructed of three base classes:

• The schema class (derived types being Schema box, Generic, Axiomatic Definition,

Shortform)

160

• The symbol class

• The type element class (<derived types being Given Set Type, Power Set Type,

Cartesian Product Type, Schema Type, Undefined Type).

It is easy to extend this mechanism to add another derived class to the objectbase to

support global symbols introduced in the Z specification.

Each class exports a number of methods implementing the Schema Objectbase

Maintenance Layer, which are accessed by the editor, analyser and transformation

engine sub-systems to store and obtain information.

Of particular importance is the choice of internal data structure used to store the

elements of the objectbase, which are manipulated by the maintenance layer. The wrong

choice of data structures will lead to an inefficient implementation, compromising all

elements of the TranZit system.

The objectbase itself is constructed from a doubly linked list of object nodes representing

individual schemas. This is a relatively simple data structure to implement, and allows for

easy insertion and deletion of data. Since the information associated with schemas is

fairly constant (other than when new schemas are added or deleted), speed of location of

particular schema data objects is not of major importance. Hence the overhead of

scanning the linked list for a particular schema element does not outweigh the advantage

of a simpler data structure.

However, the symbol table associated with each schema object node must be

implemented in a more efficient manner. There are a number of techniques that can be

used to achieve this. The simplest possible data structure is a stack-based linear array.

New symbols are simply pushed onto the stack, and searched for as a list. This

mechanism intrinsically supports scoping by the fact that elements at the top of the stack

are in scope, and hence are found first. Deletion is also simple, by poping as many

elements from the stack as required. However, the major disadvantage with this

approach is the linear search time required to locate an entry. Also, the maximum size of

161

the array must be known at compile time, limiting the number of symbols that can be

stored in the data structure. Due to the complexity of variable declarations in the Z

notation and the limitation of static declaration, this approach was not used.

In many compilers, a hash table is used to store the data associated with symbols. In this

case the look-up table is implemented as an array indexed by the key field of the object

stored. The key field contains a hash value, which is generated by manipulating the

characters of the symbol name in some mathematical way to generate a unique value

within the array bounds. To ensure a wide distribution of hash values, some

randomisation function is used to ensure that similar names generate very different hash

values. Collisions occur when two different symbol names generate the same hash value,

and are handled by making each array element the head of a linked list of nodes. Hash

tables are very efficient provided that a suitable hashing algorithm can be found to

generate a wide variety of hash values for the symbol names allowed within the language.

However, hashing was found to be unsuitable for the Z notation, due to the fact that the

number of variables defined in the declaration section of a particular schema tends to be

relatively small. This wastes quite large amounts of memory within the hash table, which

is further compounded by the fact that each schema object node requires its own table.

This grouping of symbol names by schema, makes the definition of an efficient hashing

algorithm very difficult.

The problems of search time and efficient use of memory can be solved by using a

dynamic data structure. The classical data structure for solving this type of problem is a

binary tree. The average search time in a balanced binary tree is logarithmic rather than

linear, in proportion to the number of elements stored. The tree size can grow

dynamically as required. However, deletion of an arbitrary node from a binary tree is

difficult and time consuming. Fortunately, this is not a problem with the Z notation, as

the tree can be constructed entirely within the context of the declarations section of a

particular schema, and remains intact whilst the schema itself is in scope. On evaluation,

it was decided that a tree structure offered the best compromise between maximising the

speed of search and efficient use of memory. However, there are a number of problems

with the use of binary trees that need to be addressed.

162

The first problem with binary trees is the possibility that the data structure will

degenerate to a linked list if variables are declared alphabetically and no balancing is

implemented (Tenenbaum and Augenstein, 1986). In practise, the likelihood of this

occurring is small, and so tree balancing was not implemented. The major problem with

binary trees is that of collisions, in which variables of the same name occur at different

scoping levels. This is possible in the Z notation by the Let definition, as well as universal

and existential quantification, which introduce local variables within the scope of the

associated predicate. Since this problem occurs quite frequently in Z, rather than

introducing an extension to the schema object node binary tree to include nesting level

data, it was decided to adopt a separate mechanism to deal with local declarations. Since

the Z notation uniquely identifies when local variables are introduced and destroyed, it is

possible for the TAS to inform the schema objectbase when this is the case. In this case,

the objectbase maintenance layer stores symbol data in a separate data structure termed

the Local Declarations ObjectArray, which consists of an array of binary tree roots,

indexed by nesting level, as shown in Figure 4-14.

163

Nesting
Level Symbol y

Symbol x
N+1

Symbol z

Local Declarations
ObjectArray

Figure 4-14: Local Declarations ObjectArray Structure

This hybrid approach has been found to be the most efficient in meeting the demands of

local variable declarations in the Z notation, by offering a balance of simplicity in

handling different nesting levels against speed of search and memory efficiency. The data

structure also allows easy destruction of all symbols associated with a particular nesting

level by simple deletion of the entire tree associated with that level, rather than having to

scan the schema object node binary tree and delete particular elements.

4.3.3 Realising a Type Checker for the Z notation

Every expression that appears in the captured Z specification is associated with a

uniquely defined type. It is the strength of the Z type system that allows us to precisely

define what is meant by a particular element of the specification, and thereby be

unambiguous about what is intended.

The simplest type in Z is a given set type, which is used to introduce a set of abstract

objects into the specification drawn from some semantic universe appropriate to the

problem domain. This also includes the familiar types Z and R as members of the set of

164

given types, as well as the well known given set of natural numbers N == { n : TL I n >

0 } .

For more complex types, the Z notation introduces three additional type constructors:

• The Cartesian product x , representing a tuple definition.

• The power set type P, representing a set of objects.

• The schema type [rjiixi,.., r|m:Tm] ; where r\i represents a variable name and t*

represents an associated type. The schema type itself therefore represents a set of

mappings of variable name to associated type.

Each of these is conceptually a member of the set Type associated with the Z notation. A

Signature is a function, naturally associated with a schema type, which maps a set of

variable names to the set of types in the language.

Signature = VariableName -+* Type

In some languages, the associated type system is simple enough such that the range of

this function is a finite set. If this is the case then we say that the associated type system

is constrained. However, if the set Type is infinite, then we say that the associated type

system is unconstrained. In the latter case the type system allows unlimited complexity in

the variable declaration. The Z type system falls into this category, and allows the user to

define any complex type from combinations of given set types and the three type

constructors.

4.3.4 Representing Types in the Z notation

The fact that the Z type system is unconstrained places certain requirements on the

implementation techniques used to store types within the TAS. If the type system were

constrained, then it would be possible to represent a particular type by a simple token

string within the symbol structure of the schema objectbase. Indeed this is the approach

taken by many traditional compilers. However, since this is not the case, then a more

sophisticated, dynamic data structure is required.

165

Since the type of an object can grow almost indefinitely as operators within the

specification manipulate it, a linked list of nodes is the most appropriate structure.

Referring to the schema objectbase definition, the link list has its root in the symbol node

associated with the variable being defined. The type itself is made up of a list of type

element nodes, each of which indicates one of given set type, power set type, Cartesian

type, or schema type. For the purposes of computation, we also introduce another type

element termed undefined, allowing us to represent Z notation generic constants which

stand for the as-yet-unknown set of elements which will form the actual definition.

The type is then represented in the computer by traversing the list of nodes associated

with the variable name. For example, the type of the sequence seq X, which is defined as:

s e q X = = { / : N X : d o m / = l . . # / }

is represented as the sequence of nodes shown in Figure 4-15:

Type: P
Name:

Level: 1

Type: given
Name: N
Level: 3

Type: X
Name:

Level: 2

Type: undef
Name: X
Level: 3

Figure 4-15: Representing Types

There are several important reasons for this choice of representation structure. Firstly, as

it stands the actual type of X is undefined, as this is a generic definition, and this fact is

explicitly identified within the type representation. The TranZit type checker knows that

it can bind any actual type to X when a particular sequence of this type is declared. At

this point the linked list structure makes it easy to remove the node representing the

undefined element X, and replace is with the actual bound type in the sequence variable

166

declaration. Secondly, the level information stored within each node is very important as

this represents the associations between elements of the type list.

Clearly, the type:

P (N x X)

has a very different meaning to:

(P N x X)

The way in which the elements of the type list associate, places a completely different

context on the composite type. The TranZit type checker understands the rules of

association for the type constructor elements, or where provided it builds equivalent

structures from parenthesis information. The parenthesis level information is carefully

arranged such that elements can be inserted and deleted from the list without needing to

revise the context of other level information in the list. Thus in the example in Figure

4-15, although it would not appear necessary in this context, the Cartesian product node

has a higher level than the nodes for the given set N and the undefined element X.

Hence, when X is bound to an actual variable, the type of this variable can be simply

inserted at X without changing the context of the type. Similarly, when building

relations, it is often the case that we wish to insert a Power Set node P, at the head of

the chain. Again this is easily accomplished with a linked list structure by pointer

manipulation and associated changes to the level information in each node of the list.

4.3.5 Performing the Type Checking function

Methods associated with the type checker are effectively semantic actions, which can be

easily inserted into the pXi functions of the recogniser described in section 4.2.8. In this

way, the context of the semantic actions is provided by the grammar itself, allowing the

generation of type information from variable declarations and storage of this information

in the schema objectbase. In the context of expressions within the specification,

information in the schema objectbase is used to provide the types of variables referenced

for the purposes of expression type checking.

167

The TranZit type checker contains two core engines:

• The expression type builder (ETB),

• The type pattern matcher (TPM).

The ETB is continually constructing the current expression type from information in the

schema objectbase, as the parse of the specification is performed. The ETB is actually a

set of atomic functions, which are called as semantic actions with the recogniser. The

type information being constructed is stored centrally in the type checker, and is

manipulated by the ETB. Thus at any stage in the parse the current expression type is

always available, together with the previous expression type. This is sufficient to perform

all type checking function in Z, due to the binary nature of the relations defined in the

language, and also allows a complete type check to be performed in a single pass of the

specification. In addition, the ETB is supported by a read-only database of signatures for

all operators and common library functions defined in the Z notation, which can be

converted on demand into equivalent type element lists.

The TPM actually performs the checking function and is effectively a pattem-matcher,

designed to traverse two input expression type lists in sequence, comparing each node

for equivalence. An important function of the TPM is level-balancing, which ensures

that the parenthesis information in each type list is made equivalent (e.g. removal of

unnecessary parenthesis) before traversing begins. A second important function within

the TPM is the binding engine, which attempts to bind types to undefined variables by

matching sub-sequences of nodes within one input expression, to undefined nodes in the

other. These bindings may be then used further down the pattern matching process to

ensure consistency, or made available to other semantic actions to generate actual types

from generic elements.

A typical sequence of interactions is shown in Figure 4-16. At some stage in the parse,

recogniser function pXj is called to recognise a declaration that generates some type

Typei for variable Y. This type is built by the ETB and stored within the corresponding

element for Y within the schema objectbase. At some later stage, variable Y is used in

168

some expression associated with recogniser function pXj. Function pXj first requests the

type of variable Y from the schema objectbase. Assuming, for example, function pXj is

associated with some relational operator Z, it may fetch the current and previous

expression type and use the methods of the type generator to build a relation Ry from

these individual types. It then fetches the stored generic definition of the relation Rz

associated with the operator Z, from the signature database, and passes both Ry and Rz

to the Type Pattern Matcher. The pattern matcher perform level balancing, matching and

bindings as appropriate and returns either TRUE or FALSE to pXj indicating the result of

the type check. If this is successful pXj builds a new type Typej dictated by the type rules

of the associated expression, which in turn is stored as the new current expression type.

169

Recogniser
function

pXi
Type ,

Type R i}, Type R

Schema
ObjectBase

Type i Y

Expression
Type

Builder
Methods

Recogniser
function Type j

Type Rz

pXj

4 - - ■ (

TRUE/
N . ^ FALSE

Current
Expression

Last
Expression

Signature
Database

Type Level
Pattern Balancing

Matcher
Methods Pattern

Matcher

Binding
Engine

Bindings
Database

Figure 4-16: Example Interactions within the Type Checker

If type checking fails, pXj will generate an appropriate error via the standard error

reporting mechanism, and invalidate the current expression type. This prevents further

type generation within the ETB until the next expression level is reached in the parse,

and hence prevents subsequent spurious type errors caused as a consequence of the

original error.

Apart from a few special cases (e.g. build of characteristic tuples), this generic type

checking mechanism described can be used by all methods pXk associated with the

recogniser. In most cases this corresponds to pattern matching of relations of the form

P (X x Y) , where X and Y are bound to some more complex internal type determined

by the declaration of actual variables. The mechanism has proved to be very efficient and

powerful since:

• Almost all Z operations are defined in terms of binary relations, and hence can be

treated in a standard way.

• The representation of user-defined relations and internal operators/library functions is

identical allowing common handling in both cases.

• Expression type propagation is controlled intrinsically from the grammar definition.

• The method inherently allows for the matching and possible binding of generic

constants, allowing the type system to be implemented exactly as defined in the

relevant texts (Spivey, 1992), and extended at wilL

4.3.6 Other Semantic Actions

In addition to the type checking actions embedded within parser functions pXj, the Z

notation demands support for other semantic elements of the notation as follows.

• Variable scoping

• Local declarations (e.g. those made within existential or universally quantified

predicates)

• Schema inclusion

In general the rules for variable scoping in Z are quite straightforward. For example, a

vertical schema box introduces a global variable for the schema name which must be

unique in the specification and which must not be forward referenced. Similarly, an

axiomatic definition introduces a global variable of a particular type associated with a set

171

of predicates governing its behaviour within the specification. Variable declarations or

signatures within the declaration section of a schema box are local to that schema

definition, and their scope does not extend beyond the schema boundary. However, local

variables may also be introduced within a particular predicate using the Let definition,

existential or universal quantifier, whose scope extends only within the boundaries of the

predicate. Variables therefore occur in their binding occurrence in the signatures in which

they are declared, and their bound occurrence when they are used within the scope of

their binding occurrence.

In general this is all supported by the specialist methods of the schema objectbase.

Variables and given sets defined globally, reside in the global section of the database,

whilst variables declared within a particular schema are known only to the associated

schema object within the objectbase. Similarly, a simple stack object controls a stack of

data elements in the Local ObjectArray shown in Figure 4-14, which stores information

about local variable declarations within schema predicates. This stack object exists only

for the life of the current predicate parse and is then destroyed since it is no longer

required. A stack is required since it is possible to make nested local declarations in Z

with the same variable name.

The complexity of these data structures is hidden behind methods of the schema

objectbase. In order to find the correct information associated with a particular variable

dictated by its scope, the recogniser functions need only request the schema objectbase

start searching at a particular scoping level, either globally, locally within the current

schema or locally to the current predicate.

Semantic actions are also required to take account of schema inclusion in the Z notation

which allows the variables of one schema to be brought into scope of another schema

indirectly. Moreover, a schema containing a schema inclusion, can itself be included in

another schema, bringing all variables of the included schemas into scope as well. A

further complication allows schema inclusions to be decorated in order to introduce

before and after states for the particular variables brought into scope.

172

At first glance, this problem seems to bring into question our approach to implementing

variable scoping, since the variables referenced in the axiomatic part of the schema may

be indirectly brought into scope by some schema inclusion in the declarations part.

However, the problem is resolved by taking note of the fact that is it not possible to

make a forward reference to a schema in Z. For example, a schema cannot be included

within another schema until the included schema has itself been declared. Since the act of

declaring and parsing a schema builds a corresponding object within the schema

objectbase, this ensures that all variable declarations for an included schema exist within

the schema object base at the point in the parse where the inclusion occurs.

Due to the object-oriented nature of the schema objectbase, the only real way to deal

with schema inclusion is to provide a method which copies the contents of the included

schema symbol table into the current schema symbol table (taking account of any

decoration within the inclusion). The symbol table for this schema object now contains

not only its own declarations, but also the declarations of the included schema object. If

this schema is itself the subject of a schema inclusion, then all the variables in scope of

that schema are automatically brought into scope by the copy process. This is easily

implemented in the schema objectbase maintenance layer, by copying the contents of the

binary tree associated with the included schema, into the binary tree of the including

schema.

The only negative side to this approach is that there is duplication of memory usage,

however this is considered acceptable in order to retain the overall object-oriented

approach to symbol manipulation.

4.4 Summary

In this chapter we have explored the research and development of both the TranZit

editor subsystem and also the TranZit analyser subsystem (TAS).

The innovative use of traditional compiler design techniques coupled with novel data

structures and methods applicable to the Z notation has resulted in a highly compact and

173

efficient implementation capable of detecting a wide variety of errors within Z

specifications.

The analyser subsystem has been exposed to a wide variety of problem domains and

many student projects, giving a high degree of confidence in the implementation. Whilst

some may argue that this can only be proven by formally specifying the analyser

subsystem itself coupled with rigorous testing, the evolutionary and practical approach to

this problem has demonstrated the accuracy of the implementation beyond reasonable

doubt.

In addition, the exposure of the system to a wide variety of users has produced some

interesting insights into the thought processes used in the construction and checking of Z

specifications themselves. In particular, the view expressed by many people using

TranZit of Z being almost a “formally-defined programming language”, stimulated a

goal-oriented approach to specification construction in many users, which was not

anticipated. This goal-orientated approach of “making the specification compile” seems

to have allowed many users to better understand the Z notation by structuring their

approach to developing Z specifications around the TranZit tool

In addition, the act of eliminating errors in the specification offers definite learning

benefits. When faced with definitive errors produced by TranZit, users are forced to

address the intricacies of the Z notation in a structured way, in order to get the

specification to parse successfully and thereby proceed with the REALiZE animation

process.

With these thoughts in mind, the next chapter considers the research and development of

the TranZit transformation engine, which is capable of automating (so far as is possible),

the conversion of a captured Z specification into an executable representation in the ZAL

language.

174

5. Research and Development of the TranZit Transformation Engine

This chapter describes the research and development of an innovative transformation

engine capable of transforming Z specifications captured in TranZit into an executable

representation in the ZAL language.

The chapter discusses the approach to transformation adopted by TranZit and draws

parallels between transformation and code generation in a conventional compiler. Firstly,

the evolution of the ZAL language itself is discussed, which provides executable

representations for a subset of Z notation operators. This information is then used to

derive a CFG for the ZAL language, which in turn defines the target of the

transformation process. Having identified the source and target grammars, the discussion

proceeds to the transformation process itself. The essential design decisions are outlined,

followed by a technical systems analysis of the components of the TranZit transformation

engine. Finally, the approach taken by TranZit in resolving the transformation of non-

computable constructs in the Z notation is described.

5.1 The Rationale for Transformation

The previous chapter described TranZit’s approach to processing the captured Z

specification for the purposes of checking internal consistency. Although innovative

approaches have been identified to achieve this goal, in itself the development of the

TranZit Analyser Subsystem (TAS) is not the primary goal of this project.

The essence of the REALiZE process proposed in this thesis, is the ability to validate the

captured specification by demonstrating properties of the system represented by the

specification to the user. The process seeks to support the view proposed by several

commentators (McCracken and Jackson 1981, Gladden 1982, Agresti 1986) that the

sequence of events in the traditional software lifecycle is unrealistic in assuming that

specifications can be frozen early in the development lifecycle. Similarly, the traditional

lifecycle fails to recognise the importance of feedback and iteration in validating the

175

specification, until some software system components have actually been constructed.

The all-important user-view is therefore often injected too late into the development

process, which may engender costly re-design. Therefore techniques are needed to

improve the interface between the specification and design phases and in particular

provide early feedback on the specification validity from a user perspective.

As discussed previously in section 1.2.7, suggested techniques to achieve this ideal

incorporate ideas such as rapid prototyping and animation in order to promote

validation by execution.

The benefits of these approaches have been identified by Fuchs (1992) and include:

• The availability of executable components much earlier than in the traditional

lifecycle, thereby affording earlier (less expensive) detection and correction of

problems.

• Requirements that are unclear can be clarified by interaction with the specification.

• Execution of the specification supplements inspection and formal reasoning as a

means of validation.

The term prototyping has a variety of meanings. In some cases it refers to a cut-down

version of the final system which has the appearance of the final product, but has limited

functionality. In its simplest form it may be a pure mock-up intended to demonstrate how

the final system may look, but which contains no actual system components. Such

prototypes can often be constructed using the abstraction power of 4GLs, and the speed

at which this can be achieved has led to the term rapid prototyping. A well documented

example of a prototype being used in the context of specification verification is that of

Henderson (1986), who propose a mechanism based on a notation known as me-too, in

which the me-too representation is viewed as both a formal specification and an

executable prototype.

Whereas a prototype embodies some concept of software development, the term

animation refers to the ability to ensure adequacy and accuracy of the specification by

reflection of some specified behaviour back to the user (Kramer and Keng, 1988).

176

Animation is therefore an interactive concept, which is open to implementation in a

number of ways, the approach taken here being akin to that of executable specifications.

In other words, the essence of our validation process is the transformation of the

captured specification to an executable representation, which can be exercised in an

animation environment.

5.1.1 Constructing an Executable Representation of a Specification

The term executable specification is something of a misnomer in many cases, as

highlighted later in this chapter, since the majority of formal specification languages are

not directly executable. Therefore, the primary consideration to support the animation

environment is the selection of a suitable executable representation of the original

specification.

There have been different approaches taken in attempting to realise executable

specifications. The method adopted in this research is to retain the original specification

notation (i.e. Z) intact, and map the operational semantics of the notation to a suitable

executable representation termed the Z Animation in LISP (ZAL) language, which is in

turn based on extended LISP.

Other researchers have taken similar approaches using declarative languages such as

Prolog (Dick et a/., 1990), Miranda (North, 1990), Ada (Moulding and Newton, 1992),

Me Too (Henderson, 1986) and Functional languages (Johnson and Sanders, 1989) with

varying degrees of success. Executable languages are inherently less expressive than

abstract specification languages, since their functions must be computable and their

domains must have a finite representation. As highlighted by Breuer and Bowen (1994),

any approach must balance declarativeness against efficiency in that whilst the executable

representation is considered to be a high-level specification, it must also be able to

execute efficiently if it is to be useful as a vehicle for validation.

The essence of the approach taken herein focuses on identifying elements of the Z

notation which have executable representations, and modelling these as a library of

predicates/functions in the chosen programming language. Whilst this approach provides

177

a mechanism to address a fair proportion of specification problems, it may still be the

case that a naive transformation fails to execute due to an attempt to search an infinite

address space, or may fail to find a solution in reasonable time due to inefficiency. Knott

and Krause (1992) have suggested ways to address the latter problem using program

transformation techniques applied to Prolog.

An alternative approach is to restrict the specification notation to a known operational

subset of the original language, which can either be interpreted directly or cross-

compiled to a suitable programming language (Doma and Nicholl, 1991). Perhaps one of

the main advocates of this approach is Valentine (1995), who has presented several

papers on the Z-- language, which is an executable subset of the Z notation. The

advantages of this approach are the increase in efficiency of translation and execution

time, however this is gained at the expense of loss of abstraction and expression in the

restricted specification notation.

It is interesting to map these different approaches by expressibility of the resulting

transformation (i.e. a measure of the abstract power of the resulting transformation), and

executability (i.e. how easily the transformation may be executed on a computer), as

shown in Figure 5-1.

Executability

Non-Executable

Imperative

Declarative

C/C++

Restricted
Specification
Language

Transformation
To declarative
representation

Z/VDM

►
Concrete Abstract

Expressibility

Figure 5-1 : Comparing Executability and Expressibility

178

It can be seen that in general, as we move to a more concrete specification model, so the

possibilities for execution increases at the expense of expressibility.

In order to try to retain expressibility with increasing levels of executability, some hybrid

approaches have been attempted (West and Eaglestone 1992, Hasselbring 1994), in

which the original specification is re-written or refined into an executable subset of the

original language, having the same meaning.

5.1.2 Evolution of the Z Animation Language (ZAL)

Hekmatpour (1988) originally suggested extensions to the LISP Programming language

(Wilensky, 1986) which could be used to implement some of the features of functional

programming languages such as Miranda (Turner, 1985). The starting point for the

evolution of the ZAL language (Siddiqi et al., 1991) was the extension of this idea to

consider similar extensions to LISP in order to transform Z specifications into executable

representations. From this beginning, the Z Animation in LISP (ZAL) language has

evolved to incorporate many operational features of the Z notation, whilst retaining three

important design criteria.

• To preserve as closely as possible, correspondence between the original Z notation

specification and the ZAL animation language. This ensures that the abstract power

of the specification notation is preserved as far as possible, and that the

transformation process is not needlessly complicated.

• To ensure that ZAL and Common LISP can be intermixed in an animation in order to

capture the existing power of the LISP language, and avoid unnecessary duplication.

• To ensure that the ZAL language is generic, in that it does not impose arbitrary

constraints concerning the classes of problem which can be represented. This ensures

that the ZAL language can be used to address as wide a variety of specification

problems as possible.

It is important to draw a distinction between approaches associated with defining an

executable subset of Z (Valentine, 1995) and the development of the ZAL language. In

179

the former case the emphasis is on constraining the use of the Z notation in order that

the original Z specification becomes directly executable. However, in the case of the

ZAL language, emphasis is placed primarily on emulating Z operators in a programming

language, without concern for the executable capability of particular Z constructs. As

discussed later, it is therefore possible to combine individually executable ZAL operators

into a construct that may not then be executable as a whole. However, this operational

approach is an important aspect of the ZAL language, in that since it is not constrained

by considerations of executability, it retains a level of abstraction that is close to the

original Z notation. In this system, the task of identifying executable Z constructs is

located in the TranZit transformation engine, which in turn creates the relationship

between the Z universe and the executable representation.

The ZAL language has been developed over a number of years coupled with the

development of the associated ZAL animation environment. This is based on the PC

Allegro LISP platform, and involves the research and development of execution

mechanisms and interfaces that allow animation scenarios to be explored. As stated

previously since this work is the subject of a parallel research programme, the

development of the ZAL animation tool itself will not be described herein, other than to

appreciate that ZAL and the associated animation environment are based firmly in the

procedural domain. For further information in this regard see Morrey et al. (1998) and

Siddiqi et al. (1997, 1998).

However, in order to describe the TranZit Transformation Engine developed for the

TranZit tool as part of this project, it is necessary to describe the set of Z operators that

are modelled in ZAL, as shown in Table 5 below.

makemap Total Function

R" inverse Relational Inversion

<1 domres Domain Restriction

< domsub Domain Anti-Restriction

180

> ranres Range Restriction

> ransub Range Anti-Restriction

dom dom Domain

ran ran Range

© override Function Override

(,) mkt Tuple

P powerset Power Set

< lessz Less than

= eqz Equality

N fatn Set o f Natural Numbers

—i not Logical inversion

V orz Logical OR

A andz Logical AND

3 exist Existential Quantifier

V forall Universal Quantifier

3i exist-one Unique Quantifier

=> imply Implication

disjoint disjoin Disjoint

<•> mkq Sequence

0
9 rel-compose Relational Composition

J J rel-image Relational Image

{ , } mks Set Display

{DIP-E} mksi Set Comprehension

card Cardinality

£ not-mem Not Set Member

U union-dis Distributed Union

n inter Intersection

i—> make-maplet Maplet

u unionz Union

181

\ setsub Set Subtraction

n inter-dis Distributed Intersection

c psubset Proper Subset

e mem Member

c subset Subset

Table 5: Table of ZAL Operators

Since the ZAL language is an extension of LISP, it is also possible for the TranZit

Transformation Engine to make use of standard common LISP operators and constructs

in an executable representation. For example, the standard LISP *<=’ less-that-or-equal

operator can be used for the Z notation operator. Similarly the LISP (if test-form

then-form [else-form]) construct can be used in the context of the Z notation expression

syntax ‘i f predicate then expression else expression”.

Although ZAL is an extension to LISP, the transformation engine in TranZit takes the

opposite view and treats LISP as an extension to the ZAL language. The transformation

engine will therefore only use appropriate standard LISP operators where there are no

corresponding ZAL constructs.

In addition to the standard Z operators, ZAL contains meta-language symbols such as

(SCHEMA), which allow these operators to be grouped into executable units

equivalent to Z notation schemas. ZAL also allows inclusion of such units within other

units, thereby modelling schema inclusion. Finally, ZAL is supported by monitoring

features such as “:SHOW var”, which allow the state changes associated with a

particular abstract data object to be displayed to the user as execution progresses.

A straightforward example of a small Z specification, and the associated executable

representation in ZAL is given in Figure 5-2. The Z schema is given first, below which is

the associated executable representation in the ZAL language. The ZAL representation

also contains notes in italics that have been added for descriptive purposes.

182

[NAME] we do not model given sets in ZAL

rCl ass---------------------

ageOf : NAME -+> N

#ageOf < 3 0

V a : N | a e ran ageOf • a > 21

(SCHEMA class Schema Class in ZAL
: p r e d i c a t e start o f predicate section

(and the result is the conjunction o f each predicate modelled

(\<= (card ageOf)30)
(forall a (ran ageOf)

(imply
(mem a (ran ageOf))
(\> a 21)))))

(-Update--

ACIass

n? : NAME

a? : N

a? > 21

(n? e dom ageOf v (n? g dom ageOf A #ageOf < 30))

ageOf’ = ageOf © {n? * - * a?}

(SCHEMA Update Schema Update in ZAL
:? (n? a?) identify input variables
: INCLUDE delta_class include a schema definition from elsewhere
:PREDICATE
(and

(\> a? 21)
(or

(mem n? (dom ageOf))
(and

(not-mem n? (dom ageOf))
(\< (card ageOf)30)

)
)
(eqz ageOf1 (override ageOf { # (n? a?) }))))

183

rLookup--------

EClass

n? : NAME

a! : N

n? e dom ageOf

a! = ageOf(n?)

(SCHEMA Lookup Schema Lookup in ZAL
: ? n?
: ! a ! define output variables
: SHOW a ! Show state changes o f this variable to user
:INCLUDE psi_Class
:PREDICATE
(and

(mem n? (dom ageOf))
(eqz a! (applyz ageOf n?))))

Figure 5-2: Example Specification with Corresponding ZAL Representation

5.1.3 Development of the ZAL Grammar

From the perspective of the TranZit transformation engine, ZAL and LISP provide a set

of procedural operators associated with particular Z operators, which can be used to

build an executable transformation. These operators are essentially terminal symbols in

some context-free grammar (CFG). In order to perform the transformation, it is required

to know how these symbols need to be organised to form an executable representation

acceptable to the ZAL animation environment. That is, it is necessary to derive a CFG

for the ZAL Language itself.

This is essentially an empirical process, which can be achieved by a series of reifications

of the original Z notation grammar as follows:

1) Examine the original Z notation grammar to identify syntactic elements that map to

operational constructs modelled in the animation environment.

184

2) Analyse the semantics of the identified Z Notation to determine to what extent

factors such as declarations need to be modelled in the chosen elements.

3) Determine whether corresponding constructs can be generated in ZAL, extended by

native LISP where necessary.

4) Map ZAL and LISP terminal symbols to the remaining constructs.

The derived CFG for the ZAL language is shown in Appendix II: Context-Free Grammar

of the ZAL Language.

There are several facets of this grammar, which are of consideration in the

transformation process. Firstly, since ZAL is based on LISP, it is noted that the

operators of the grammar are presented in a polish style. That is all productions

containing operator terminal symbols have those symbols as the first symbol in the

production. Since this is not the case in the Z notation grammar, which uses in-fix, pre­

fix and post-fix operators, there is clearly a polish conversion function to be considered

as part of the transformation process.

Secondly, it is noted that the ZAL grammar includes no declaration syntax, other than to

define the input (?) and output(!) variables associated with schema declarations. This is a

consequence of the fact that given sets, global and local variables are considered

elements of the candidate data set associated with a particular animation scenario. They

are therefore provided in the animation environment as needed. However, this does not

imply that the transformation process need not be concerned with these elements of the

original Z specification. In particular, it is noted that the transformation process must

consider the particular type of an identifier in order to produce a correct transformation.

Thus, even though type information associated with identifiers is not a component of the

transformed specification, it is an integral component in the selection of the correct

production to apply in the transformation process, as discussed later.

Finally, it is noted that not all the operational elements of the Z notation are currently

emulated in the ZAL language. Some operations are not yet supported, whilst other

elements are implemented by corresponding operations in the native LISP language. The

185

transformation process must therefore implement a strategy whereby ZAL language

elements are selected if available, followed by native LISP expressions where not. There

is also the possibility of no corresponding operational transformation in either ZAL or

LISP, whereupon the transformation process must highlight this problem to the user.

Having defined the grammar of the ZAL language, it is now possible to discuss the

process of transformation of a captured Z specification into the ZAL language. In

essence, this process is a mapping between the grammar of the Z notation and the

grammar of the ZAL language. However, this mapping is not a simple translation, but a

transformation in which factors other than simple pattern recognition play an important

part. This transformation process is achieved by a novel element in TranZit termed the

TranZit Transformation Engine (TTE).

5.1.4 Evolution of the TranZit Transformation Engine (TTE)

The TranZit Transformation Engine (TTE) provides the core interface between the

TranZit system and the ZAL animation environment as shown in Figure 5-3.

LISP

Execution
Environment

ZAL Animator

Z Notation Editor

Syntax and Type
Checker
(TAS)

Transformation
Engine
(TTE)

T ranZit

Validate and Refine

Interface to ZAL

ZAL Anim ation
Environm ent

Figure 5*3: The Interface between TranZit and the ZAL Animation Environment

186

Before TranZit, the process of animation was undertaken by transforming Z

specifications into the corresponding ZAL language by hand. However, this method

provoked a number of problems:

• The process of hand transformation is prone to error, thereby weakening the

formalism employed.

• The process can be laborious and time consuming for a non-trivial specification. This

is especially important when considering that the REALiZE process inherently

incorporates the notation of specification refinement by iteration of successive

animations.

• A specifier wishing to use the animation process needs to learn not only the Z

notation, but the ZAL language as well. Since the ZAL representation exists purely

to support the animation process, this is inefficient use of skills.

The TTE was therefore developed in order to automate, in so far as is possible, the

transformation of the captured Z specification into the ZAL language. It is important to

recognise at this stage that an automated transformation of all possible Z notation

constructs is a non-computable problem, since in some cases it is necessary to reason

about the meaning of a Z construct in order to deduce a transformation which will

terminate when executed. Turing’s halting problem tells us that we cannot write a

program to achieve this (Wulf et a l, 1981). However, since this problem was recognised

at the outset of the TTE development, additional mechanisms have been implemented to

supplement the automated approach.

5.1.5 Requirements for the TranZit Transformation Engine

The requirements for the TranZit Transformation Engine (TTE) are as follows:

• The user should not need to make any changes to the originally captured Z

specification in order to use the TTE. That is, the user is free to write the Z

specification using any legal constructs in the Z notation, without concern for

executability.

187

• The TTE will transform a Z specification to a representation that can be executed

directly in the ZAL animation environment, with as little user intervention as

possible.

• The TTE will provide a mechanism for detecting and dealing with some non-

computable clauses in the Z notation.

• The TTE will incorporate features for generating animation-specific constructs

within the executable representation, suitable for supporting introspection of the

behaviour of the executable representation (e.g. the ZAL :SHOW command).

It is important to note that these requirements enforce the view that, in writing the

specification, the specifier need not be concerned with writing in such a way as to afford

possible executability. Determining executability is the job of the transformation engine,

not the specifier.

Having established the requirements of the TTE, certain fundamental decisions needed to

be made concerning the mechanisms required to achieve them: Of most importance were

the need (or not) for an intermediate language format, accessibility of the executable

representation and guaranteeing correctness in the transformation process. These issues

are discussed below:

5.1.6 Intermediate Languages

One of the earliest research debates concerning the implementation of the TTE,

concerned the necessity to employ an intermediate language between the original Z

specification and the executable representation in the ZAL language. Traditional

compilers often use an intermediate, idealised language, which is optimised for some

unrealised virtual machine. There are several advantages to this approach:

• The output of the compiler can be tested in isolation from the target by simulating

this virtual machine in software.

• The intermediate language can be designed to alleviate target language problems and

allow the compiler designer to focus on generic solutions to problems such as

optimisation.

188

• There is an abstraction between the intermediate language and the target language,

allowing different target languages to be generated from the same intermediate

language. A separate phase of the compiler, normally termed the back-end, is

responsible for generating a particular target-specific language from the intermediate

language.

Several preliminary intermediate language formats were developed for the TTE in order

to realise these benefits, as well as considering transformation directly to the Z Interface

Format (ZIF) language specified in the Z base standard (Brien and Nicholls, 1992).

However, it was observed that in all these cases the level of abstraction derived was

similar to the ZAL language itself, and there were no real benefits to be gained from

implementing an intermediate language that could not already be obtained from

transforming directly to the ZAL language. This is a credit to the ZAL language itself, in

that it is sufficiently abstract to be used as an intermediate language in its own right,

whilst still retaining executable semantics. Ultimately, it was therefore decided to

transform directly from the original Z specification to the ZAL language.

5.1.7 Accessibility of the Executable Representation

This debate arose from research into how specification developers actually use animation

systems in a practical way. Much is made in the literature of that fact that the

specification should always be the primary source of information to the system designers.

However, the introduction of an animation phase based on a rapid prototype of the

system, affords the possibility that the executable representation itself becomes the

deliverable from the specification process.

From research into how users approach animation systems, it has been observed that

once a specification is written and transformed into an executable representation, the

executable representation itself tends to become the focus of refinement as the animation

process proceeds, rather than the original specification. This may be because many

specifiers are actually experienced developers, whose tendency is to refine the executable

representation as problems are uncovered, in the same way as one would debug a

189

program. However, the danger is that the executable representation will diverge from the

original specification and hence information and abstraction will be lost. In particular, as

described later the nature of the transformation process inherently discards much of the

original type information in the original Z specification, as we move from one semantic

universe (i.e. Z) to another (i.e. ZAL). This is characteristic of the move from a logical

representation to a computational representation, in that whilst we can map certain

operational features, due to the gap in levels of abstraction it becomes increasingly

difficult to map semantic information.

There are two approaches to overcoming the problem of animators refining the

executable representation rather than the original specification: Firstly it could simply be

accepted, and the necessity is then to provide a means of re-engineering the original Z

specification from its executable representation. However a brief study of the executable

subset of Z constructs implemented in ZAL for example, shows that this cannot easily be

achieved. In particular we cannot re-create the type of the variables defined in the

specification, as this information was discarded in the original forward transformation.

The alternative is to provide sufficient support in the TTE such that it becomes

unnecessary to modify the executable representation. Thus in using the animation

system, the specifier is more comfortable in referring back to the original Z specification,

safe in the knowledge that the transformation process will faithfully reproduce a

refinement identified in the animation environment, but captured in the original

specification.

This places further emphasis on the requirements of the TTE, in that it becomes

important for the TTE to support as much as the transformation process as possible

(either automated or otherwise). Similarly, it must also generate animation-supporting

features of the ZAL language via an independent mechanism, in order to reduce the need

to modify the executable representation directly.

190

5.1.8 Ensuring Transformation Correctness

To be of use, the transformation process must be correct in some sense in transforming

between the LL(fc) grammar derived for the Z notation discussed in section 4.2.7, and the

grammar of the ZAL language developed for the TTE.

Firstly, it became clear early in the research of the transformation engine, that a true and

correct transformation could not be guaranteed without accurate type information

extracted from the original Z specification. Secondly, even though the animation

environment is based in the imperative domain, it is not a compiler. Therefore, it cannot

detect all semantic faults in the original Z specification.

The reasons for this are rooted in the use of a LISP environment for the animation

engine. The data manipulated in LISP programs consists largely of lists and symbols,

however there is nothing about LISP, which restricts us to manipulating only these

objects (for example we can still write LISP programs to deal with numeric quantities in

the same way as we can with ‘C’ or FORTRAN). However, LISP has a different

approach to data types than one would find in an imperative programming language such

as ‘C \ It is convenient to think of the data types of LISP as a hierarchy, in which some

of the data types are simply more specific versions of another. As Wilensky (1986) points

out, the consequence of this is that it is meaningless in LISP to ask what the data type of

an object is. For example, what is the data type in LISP of 3.2? In fact it could be

number, float, atom or single-float depending upon the context in which it occurs. A

consequence of this is that the LISP type-of operator could return any of these types

depending upon the implementation. This functionality allows us to write very compact

programs in LISP in which type information can be determined at run-time and dealt

with appropriately. Indeed, this feature is actively exploited in ZAL in order to simplify

the animation language and allow us to represent symbolically the abstract nature of Z

data types. For example, the ZAL eqz operator will determine equality for expressions of

any particular data type, and the ZAL mks operator will build sets of any particular data

type.

191

However, this behaviour is diametrically opposed to the rigorous type system embodied

by the Z notation. Therefore it is not possible for the ZAL animation environment to

perform rigorous type checking, and indeed it is not intended for this purpose when

considering that the objective of animation is to execute a rapid prototype rather than

generate one.

Therefore, from the preceding discussion, in order to guarantee that the transformation

process produces a deterministic and correct result, it is necessary to guarantee the type

correctness of the input specification. The design decision resulting from this work is

that in order to guarantee correct transformation, the transformation engine will produce

no output whilst there are syntactic or semantic errors present in the original Z

specification.

5.2 Realisation of the TranZit Transformation Engine

The essential function of the transformation engine is to provide a mapping between the

operations and data types defined in the abstract Z universe, and the operations and data

types available in the ZAL animation environment based on LISP. This is illustrated in

Figure 5-4.

Concrete LISP
Environment

Abstract Z
Universe

Syntactically /
Semantically
Correct
Z Specification

Executable
Representation

ZAL Language

Figure 5-4: Mapping Between Semantic Universes

The starting point for this process is the LL(fc) Z notation grammar developed for this

project as described in section 4.2.7, and the grammar of the ZAL language. The

associated grammar definitions are given in Appendix I: LL(fc) Grammar for the Z

Notation and Appendix II: Context-Free Grammar of the ZAL Language respectively.

We therefore seek to design a transformation engine that can achieve this mapping in a

deterministic and consistent manner. The most obvious way of achieving this result is to

define a set of re-writing rules or productions embedded within the LL(k) grammar.

Since the pre-condition has already been made that the Z specification to be transformed

must adhere to the syntactic and semantic rules for the Z notation, it is possible to define

a set of productions which will achieve the desired result in a deterministic fashion.

However, on examination of the grammars, it can be seen that there is not a one-to-one

correspondence between the two. There are several reasons for this:

• Not all aspects of the Z notation grammar relate to executable components within the

ZAL language. For example, the ZAL language is not concerned with schema

variable declaration syntax, other than to note that an input or output variable of

some type has been defined. The ZAL language grammar effectively represents an

executable subset of Z operations, which are implemented within the animation

environment.

• The grammar of the Z notation does not make explicit certain operational features

required in the executable representation. For example, the section of the Z notation

grammar, Expression .. Expression, denoting a sequence of expressions could

represent a sequence of numbers or a function application. These two types have

separate grammar representations in the ZAL language (e.g. the ZAL grammar of a

function application requires the presence of the ZAL applyz keyword).

In essence this means that the production system must be supported by additional

semantic information captured from the Z type system, in order to deduce which

production to apply in any particular case.

193

5.2.1 TranZit Transformation System Architecture

The TranZit transformation Engine consists of a number of key components as indicated

in Figure 5-5:

Monitor
Variables

Specification

Production SystemData Types Animation
Support

Computability Analysis
Show

Generation
Polish Conversion Engine

ZAL operator Precedence and
associativity Resolution

Implicit
Schema

Resolution
Optimisation

Format Engine
Schema Objectbase

Executable Representation

Windows
Clipboard

.ZAL
FileTranZit Transformation

Window

Transformation Engine

Figure 5-5: TranZit Transformation System Architecture

194

The individual components of the TTE are described below:

5.2.2 The Production System

The production system is implemented as a number of sub-components within the re­

written LL(fc) grammar forming the basis of the TAS parser. As the parser executes,

components are invoked at particular levels within the original grammar, which

correspond to executable transformations. Using the original Z notation grammar allows

the production system to know the context of the parse at any point, and thus select the

correct production to produce the desired executable representation in the ZAL

language. However, it is often the case that the correct production cannot be selected

without additional type information. Hence the production system components may also

interrogate the schema objectbase described in 4.3.1, in order to determine the choice of

executable representation. A good example is the case of a sequence of expressions, in

which the production system must determine whether these are actually a sequence of

individual identifiers, or a function application.

The output from the production system is a sequence of operator and operand tokens,

which represent the basic components of the transformation. However, this sequence is

in the same form as the associated Z notation (Le. prefix, in-fix or post-fix

representation). Similarly, the operator tokens have not been ordered according to the

rules of precedence or binding association. This token sequence is therefore passed onto

Polish conversion engine which will resolved these issues.

5.2.3 The Polish Conversion Engine

The function of the polish conversion engine is to reduce the sequence of operator and

operand tokens produced by the production system to LISP s-expressions, inserting

appropriate ZAL operator keywords or LISP functions for the operator tokens. The

operator keywords are organised by table look-up, to allow for the fact that keywords

may be changed.

195

This is one of the most complex operations within the transformation engine, as it

involves reducing Z prefix, infix and post-fix operators to a common polish format

(operator argi... argn). The problem is similar to that of a compiler which typically

reduces a source program to an intermediate language consisting of a sequence of n-

tuples that the code generator then converts to the target assembly language. In addition,

this function must also take account of the precedence of Z operators in expressions, and

also whether the binding association of the operators is left, right or unary. Finally, the

function must perform bracket balancing to ensure brackets are inserted in the correct

places and are opened and closed as a pair.

The polish conversion engine is also responsible for performing optimisation functions

including aggregation of implicit connectives such as and, or and imply. For example:

(and

(and

(opl argl arg2)

(op2 argl arg2)))

Can be optimised as:

(and

(opl argl arg2)

(op2 argl arg2))

This frequently occurs in the transformation of multiple predicates within the body of a

schema, in which each of the predicates is implicitly and*ed together.

5.2.4 The Computability Analyser

The computability analyser is subordinate to the production system, and is intended to

determine conditions in which automatic transformation of the original Z specification

may not be possible. If this is the case, then the computability analyser invokes the

TranZit Transformation assistant to elicit additional transformation information from the

196

user. A detailed explanation of this component of the transformation engine is deferred

until the discussion of the non-computable aspects of the Z notation in section 5.3.

5.2.5 Animation Support

The animation support function supplies additional ZAL language components to the

transformation process which support the animation environment directly, rather than

being explicit components of the original Z specification.

Two important functions are handled by this component:

• Support for shown variables (i.e. variables associated with the ZAL :SHOW meta

language described previously)

• Implicit Schema Resolution

5.2.6 Support for Shown Variables

In the ZAL language it is possible to specify that the animation environment output

information to show the changes to particular variables as the animation executes. This

concept is similar to a watchpoint in a conventional debugger. Such information is

submitted to TranZit from the tools->set show variable dialog box as shown in Figure

5-6:

197

Show Variables

New Show

POSObjCls : : parent Attr Add 1

Current Show List

POS: : classfnfo

POSObjCls: : ancestors
--------------- '

OK |

Figure 5-6: Set Show Variable Dialog

The user either selects a variable from the original specification, or manually enters show

data o f the form <schema ref>::<var name> into the edit control, to identify which

variables the user is interested in monitoring as the animation progresses. Provided, this

information can be resolved by the animation support function, the TTE will generate

appropriate ZAL ‘:SHOW’ commands at the correct point in the output transformation.

5.2.7 Resolution of Implicit Schemas

This function deals with support for implicitly defined schemas generated by the use o f

the A and S conventions in the original Z specification (Spivey, 1992).

As indicated by Spivey (1992), operations on data types are specified by schemas, which

have two copies o f state variables amongst their components; an undecorated set

corresponding to their state before the operation, and a decorated set corresponding to

their state after the operation. There is a convention that whenever a schema S is

introduced into the state space o f an abstract data type, the schema AS is implicitly

defined as a combination o f S and S’, unless another explicit definition for AS already

exists in the specification. The implicit definition for AS is:

198

AS = [S, S’]

In a similar way, operations may wish to access information in an abstract data type,

without changing its state in any way. Again the schema SS is implicitly defined

whenever schema S is introduced into the state space of an abstract data type, with the

implicit definition:

SS = [AS 10S = 0 S ’]

The user is free to use these conventions within Z specifications captured in TranZit, and

the TAS understands the associated semantics. However, whilst the semantics of these

conventions are clear within the context of the original specification, in the executable

representation these conventions need to be made explicit. TranZit therefore includes an

implicit schema resolution system, which maintains a database of schema definitions

associated with these conventions. Once the transformation engine has completed a pass

of the specification, if any implicit schema definitions remain unresolved, the TTE

generates explicit executable representations of these schema automatically according to

the definitions above. This ensures that when the executable representation is submitted

to the ZAL animation environment, all schema references are explicitly resolved.

5.2.8 The Format Engine

The final component of the transformation process is the format engine. The format

engine is controlled by information from the transformation system dialog box, as shown

in Figure 5-7:

199

Analyser and T ransformation System

- Syntax A nalyser-----------------

i ll

100 Maximum Number of Syntax Errors Reported

r Report Undefined Functions R Enable Type Checking

T ransformation System —

R T ransform Z to ZAL
W Write to Clipboard R Write to File

s p e d .z a l

s p e d , zal
wlmsa.zal
wlmsb. zal

Figure 5-7: The Transformation System Dialog

The transformation system group in this dialog determines:

• Whether a transformation is to be produced (this also depends upon the success o f

the syntax and type check o f the specification).

• Whether the output is to be written to a specified file, or to the Windows Clipboard

for pasting into another application.

If the transformation is successful, the Format Engine invokes a pretty-print operation,

and displays the transformation in a separate application window. This allows the user to

audit the transformation before deciding whether to proceed to the animation

environment. A typical window arrangement for transformation auditing shows the

original Z specification and the corresponding transformation on the same screen, as

shown in Figure 5-8:

2 0 0

(| f+. V - , TM .
^ I bJjcJ

d

a : ACCOUNTS

q : QUEUE J

/* you can't be in the queue if you don't have an account * /

ran q C dom a

/■» your account must have som e money in it */

V n : ACCNOS | n e dom a • aCn) i 0

- 1 _ _....................... d
3 Z to ZAL Traniformation foi CAREQENG\BANK.Z - | b | x
(SCHEMA Bank

:SH0W a
:PREDICATE

(and
(su b set (ran q)(dom a))
(forall n (dom a)

(imply
(mem n (dom a))

A

R>= [applyz a n]0]
)

)

- J
^ Start] 0 /] V £ AftetDark | i , Expkxng | jy Microsoft... | 3 TrariZ* - C.. J 3 TronZIFl... || 3 Z to ZA... 15:37

Figure 5-8: Typical TranZit Window Arrangement for Transformation Auditing

If the user decides to proceed to the ZAL animation environment, then the user can

specify whether the transformation is stored on the Windows Clipboard, or saved to a

particular file for importing into the ZAL environment.

5.3 Non-Computable Aspects of Specification Languages

Thus far the transformation process has been considered to be an automated conversion

from the Z notation to the ZAL language. The tacit assumption has been made that every

construct within the Z notation has a computable representation in the execution

environment. However, this is not the case, and therefore the TranZit transformation

engine requires a strategy to deal with the problem o f non-computable clauses within Z

specifications.

2 0 1

The issue of the computability of clauses in formal specifications has provoked many

debates in research circles. Perhaps one of the most important papers in this area, which

still provokes much discussion, is that of Hayes and Jones (1989). In this paper Hayes

and Jones seem to argue against attempts to pursue research into the transformation of

specifications into executable representations. They justify this view by asserting that the

needs of the transformation process inevitably restrict the expressiveness of the

specification language, and may influence the specifier in considering implementation

issues rather that capturing pure requirements. Their paper is well supported by a

detailed discussion of specification problems, which in their opinion cannot be made

executable. In particular, the paper argues that one should be able to specify the well-

known non-computable halting problem (Wulf et al., 1981) in order that a single

notation can be used to explore both the theoretical and practical applications of

computing.

The view taken in this research, which is supported by others (Fuchs 1992, Valentine

1995, Dick et a l 1990, Knott and Krause, 1992), is that useful results can be obtained

from transforming formal specifications into executable representations. Indeed, as

discussed later, it is believed that the development of the TranZit transformation engine

in conjunction with the ZAL language has shown that it is possible to produce executable

representations at similar levels of abstraction to the original specification, whilst

retaining almost identical structure.

This work also supports the view of Fuchs (1992) in that “.. the lack o f correctness o f

software is the most serious problem in software development, and not the possible lack

o f expressive power o f the specification languages'’. Excluding the execution of

specification languages needlessly deprives specification writers of a powerful tool for

validating specifications against informal requirements. In addition it is believed that

there is a strong influence to combine deductive and inductive approaches to software

engineering in order to improve the understanding and application of formal methods in

solving practical problems (Siddiqi et al., 1998).

202

5.3.1 Computability and the Z Notation

The Z notation is non-executable. This is easily demonstrable by the fact that one may

write a specification of the Halting problem (Wulf et a l, 1981) in Z. Particular elements

of the Z notation which make it non-executable are well understood and are described in

detail in Hayes and Jones paper (1989). In general the problem distils to the fact that the

Z notation allows us to express concepts without regard for:

• Finiteness,

• Efficiency,

• Determinism.

The Von Neumann model of computation used in a physical computer system inherently

imposes finiteness by the fact that the computer has a limited memory space. Thus, it is

not possible to truly represent a basic concept such as N (the set of positive integers

including 0) in a computer system. This is because the representation used to store a

number in the computer’s memory is limited to some arbitrary value determined by the

number of bits available in the basic machine word.

Computation also imposes efficiency requirements, by the fact that a computer cannot

perform an infinite number of operations in a finite time. It is easy to specify so-called

NP-Complete problems in Z (e.g. the Hamilton tour problem), for which executable

solutions are known to exist, but which are computationally infeasible (Goldschlager

and Lister, 1982). Thus an executable representation of some abstract problem may not

generate a result in a reasonable time depending upon the number of data points entered

into the computation.

Finally, computation imposes determinism by the fact that the Von Neumann model of

computing is essentially one of sequential operations on the program state. In a logical

specification this restriction is not enforced, thus the specification of an (incomplete)

number sorting operation (taken from Hayes) may appear in Z as follows:

203

Sort = [Input?,output!: Seq N I

IsOrdered(Output!) a IsPermutation(Input?, Output!)]

The result of the Sort operation is a conjunction of two processes, the second of which

generates a (possibly) infinite set of permutations of the input represented as sequences,

and the first of which returns an infinite set of sequences which are numerically ordered.

Depending upon the order in which these individual processes are executed, the result of

executing the conjunction of these processes may or may not terminate. Thus it is

necessary to reason about the problem in order to impose an execution strategy which

will constrain each process output in some meaningful way, and therefore guarantee

termination. Such specifications are said to exhibit external non-determinism.

It is also the case that internal non-determinism may exist, by the fact that a system’s

overall operation may be deterministic, but it may be composed of non-deterministic

operations. Systems using parallelism are a case in point. For example, an operating

system’s paging mechanism may have a non-deterministic specification, but the result of

running user programs on the system must be deterministic. Hayes and Jones argue that

the ability to express non-determinism in specification languages is vital to ensure that

the specification is not constrained by implementation detail

5.3.2 A Strategy for Dealing With Non-Computable Clauses in Z

As highlighted in section 5.3.1, the problem of transforming an abstract specification to

an executable representation is rooted in the disparity between the semantics of the

logical domain in which the specification is expressed, and the Von Neumann model of

computing imposed on the executable representation. Whilst a general automated

solution to this problem is non-computable, it is possible to define a strategy for partial

automated transformation coupled with user assistance, which can yield useful and

practical results. This is the essence of the strategy used by TranZit in dealing with the

problem of non-computable clauses in Z. An example, which highlights this strategy is

described in section 5.3.3.

204

5.3.3 Example: IsAPerfectSquare

Non-computable problems can be identified in seemingly trivial specifications. For

example, the boolean operation is_a_perfect_square, adapted from Hayes and Jones

(1989), can be specified as:

IsAPerfectSquare = [i? : N I 3 j : N • i? = j2]

In this case, the intention of the specification is to define an operation in which the

integer i? is tested to determine whether it is a perfect square; i.e. does there exist some

positive integer which is the square root of i?. A naive transformation of this operation

into the ‘C’ programming language would appear as shown:

Typedef BOOLEAN unsigned char;
BOOLEAN IsAPerfectSquare(unsigned int i)
{
unsigned int j ;

j=0;
while(i != (j * j))

j = j + 1;
return(TRUE);

}

As shown above, a naive executable representation of this operation would repeatedly

enumerate values for j from the set N (modelled by the ‘C’ data type unsigned int),

before performing the test i? = / . If the test is true, then the function terminates,

however if the value of i? is not a perfect square (e.g. 5), the function continues to loop

internally ad infinitum (or more likely until an exception occurs when / exceeds the

maximum integer value which can be represented by the host computer).

Closer examination also reveals that a more subtle problem exists with the process of

enumerating the variable j. When designing the program, the assumption has been made

that values for j will be enumerated sequentially, starting from 0 and incrementing by one

on each iteration. The programmer has therefore reasoned about the meaning of the

205

specification itself in order to deduce a strategy for enumeration, which he or she knows

is likely to give a result in the executable representation. As a further example, consider

the case of searching for a solution to the problem:

3 j : N I j < 10 • (j + 3)/(j - 3) = 2

The solution is clearly j = 9, however a sequential enumeration strategy for j would stall

at j - 3 with a divide by zero exception.

In general, this reasoning process may be quite complex and cannot be deduced from a

static analysis of the specification by an automated transformation system. Again, the

Halting problem tells us that this is the case since we cannot write a program which will

identify whether an executable representation will terminate for some candidate input

data.

5.3.4 Adding Constraints to Non-Computable Clauses

Many similar examples can be given involving the use of universal and existential

quantifiers, which in general transform to a search of an infinite space. A similar problem

also exists within a set comprehension of the form {D [\ P] • [E]} in which the values of

the set are implicitly generated by some (optional) general expression E constrained by

an (optional) predicate P. For example, the following set comprehension describes the

set of so-called Hamming Numbers, whose prime factors are either 2,3 or 5:

{ x : N I V y : PRIMES . jcmody = 0 => y e { 2,3,5}}

In this case, the set comprehension requires the selection of enumerations for x and y

from the infinite sets N and PRIMES respectively and then performs a test for set

membership of x by a modulus operation and a further constraint on y. A naive

executable representation of this set comprehension would be hopelessly inefficient, and

in any case the set is unlikely be computed in its entirety since the set of Hamming

number is quite possibly infinite. However as Hayes and Jones point out, even though a

206

specification may contain clauses which are potentially non-computable, if these clauses

are conjoined with additional constraints then the whole may be computable.

Exploring this idea further, it is clear from an examination of the naive transformation of

the IsAPerfectSquare example given in section 5.3.3 that there is a missing loop

termination condition in the case of a result not being found. An obvious condition is that

the loop should continue only whilst j < i, leading to the following optimised

specification:

IsAPerfectSquare = [i? : N I 3 j : N I j < i • i? = j2]

With the corresponding naive transformation in ‘C \

Typedef BOOLEAN unsigned int;
BOOLEAN IsAPerfeetSquare(unsigned int i)
{
uns igned int j ;

j=0;
while((i != (j * j)) && (j < i))

j = j + 1;

return(TRUE);
}

However, there are still three problems with this naive transformation. Firstly, as before,

the transformation will only work if a sequential enumeration strategy is adopted for j

beginning at 0. This is not indicated by the original specification and a different strategy

may cause the executable representation to fail incorrectly if the constraint j < i is broken

before exploring all possible enumerations of j.

The second problem arises since the deduction of the new loop constraint j < i can only

be developed by reasoning about the problem, and therefore cannot be determined by an

automated transformation system.

207

Thirdly, a new problem has now been introduced, in that if the loop terminates due to the

loop constraint being broken, the result of the function is still true.

The solution to the first two problems lies in the recognition that the constraint imposed

is a weaker condition over the quantified variable j than the general case of selecting

enumerations for j from a. finite subset of N. However, this requires that the human user

o f the animation place a limit on the search space, as in general this process cannot be

automated.

For example, for the purposes of animating the specification, it could be stipulated that

the enumerations for j be taken from the set of integers between 0 and 10. The formal

specification would then appear as:

IsAPerfectSquare = [i? : N I 3j : N I j e 0..10 • i? = j2]

With the corresponding naive transformation in ‘C’:

Typedef BOOLEAN unsigned int;
BOOLEAN IsAPerfectSquare(unsigned int i)
{
unsigned int j;

j=0;
while((i != (j * j)) && (j <= 10))

j = j + 1,-

re turn (TRUE) ;

}

However, the problem associated with the incorrect result true if the loop constraint is

reached has still not been addressed. To provide a correct transformation it is required to

introduce additional program elements to make explicit the return condition, as shown

below:

208

Typedef BOOLEAN unsigned int;
BOOLEAN IsAPerfectSquare(unsigned int i)
{
unsigned int j ;

j=0;
while((i != (j * j)) && (j <= 10))

j = j + l;

if(i == (j * j))
return(TRUE);

else
return(FALSE);

}

Whilst it is quite easy to show that this transformation will terminate with a correct result

for any value of i, this transformation could no longer be considered naive.

The solution to the final problem lies in the recognition that the use of an imperative

programming language such as ‘C’ imposes additional transformation problems, due to

the fact that the language itself does not inherently embody the notion of truth of a

statement. This means it is necessary to introduce additional imperative program

elements to model the semantics of the existential quantifier 3 itself, which are in general

a function of either the constraint or the existentially quantified predicate (whichever may

be the more efficient). This suggests it is necessary to employ an executable

representation using a logic-based declarative programming language such as LISP or

PROLOG, as this facilitates a more automated transformation. As an example, the

automated transformation by TranZit of this revised specification into the corresponding

ZAL language is shown below:

(exist j (inks 0 1 2 3 4 5 6 7 8 9 10)
(and

(mem j (mks 0 1 2 3 4 5 6 7 8 9 10))
(eqz i (* j j))
)

)

209

Several of these ideas are akin to those presented by Kowalski (1979) in his paper

Algorithm = Logic + Control. In this paper, Kowalski explains the relationship between

the logical representation of a problem domain, and the control strategies for

implementing them. In particular Kowalski notes that different control strategies for the

same logical representation may have different behaviour in terms of efficiency, as

suggested by the examples above.

5.3.5 The Computability Analyser: Identifying Enumeration Functions

Whilst it is not possible to devise an automated general transformation of non-

computable clauses in Z, it is possible to identify specific conditions within otherwise

non-computable clauses, for which automated transformation is possible. Programs of

this nature which accept specific conditions which are known to terminate, whilst

rejecting some of the conditions which do not are termed partial decision procedures

(Wulf etal. 1981).

The philosophy adopted by the TTE allows users to specify problems using the Z

notation in whichever style best fits the semantics of the problem domain. At the point of

transformation, the TTE will report constructs that are possibly not executable. This

function is embodied within the computability analyser of the TTE and involves the

detection of constraints termed enumeration functions within otherwise non-executable

clauses.

Two classes of enumeration function can be identified:

• Explicit: For example, within clauses of the form:

3 D \ P - Q y V D \ P - Q o r (D \ P - E }

Here predicate P explicitly constrains the search space of variables introduced by

declaration D, or

• Implicit: By the fact that for the specification to be of practical use, the concrete

data structures of the corresponding animation must be populated with finite

candidate data.

210

Thus, the enumeration function is inherently related to the execution strategy of the

underlying animation system. In particular, the transformation engine makes the tacit

assumption that values for the enumeration will be generated in a deterministic fashion.

For example, consider the case of a universal or existential quantification of the form:

3 D \ P . Q , or V D \ P - Q

Here, the computability analyser expects to deduce an enumeration function to generate

values for the constraining variable introduced by P. To meet the requirements for

explicit enumeration, the computability analyser requires that predicate P has the type

signature:

P : X x PX ; where X is a basic type.

If P = x e dom(y), where x: X and y: P(X x Z), or P = x: N I x e 1..100, then this

criteria is satisfied, whereas if P = /, x. N I x < i then the criteria is not.

It could be argued that even though the explicit enumeration criteria is satisfied, this may

still logically result in a search of an infinite set. For example, consider the following

specification for a system invariant modelling a banking system in which accounts must

remain in credit:

ACCNOS == Ni
MONEY == N

 Bank_______________________________
accounts : ACCNOS MONEY

Vn : Ni I n e dom (accounts) • accounts(n) > 0

211

This specification chooses to represent customer account numbers (modelled by

ACCNOS), as strictly positive integers. The enumeration function dom (accounts)

therefore logically represents a possibly infinite set of positive numbers. However, to be

of any practical use, the user of the animation must provide candidate data for the

function accounts. This example therefore meets the requirements for implicit

enumeration, and the corresponding automated transformation will terminate, when a

finite candidate data set for the accounts function is assigned by the user at animation

time.

The detection of an enumeration function by the computability analyser effectively

ensures the property of finiteness in the resulting transformation, and allows the TTE to

proceed with an automated transformation. Failure to detect an appropriate enumeration

function requires manual human intervention to supply an appropriate constraint to

allow the transformation to proceed. If the computability analyser determines that it

cannot deduce an appropriate explicit or implicit enumeration function for a clause, then

it invokes the Transformation Assistant described in section 5.3.6.

5.3.6 An Eclectic Strategy: The TranZit Transformation Assistant

The transformation strategy adopted by TranZit is eclectic in nature, drawing inspiration

from the unobtainable yet idealised goal of automated transformation of the original Z

notation, coupled with practical user involvement to resolve issues that are non-

computable.

It is important to note that with the addition of finite set constraints, TranZit is able to

perform the transformation of many specifications, such as those described in section

5.3.4, without any assistance from the user. However, it is considered unreasonable for

the specifier to be forced into introducing appropriate executable constraints in a

specification, simply to be able to use the TranZit transformation engine. To support this

philosophy, TranZit embodies the concept of a Transformation Assistant.

If, during the transformation process, the computability analyser determines that the

explicit or implicit enumeration criteria defined in section 5.3.5 are not satisfied, then in

212

order to proceed with the transformation TranZit must solicit help trom the user, bor

example, in the following universal quantification, the computability analyser is unable to

deduce either an explicit or implicit enumeration function for the constraining variable n,

since the constraint represents an infinite set o f integer values greater than 5.

Vn : N | n > 5 • (a(n) - b(n)) > 0

TranZit therefore requests help from the human user by invoking the Transformation

Assistant dialog box shown in Figure 5-9 below, and populating it with information

concerning the associated schema and local variable that cannot be enumerated. The user

is then prompted to manually enter an enumeration function in the ZAL language. In this

case, an appropriate response might be (dom a).

T ranZit T ransformation Assistant *1
T ranZit cannot determine a Finite Constraint for the following
variable, which has been used in a Univeral or Existential
quantification. P lease enter a ZAL Expression which TranZit
can use to constrain this variable in the transformation.

Schema Name
Bank

Quantified Variable Name
n

ZAL Expression
(dom a j

OK |

Figure 5-9: TranZit Transformation Assistant Dialog

TranZit then completes the transformation automatically as follows:

(forall n (dom a)
(imply

(\> n 5)
(\> (- (applyz a n) (applyz b n)) 0)

)

)

213

I

One could legitimately ask the question under what conditions the strategy adopted by

TranZit will fail. An obvious example is the consideration of cases in which neither

TranZit nor the human user can provide an enumeration function. Such possibilities

might arise where there is a need to generate a random enumeration function for

example. In this case, the user cannot supply the TranZit transformation assistant with a

static ZAL expression that will achieve this goal. The problem lies in the recognition that

the concept of randomness lies in the concrete rather than the abstract domain. To

generate such values it is therefore required to fall back to the underlying execution

mechanism of the animation environment, in this case LISP. To solve the problem, the

user of the animation would need to supply some function in LISP to perform the

random generation of values, and manually link this with the transformed representation

of the original specification. Whilst this is possible to achieve with the current system, it

goes against the ethos of the strategy adopted. In any case, it is extremely difficult to

conceive of practical examples where this problem would arise.

Whilst it is not a failure condition, there are cases in which the strategy adopted will

cause the computability analyser to err on the side of caution and invoke the TranZit

Transformation Assistant when human reasoning suggests it is obvious how to resolve

the lack of an enumeration function. For example, if we consider the following

specification that generates all possible sub-sequences of some sequence s, it is clear that

this involves infinite iteration over the infinite set seq N.

s : seq N

3 x, y : seq N • x ~ y = s

From the previous definitions, the computability analyser cannot find either an explicit or

implicit enumeration functions for the variables x and y. However, for any animation to

be useful, the user would be expected to supply a value for s. Based on this assumption,

were the computability analyser to extend its analysis to the quantified predicate, it

could in principle deduce from the form of the predicate that x and y must be sub­

sequences of s. It could then effectively internally re-write the specification as;

214

3 x, y : SubSeqS • x ^ y = s

Where SubSeqS is the set of all sub-sequences of s. The re-written specification now

meets the requirements for an implicit enumeration function in ZAL of (powerset s).

Whilst in principle, this would appear to be a suitable extension to the strategy adopted,

it requires further research, especially as there is the possibility that the quantified

predicate may itself contain non-computable elements. Similar approaches based on

automated re-writing of specifications to afford executability have been suggested by

Horcher (1994).

5.4 Summary

This chapter has completed the description of the research and development of the

TranZit system by examining the TranZit Transformation Engine. This is a critical system

component as it provides the important link in the REALiZE process that enables the

user to perform specification verification by animation.

The development of the TranZit transformation engine makes innovative use of ideas

adopted from traditional compiler design coupled with novel techniques and strategies to

overcome problems associated with non-computable aspects of the Z notation.

In particular, the strategy adopted is an eclectic approach, which aims to automate the

process of transformation, in so far as is possible, coupled with user assistance on

detection of certain non-computable conditions. These conditions have been

characterised using the novel concept of explicit and implicit enumeration functions,

which seek to constrain the scope of infinite objects. To resolve conditions in which

automated transformation is not possible, the user is required to supplement the

transformation process with expert knowledge gained from an understanding of the

specification problem domain, which in general cannot be determined by static analysis of

the specification by computer algorithm.

215

In general, it is considered quite natural to require the user to constrain the search space

of an infinite set if the transformation is to be of any practical use, since there are very

few practical applications which make use of the concept of infinity. Whilst this strategy

cannot produce a functioning executable representation of the halting problem from its

original Z specification for example, it has been found to be applicable in many practical

specification problems.

It is admitted that the strategy implemented cannot mitigate all the problems associated

with some of the contrived, theoretical specifications highlighted by Hayes and Jones

(1989). However, it has been found that by the application of the transformation strategy

described, the majority of specifications that have a practical application do not exhibit

non-computable problems during animation.

In the next chapter this claim is supported by the exploration of transformation case

studies, together with results obtained from the real-world use of the TranZit system by

students and staff at SHU.

216

6. TranZit System Testing, Evaluation and Case Studies

In earlier chapters a number of fundamental considerations have been discussed which

have guided the course of this work. In particular, the evolution of requirements

engineering itself has been described, and the impact it has had on modem systems

development has been assessed. The need for a requirements engineering process has

also been identified and the subsequent development of the REALiZE process provides

the foundation of a methodology upon which to capture a complete and unambiguous

statement of requirements. To support this process the TranZit tool has been researched

and developed to provide a powerful, integrated tool to support capture of specifications

in the Z notation and transformation of such specifications into executable

representations in the ZAL language for the purposes of validation by execution.

This chapter aims to;

• Demonstrate the quality of the TranZit software product by describing the testing

strategy employed,

• Assess the usability of the system design from the user’s perspective, and

• Evaluate what has been achieved by comparison with existing requirements

engineering tools and by describing the capabilities of TranZit in assisting to solve

practical requirements engineering problems. In the latter case, this is demonstrated

by the description of two transformation and animation case studies, which aim to

highlight the practical application of the TranZit tool in addressing real specification

problems.

6.1 The Testing of TranZit

An important aspect of any software development process is the validation of the system

by identification of a test strategy designed to eliminate the maximum number of errors in

an application before it is released as a final product. TranZit itself was not formally

specified, as is the nature of many exploratory developments, and hence it is not possible

to perform mathematical verification to prove the program correctness. For an excellent

text on this approach see Gries (1981). The validation task is therefore addressed by

217

more traditional methods of program testing. However, by careful selection of a test

strategy that fits the problem domain, confidence can be gained that serious errors in the

program have been eliminated.

TranZit has been implemented mainly in the ‘C’ programming language (Kemighan and

Ritchie, 1978), and the research programme described in Chapter 2, has naturally led to a

three-phase development, each of which was independently tested. This in turn gave

confidence in each stage of the development before the next phase was implemented.

The three development phases were as follows:

• Development of the TranZit Editor Sub-system (involving the windowing and menu

system, file system interface and outline Schema Objectbase)

• Development of the TranZit Analyser sub-system (involving the lexical analyser,

LL(k) parser implementation, detailed schema objectbase methods, error handling

and type checker).

• Development of the TranZit transformation engine (involving mapping of executable

constructs to the ZAL language, modifications to the parser for ZAL language

generation, polish expression conversion, the precedence and binding association

engine and finally the TranZit Transformation Assistant and animation support

functions).

TranZit has been tested at each stage using a variety of well-proven approaches to

system testing such as white-box unit testing, black box integration testing and

techniques such as logic coverage, equivalence partitioning and boundary condition

analysis (Pressman, 1982). In addition, each release has been acceptance tested or alpha-

trialled, involving exposure of the system to a selected number of users who have

exercised various scenarios and fed back problems.

Following alpha-trial, TranZit has then been released to the academic community at

SHU, where it has been exposed to numerous specification problems on a number of

different host platforms and machines.

218

The following describes the major results of the testing process.

6.1.1 Unit Testing
Unit testing focuses on the smallest unit of software design, i.e. the function. Unit testing

is concerned with validating:

• The function interfaces

• The major logical paths in the function

• Data structure accesses

• Handling of Error and exception conditions

A unit testing strategy relies on detailed knowledge of the internal structure of a function

in order to derive appropriate test cases. Hence unit testing is often referred to as white-

box testing.

It is important to recognise that the scope of unit testing can be quite exhaustive,

especially when one considers the number of possible execution paths through even a

relatively simple function. The ease of testing is also affected by the program style, in

that functions exhibiting poor internal cohesion and close coupling will complicate the

testing process. It is therefore necessary to make a judgement based on experience,

concerning the application of unit testing and depth to which it will be pursued.

In the TranZit system, it became apparent quite quickly that unit testing of the TAS was

not appropriate. In particular the functions of the parser cannot be stimulated easily in

isolation due to the nature of the program, and even if they could the likelihood of

discovering a problem is extremely small due to the fact that errors in this type of

program are essentially context dependent. Unit testing has therefore focused mainly on

the TranZit Editor sub-system.

The TranZit editor sub-system can be unit tested using standard techniques. Because

each function of the editor subsystem is inherently modularised by the fact that it must

integrate with the Windows API, it is easy to stimulate operations individually and

determine test cases to validate their operation. For example, unit testing of individual

219

dialog boxes is easily accomplished by exercising each control element of the dialog box

independently (e.g. edit control, radio button, list box, e.t.c.). General editor functions

can also be stimulated in the same way, by selecting menu items in turn.

The only major problem which was identified by unit testing of the editor sub-system was

the interaction between functions performing manipulation of complete schemas (e.g. the

cut and paste of an entire schema), and functions controlling the schema graphic outline.

The user cannot normally access the schema graphic outline, as it is internally controlled

by the TranZit program. However, errors were identified whereby it was possible to

generate gaps in the schema graphic, which could not then be repaired. These problems

were eventually traced to methods updating the schema objectbase incorrectly.

6.1.2 Integration Testing

Integration testing is concerned with systematically assembling software components

whilst testing the interface between components as integration progresses. Common

approaches to achieving this are top-down integration testing, in which high-level control

modules are integrated first supported by stub functions that emulate the interface of

subordinate functions. Conversely, bottom-up integration testing may be applicable in

which sub-ordinate functions are integrated first supported by high-level driver programs

typically mimicking some test case. These strategies are illustrated in Figure 6-1.

Cl
D1

\

/
c i si

/
C3 S2

j D2 i M5

M3 M4

Top-Down Integration Bottom-up Integration

Figure 6-1: Integration Test Strategies

220

The nature of the parser and associated type checking functions, necessitated a top-down

approach to integration test, since the parser is implemented using a technique termed

recursive descent which inherently works from the general to the particular. Since unit

testing of the parser functions could not be performed effectively, the parser has been

implemented with built-in debug support. This is controlled by a simple compiler

definition, and when enabled causes each function of the parser to output information to

the Windows debug window associated with the code path and data elements it is

selecting. It is therefore possible to log the execution path through the parser for

individual test cases, which provides valuable information in detecting and rectifying

errors and also provides a means of regression testing (i.e. testing that system

modifications do not invalidate previously tested operations).

Another important design feature of the TAS assisting testing is that the type checker

and transformation engine elements can be independently enabled, even though these are

subordinate functions to the parser. This allows integration testing of the parser to be

completed in isolation from the type checker and transformation engine. The integration

test strategy is therefore based on proving the parser, then the type checker and finally

the transformation engine.

Integration test case generation is essentially based on capturing sample elements of Z in

the editor, which will exercise all of the LHS non-terminals in the grammar. Since there

is a one-to-one correspondence between LHS non-terminals and functions in the parser,

we can be sure that this strategy covers all the program components of the parser.

Once the parser was successfully tested, the type checker was enabled and the same set

of sample Z elements was then used to provide a means of regression testing. Errors

were rectified, and the sample Z elements modified to exercise different types.

Only when the type checker finished testing, and the TAS had successfully completed

regression testing, was the development of the transformation engine instigated.

221

The transformation system was integration tested firstly by regression testing using the

set of Z elements originally used to test the TAS, and then by defining test cases

supplemented by a set of hand-crafted transformations which could be compared with

the output of the transformation engine. Loading transformed specifications into the

ZAL animation environment and exercising them using animation test cases then

validated the transformation engine output.

Surprisingly, the major problems encountered in testing the TAS and TTE concerned

memory management rather than errors in the parsing and transformation process.

Unfortunately C and C++ do not inherently support garbage collection, making it the

responsibility of the programmer to make sure that all allocated dynamic memory is

explicitly discarded. Within recursive programs like the parser, type checker and

transformation engine it is extremely difficult to track where memory is allocated and

discarded. This leads to errors such as memory leaks (in which memory is not discarded

by the program once it has finished with it) and multiple deletions (in which the same

memory block is discarded more than once). Unfortunately, the Windows OS does not

seem to care about this until a significant amount of local and global memory is lost and

the PC performance begins to degrade, as system resources become scarce. Memory

management errors are therefore difficult to identify and even more difficult to rectify. It

was found that the only way to isolate errors in memory management was to change the

basic allocate and de-allocate functions to uniquely tag each memory block requested

and deleted by the program. This then allowed a tracking mechanism to be implemented

thereby identifying situations in which functions of the TAS or TTE were incorrectly

using dynamic memory.

6.1.3 Acceptance Testing

A simple definition of acceptance testing is that the test is deemed to have passed when

the software performs in a manner that meets the user’s requirements. Formal user tests

are therefore devised to show conformity with the original specification of requirements,

which are often supplemented by a test-drive or alpha-trial of the system in which users

exercise the system in its normal environment.

222

It is not possible to perform a formal acceptance test of the TranZit product, since the

development has been exploratory in nature. However, it is possible to check that the set

of product requirements discussed previously has been met. These are contained in the

checklist shown in Table 6.

223

Product Requirements Requirement Satisfied

=> Full-screen WYSIWYG editor, combining

mouse and keyboard input
s

=> Support for the Z notation character set

=> Automatic generation of notation graphics (e.g.

schema outlines)

=> Support for standard editor functions:

=> Cut, paste, insert, delete, select, search and line

goto, with appropriate notation support (i.e.

cut, paste, delete of complete schemas)

-/

=> Ability to load and save work to hard disk.

floppy drive.

=> Ability to print specification on standard

printers

s

s

=> Support interworking with other specification

documentation packages (e.g. MS Word).
s

=> Provide automated support for the generation

of schema components within the specification
s

=> Provide automated support for the semantics of

schema inclusion and schema hiding
s

=> Provide automated support for type generation

and checking within the Z notation

specification.

✓

=> Provide Automated tools for syntax checking of

Z notation specification
V

=> Ability to transform the specification from its

non-executable form, to an executable

representation, suitable for validation in an

animation environment.).

V

Table 6: Product Requirements Checklist

It can therefore be shown that the TranZit product has met all the requirements originally

defined.

224

In terms of alpha-trial, very few problems have been identified by users of TranZit, and

the current version is in use by many undergraduate and post graduate activities within

the computing department at SHU. In particular it is actively used by undergraduates as

part of their coursework associated with the teaching of Formal Methods. TranZit has

therefore been trialled in a wide variety of applications, and there is a high degree of

confidence in the validity of TranZit as a stable product.

6.2 Assessment of the Usability of TranZit

Whilst the research associated with defining a set of product requirements for the

TranZit tool gives a good deal of confidence in the features required of the tool, it does

not validate that these features have been implemented in the most usable way from the

user’s perspective. In order to quantify this and to provide important feedback on

improvements and possible future development directions for TranZit, a User

Questionnaire was produced to elicit the opinions of people who actually use the system

on a day-to-day basis.

6.2.1 Analysis of Feedback from User Questionnaires
The questionnaire is designed in four sections presenting questions covering general

population information, requirements engineering, the Z notation and the TranZit Tool

specifically. Each section also contains control questions to identify noise such as

conflicting views and lack of understanding in order to validate the opinions given. These

questions do not contribute directly to the results.

The questionnaire was circulated to a variety of people in the academic computing

community at SHU, with differing backgrounds and experience of formal specification

and CASE tools. Whilst some staff and postgraduates completed the questionnaire, the

majority of results were obtained from final year Computer Science undergraduates using

TranZit as part of their Formal Methods coursework. It should be noted that this group

did not have a wide experience of using the TranZit transformation system.

In total, around fifty questionnaires were returned, and the results are shown graphically

in Table 14 to Table 25 as part of Appendix IV: TranZit User Questionnaire Results. The

results suggest general trends as follows:

225

The first section concerning population statistics, suggests that the questionnaire was

answered mainly by people with a fair degree of experience in writing formal

specifications and using the Z notation. A pleasing result is the higher than average

experience of MS windows amongst the population, which increases confidence in the

results concerning the TranZit user interface.

Section two of the questionnaire solicits general opinions on requirements engineering.

There is strong agreement that requirements engineering is a key process in the software

development lifecycle, and that producing a quality specification of requirements is very

important before design commences. However, there is a strong opinion that

specification writing is not easy, and the expectation is that the system requirements will

change as the development progresses. There is also support for the use of formal

specification, as well as strong support for computer-based tools to assist in this task.

Section three solicits opinions concerning the Z notation. Respondents believed that the

Z notation is flexible enough to capture a wide variety of specification problems, and that

Z specifications can be modified without too much difficulty. However there is a strong

opinion that the syntax and type systems of Z are difficult to assimilate, and that Z

notation specifications are difficult to read and understand. This confirms the view that

rapid prototyping of Z specifications is important in increasing both specifier and

customer understanding.

Section four solicits opinions concerning the TranZit tool itself. The general opinion is

that the TranZit GUI is easy to use and that TranZit presents information in a well-

structured and logical fashion. However, there is also the suggestion that TranZit could

be improved in assisting users to resolve syntax and type errors generated by the TAS.

Users are also divided about whether using TranZit increases their understanding of Z. In

general there is strong agreement that TranZit is easy to use, and that the most useful

feature implemented in the TAS. However, the editor GUI is criticised, and on further

investigation it was found that this was related to the way in which Z notation characters

are currently accessed. In general, users did not want to use the power-user Windows

226

accelerator keys, and felt that the alternative mechanism of access via the menu system

was too cumbersome. An intermediate access mechanism, perhaps consisting of a

floating toolbar, should therefore be considered in any enhancements to the system.

The results of this questionnaire are useful in both validating the design decisions made

in the development of TranZit and identifying possible future enhancements to the

system. They also reveal some interesting opinions regarding the Z notation and the use

of formal specification, which highlight the need for computer-based tools to assist in the

requirements engineering task.

6.3 Comparison of TranZit and other Requirements Engineering Tools

It is worthy of note that there are many other requirements engineering toolsets

available, each of which address different elements of the requirements engineering task.

In order compare the work presented herein against other requirements engineering

toolsets, Appendix III : A Review of Current Requirements Engineering Toolsets,

contains a review of the state-of-the-art in requirements engineering tools based on

formal methods, and a comparison with the capabilities of the REALiZE toolset,

particularly TranZit. In particular, this review forms a basis to evaluate the unique

characteristics that the TranZit tool possesses, and thereby evaluate what has been

achieved by the project as discussed below.

6.3.1 The Use of Formalism

It is instructive to consider the formalisms that have been adopted by tools providers.

Out of the twenty-four tools listed, only fourteen use a recognised, established formal

specification language or notation such as Z or VDM-SL. The remaining tools have

based themselves on proprietary extensions to these languages (such as VDM++), or

developed languages specifically for the particular toolset. This trend has become

particularly noticeable in recent years, as tools providers seek to overcome the problems

of working with abstract formal notations such as Z, by developing specification

language whose semantics are more amenable to computer-based manipulation.

227

This apparent dichotomy between the desire to use an abstract specification language

and the need to be able to implement tools based on standard models of computing, has

generated a large amount of debate in the research community. Much of this debate

culminated in Hayes and Jones paper “Specifications are not (necessarily) executable”

(Hayes and Jones, 1989), which in turn was answered by Fuchs (1992) in his paper

“Specifications are (preferably) executable”. Since then, the research community has

been divided over the merits of developing computer-based animation and proof engines

based on formal notations such as Z and VDM.

There are good arguments for and against using abstract specification languages as a

basis for formal methods tools, however the work presented herein is not as partisan as

to believe that only one approach is sound. In any case the development of TranZit has

demonstrated, as discussed later, that a useful contribution to the requirements

engineering task can be achieved with a formal methods approach.

6.3.2 Tools Platforms

It is also interesting to compare the computing platforms upon which providers have

chosen to base their tools. The REALiZE toolset is based on the Windows environment

for a number of key reasons:

• The Windows environment is now the most popular desktop development

environment for industrial applications.

• Windows has matured significantly with the release of Windows 95, 98 and NT, and

now offers a whole host of development facilities at a fraction of the cost of those

previously found on Mini computers such as Sun Sparc. This makes Windows-based

PCs highly attractive to development organisations wishing to provide highly

integrated facilities, without the need to pay for a costly infrastructure.

• The Windows GUI is now well accepted and understood by the vast majority of

computer professionals, making it easily accessible to a wide range of potential users.

However, only six of the tools listed in the review make use of Windows as their primary

environment. By far the most popular environment is UNIX on SUN Sparc machines. It

is believed that this is a legacy from the fact that the development environment on UNIX

was historically superior to Windows, and therefore many such machines existed in

228

academic institutions. However, this is no longer the case. The Windows API is now just

as powerful as X-Windows for example, making it possible to implement high quality

GUI’s and applications on Windows machines, using modem languages such as C++ and

Java.

6.3.3 Comparison of the TranZit and Formaliser Tools

In terms of GUI look and feel, the tool that comes closest to TranZit is Formaliser

(Logica Inc, 1995), produced as a commercial Windows application by Logica Inc. Like

TranZit, Formaliser offers Z specification construction and checking facilities, based on

a WYSIWSG GUI. However, Formaliser uses syntax-directed editing, whereas TranZit

implements an off-line syntax and type checker. As discussed previously, this was a

conscious decision made on the basis of the research into formal specification

construction techniques. It is believed that the approach adopted by TranZit is more

accessible to first time specification writers, and in particular it allows specifiers to

capture the essence of what they want without the need to be immediately concerned

with the complicated syntax and semantics of Z.

An important distinction to be drawn is that TranZit can be used either as a stand-alone

formal specification construction tool, or as part of an integrated animation environment.

TranZit is also unique in the sense that it includes a novel, automated Transformation

engine capable of transforming specifications captured in the Z notation into the ZAL

language for the purposes of animation. As far as is known, this makes TranZit and the

REALiZE toolset, the only toolset currently available which offers integrated

specification construction and animation support for the Z notation on the Windows

platform.

6.3.4 Comparison of the TranZit and ZFDSS Tools

Several tool reviewed have addressed the issue of transforming a formal specification

into an executable language for various purposes, including validation. In this respect it

is interesting to compare TranZit with the ZFDSS Tool (Zin, 1993) developed as part of

the Ceilidh System (Zin and Foxley, 1991). To this end the different approaches taken in

229

preparing, checking and transforming the specification to an executable representation

are explored.

The ZFDSS system is aimed at providing support for preparing, validating and refining

formal specifications written in the Z notation, together with a mechanism for assessing

their quality. In common with TranZit it is based on the so-called “liberal” approach to

the application of formal methods (Nicholls, 1991), in which formalisation is used only

when necessary or appropriate in the software lifecycle. In this way, not all the system

components may be formally defined, and it may be considered unnecessary to verify the

specification using formal reasoning.

In contrast to TranZit, ZFDSS is hosted in the UNIX environment rather than

Windows™, essentially to make use of the large number of standard support tools

provided within the UNIX development environment. Whilst Windows™ does not

provide such a mature development environment, it has become much more popular for

industrial applications development in recent years, hence the decision to host TranZit on

Windows™.

A major design decision driven by the use of the UNIX platform is that Z specification

construction in ZFDSS is based on the use of standard UNIX text editors, supported by

the UNIX roff documentation preparation tool In roff the input document consists of

plain text and markers which define the expected output format of the document. Since Z

specifications involve a high degree of graphical information, it is difficult for the user to

visualise how the specification will look on paper using this input mechanism. ZFDSS

therefore includes a Z pre-processor “zpp” for the purposes of converting mathematical

passages into proper Z documents, supported by special markers representing Z

mathematical objects. This is in contrast to the WYSIWYG editor approach adopted by

TranZit in which the user is able to view the specification development directly in the

editor, supported by a number of language-aware features which assist in the

construction and maintenance of the Z specification document. It is believed that the

WYSIWYG approach offered by TranZit is far more approachable to users, and supports

the design goal of focusing the user’s attention on constructing the specification itself,

230

rather than the mechanics of accessing and drawing the graphical components of the Z

notation.

In respect of checking and producing an executable version of the input specification,

ZFDSS makes use of a so-called conceptual model of a Z specification. In essence this is

nothing more than a set of references to specification objects in the source document,

together with a set of relationships between variables and schemas. This is produced

from the Z specification document by the ZFDSS Z compiler/type-checker called zc, the

output z.code of which is the conceptual model, although it is very similar is style to an

intermediate object language produced by a traditional compiler. In contrast the TranZit

Transformation Engine (TTE) does not make use of an intermediate language format

since it does not really benefit the process of producing an executable representation due

to the reasons explored in section 5.1.6. Instead, the internal schema objectbase

described in section 4.3.1 provides all the necessary information for TranZit to achieve a

transformation. The benefit claimed by ZFDSS for an intermediate language is the ability

to expand and uncompile this conceptual model back into the original Z schema

definitions, for the purposes of automating schema calculus operations.

The executable representation produced by ZFDSS is based on the Prolog language,

whereas that produced by TranZit is based on LISP. ZFDSS includes a separate Prolog

translator zp, which convents the z.code produced by zc into Prolog on an individual

schema basis. An important observation is that, in contrast to the TranZit

Transformation Engine (TTE), zp makes no attempt to determine whether a particular

predicate in the Z specification does in fact have an executable representation. The

computability aspects of producing an executable representation are therefore ignored by

zp, which is justified by the view that “most people work with a normal subset of Z”. In

contrast, the TTE makes explicit the view that recognition of some possibly non-

computable clauses in Z specifications is an important element in the transformation

process, and hence the development of the TranZit Transformation Assistant is a key

component in supporting the eclectic approach proposed in resolving these problems.

231

In summary, whilst TranZit and ZFDSS are concerned with similar fields of research, the

solutions and strategies employed differ in several important respects highlighted above.

In particular the motivation for transformation is very different in the two systems: In

ZFDSS, the transformation exists mainly to support the animation process for the

purposes of assessing the quality of a program produced from the original specification,

as part of the overall Ceilidh system. Whilst this is a highly relevant goal, it contrasts

sharply with the aim of the TranZit transformation process which is to produce an

executable representation for the purposes of computer-based validation of system

requirements.

With this in mind, the remainder of this chapter examines two case studies, which are

specifically designed to highlight the use of TranZit as an integrated component within a

practical animation environment.

232

6.4 Case Study I: A Library System

The first case study examines a simple library lending system based on Diller (1990), that

is intended to store the loan and return of books. In addition the system incorporates a

simple query mechanism to determine which books are currently on loan. This problem is

typical of the level presented to undergraduates following a few weeks exposure to Z

and the animation environment.

Firstly, a typical Z specification is offered that has been developed to meet the ad-hoc

requirements identified above. This is clearly not the only solution or the most efficient,

but it is intended to illustrate the use of the toolset for the purposes of animation. This

example is also published in a slightly different form in Siddiqi et al. (1998).

6.4.1 Z Specification Development

The first element of the specification is to define given types to represent peoples names

and unique book titles respectively. In particular we make the tacit assumption that the

library holds a single copy of each book.

[PERSON, BOOK]

In addition two reports are defined indicating the loan status of a particular book.

REPORT : : = BooklsOnLoan | BooklsNotOnLoan

The first element of the specification is the Library state schema. This records the fact

that there are borrowers, and that they can borrow up to a maximum of three books

each.

233

rl ibr ary-------------------------------------

borrowers : P PERSON

loans : PERSON -+» P BOOK

V p : PERSON | p e dom loans • p e borrowers A #(loans(p)) < 3

Borrowers can borrow books provided they are registered with the system, and have less

than three books currently on loan.

[-borrow--

Al ibr ary

b? : BOOK

p? : PERSON

p? e borrowers

(p? g dom loans v (p? e dom loans A #(loans(p?)) < 3))

loans' = loans ® { p? *-* loans(p?) u {b?} }

A borrower may return a book provided it belongs to the library, and is on loan to that

borrower.

.-return--

Al ibr ary

b? : BOOK

p? : PERSON

p? e dom loans

b? e loans(p?)

loans' = loans ® { p? loans(p?)\{b?} }

234

Finally, a system operation is defined to determine whether a particular book is currently

on loan.

i-query--------------------

SI ibr ary

b? : BOOK

rep! : REPORT

((3 p : PERSON | p e dom loans • b? e loans(p)) A rep! = BooklsOnLoan)

V

(-. (3 p : PERSON I p e dom loans • b? e loans(p)) A rep! =

BooklsNotOnLoan)

6.4.2 Capturing in TranZit and Transformation to ZAL

A user can easily capture this specification in TranZit in a very short period of time, as

illustrated in Figure 6-2.

235

3 T ranZit - C :\W IN D 0W S \L IB R A R Y 1.Z E D

Fie Edit View Symbols lo o ls Notation

[PERSON, BOOK]

REPORT : := BooklsOnLoan | BookfeNotOnLoan

.-library--

borrow ers : IP PERSON

lo a n s : PERSON IP BOOK

V p : PERSON | p e dom lo a n s • p e borrow ers A #[loans(p)) < 3

.-borrow-----------

A l ibr ary

b? : BOOK

p? : PERSON

p? e borrow ers

b? £ U [ran loans)|

J ________________

Figure 6-2: Capturing the Library Specification in TranZit

Using the TranZit analyser subsystem confirms that there are no syntax or type errors in

this specification as shown in Figure 6-3, and it is possible to proceed to transformation.

Z Syntax Analyser and Type Checker |

No Syntax or Type Errors Found

r : : : o r : 3

Figure 6-3: Screen Dump from TAS for Library Specification

The study proceeds by invoking the TranZit transformation engine. This produces the

transformation system output screen as shown in Figure 6-4.

236

B M W B S P
File Edit Virw : Tr M ctatkrt

[PERSON, BOOK]

REPORT : := BookisOnLoan | BookisNotOnLoan

ri ibr ary--

borrow ers P PERSON

loan s : PERSON -» P BOOK

V p : PERSON | p e dom loan s • p e borrow ers A #Goans(p)) < 3

7 Z to ZAL Transformation for C:\WIND0WS\LIBRARY1 ZED -I BUI
(SCHEMA library

:PREDICATE
(forall p (dom loans)

(imply
(mem p (dom loans))

(and

J

(mem p borrow ers)
(\<= (card (applyz loans p])3)

)
)

)
)

< I

J ——f"*™
46 Start 'C j Q /] V Q After Dari*. | ^ Microsoft Word - C... | 7 TranZit - CAWIND.J | 7 Z to ZAL Tramf... 15:22

Figure 6-4: Screen Dump Showing TTE Output for Library Specification

For reference, the complete transformation o f this specification as produced by TranZit

is given below:

(SCHEMA library
:PREDICATE
(forall p (dom loans)

(imply
(mem p (dom loans))
(and

(mem p borrowers)
(\<= (card (applyz loans p))3)
)

)

)
)

237

(SCHEMA borrow
: ? (b? p?)
:INCLUDE delta_library
:PREDICATE
(and

(mem p? borrowers)
(not-mem b? (union-dis (ran loans)))
(or

(not-mem p? (dom loans))
(and

(mem p? (dom loans))
(\< (card (applyz loans p?))3)
)

)
(eqz loans' (override loans { # (p? (unionz

(applyz loans p?) {b? })) }))
)

)

(SCHEMA return
:? (b? p?)
:INCLUDE delta_library
:PREDICATE
(and

(mem p? (dom loans))
(mem b? (applyz loans p?))
(eqz loans' (override loans { # (p? (setsub

(applyz loans p?) {b? })) }))
)

)

(SCHEMA query
: ? b?
:! rep!
:INCLUDE psi_library
:PREDICATE
(or

(and
(exist p (dom loans)

(and
(mem p (dom loans))
(mem b? (applyz loans p))
)

)
(eqz rep! 'BookisOnLoan)
)

(and
(not

(exist p (dom loans)
(and

(mem p (dom loans))

(mem b? (applyz loans p))
)

)
)

(eqz rep! 'BookisNotOnLoan)
)

)
)

238

(SCHEMA delta_library
:INCLUDE (library library')
:PREDICATE
t
)

(SCHEMA psi_library
:INCLUDE (library library')
:PREDICATE
(and

(eqz loans loans')
(eqz borrowers borrowers')
)

)
(SCHEMA library'

:PREDICATE
(execute library (schema-rename library (loans loans')

(borrowers borrowers')))
)

Note that schemas deltajibrary, psi_library and library’ have been generated by the

TranZit implicit schema resolution system, since these are implicitly defined by the

original Z specification.

It should also be noted that TranZit is able to perform the transformation of this

specification with no assistance from the user. This is because, even though the

specification contains potentially non-computable existential quantifications, TranZit is

able to determine a suitable enumeration function for each transformed construct. It is

now possible to proceed to the ZAL environment to interactively investigate the validity

of each operation.

239

6.4.3 Animation in the ZAL Environment

It is important to realise that the power o f the Windows environment allows us to have

both the TranZit and ZAL animation environments active at the same time. Thus it is

possible to refer either to the original specification or the animation environment quickly,

and be able to adjust the specification as necessary as animation proceeds. With this

system, it is easy to re-transform any modifications made to the original Z specification in

TranZit, and re-load the result directly into the ZAL animation environment.

The ZAL animation runs in the Allegro LISP environment. Once ZAL is invoked the

corresponding transformation produced by TranZit can be loaded, and the ZAL

execution tool is invoked as shown in Figure 6-5:

i A! , :: „ . r j ;» y y
Me tdrt Ssaffih window ^ackaoes I ode Eim& Prefereocss M

i£____________
Schtmi

View

ZAl Back

Run

m

Q ote

(SCHEMA l i b r a r y
:PREDICATE
(f o r a l l p (dom l o a n s)

(im p ly
(mem. p (dom l o a n s))
(a n d

(mem p b o r r o w e r s)
(N<= (c a r d (a p p ly z l o a n s p)) 3)

)
(SCHEMA b o rro w

? (b? p ?)
INCLUDE d e l t a _ l i b r a r y
SHOW lo a n s '

iL
3 TianZit - C:\WIND0WSU_IBRARY1.ZED

loot? NotationFie Etft View

J ibr ary

borrow ers : P PERSON

loan s : PERSON -« P BOOK

V p : PERSON | p e dom loan s • p e borrow ers A #(loans(p)) < 3

H Start*j i ^ ^ 1 S ^ 1 V QAWetDafk | 3PMictoa)ltWoc...l| 3 TranZit - C... :rAlegroa-3.0...|

Figure 6-5: Using TranZit and ZAL to Animate the Library Specification

240

If desired, the ZAL button on the execution tool opens an edit window that contains the

executable version of the specification as produced by TranZit. In addition the

corresponding Z specification can be viewed in the TranZit window at the same time, as

shown in Figure 6-5.

6.4.4 Creating Candidate Data

Before animation can begin, it is necessary to create some candidate data in order to

populate the global data instances for the particular scenario we are interested in

animating.

Firstly, we shall create a set of borrowers as:

Borrowers = {'ANNE 'BOB 'GRAHAM TOM 'ZOE}

The current state of the function loans (representing who has which books on loan) is

then created as:

Loans = [#('ANNE {'MOLL_FLANDERS})

#('BOB {TREASURE_ISLAND 'VANITY_FAIR})]

241

This is achieved through the binding browser in ZAL as shown in Figure 6-6:

r~ Allegro CL 3.0 [CAALLEGROVallegro img]
0 e Ecfc Search J^/indow Packages lo o k Buider Preferences Help

■ ■

Schema

fijbrary

ZAL O btect Binding Browser

Loans
Borrowers

Documentation

(SCHEMA l i b r a r y
:PREDICATE
(f o r a l l p (dom l o a n s)

(im p ly
(mem p (dom l o a n s))
(a n d

- I d *1

fj

(mem p b o r r o w e r s)
(N<= (c a r d (a p p ly z l o a n s p)) 3)

[# ('ANNE { 1MOLL_FLANDERS}) # ('B 0 B
{ ' TREASURE.ISLAND 1V A N ITY .FA IR })] .

Inspect/Edit New Object

Ho documentation was supplied
when this object was (re)bound

:Acl-Status-Bar Package: Zal Profuse help m essages are displayed here F11 toggles this window off and on (a
ACL-STATUS-BAR)

Start | : ££ Q v j j3AfterD«k | 3* Microsoft Wor...} 'T T « a - C : l . . If r ' A J k y o CL ... *5 0 © 15:35

Figure 6-6: Creating Candidate Data for the Library Animation

6.4.5 Animating the Library Specification

It is now possible to begin to explore properties o f the Library specification by animation

o f scenarios. To begin, an attempt is made to borrow a book from the library by

executing the borrow schema. Selecting the schema from the execution tool and clicking

the Run button in ZAL causes the system to prompt for values o f the input variables b?

and p ?, as shown in Figure 6-7.

242

(SCHEMA b o rro w
:? (b? p ?)
: INCLUDE d e l t a _ l i b r a r y
:SHOW lo a n s '
:PREDICATE
(a n d

(mem p? b o r r o w e r s)
(o r

(n o t-m em p ? (dom lo a n s
(a n d

(mem p? (dom lo a n ;

Schema

lorrow

E n te r t h e v a l u e (s) f o r t h i s e x e c u t i o n

'l u u iiu .n .-i u i i c y p e .—c n

:Get-Arguments Package: Zal (a DIALOG)

Start | i tg *-i n A V SAfterDaA | ? Microsoft Wot... l l rA lc g ro CL ... ? TranZit-CV. | iT ranZt Fie Lo...| 11:20

input to schema

Borrow

Accept

a n s { * (p ? (u n io n z (a p p l y z l o a n s

jd

J

Cancel

Figure 6-7: Executing the Library Animation

In this case we submit the value Heidi for b?. ZAL then prompts for a borrower p ? and

we submit Anne. ZAL then proceeds to execute the borrow schema and returns the value

TRUE, to indicate success. The result o f executing this schema can then be viewed in the

ZAL execution feedback window, which in this case shows both the pre and post

condition o f the loans variable, as illustrated in Figure 6-8.

243

Window Packages loois §uildet Pfetetences {Help
I x l l D M C i '
m m
? .
Schema

| Borrow

V iew

n l c l Ii'guJ/.'J m l lr> Icn lcacl J 3 I J > J a J n . l I li& I js rt I /=iI

Shown objects
Object value pest value Promote
Loans [#('ANNE {'MOLL_FL/

1 LOANS' ha* value

'ANNE {'HEIDI'

■ H D

[ff'ANNE {'HEIDI ‘MOLLFLANDERS}) f ('BOB

Promote Ail

fnlnhan * \ i* | A n n e { n c i u i iw u u _ _ rL M iiu i:n o j j
t0 U fTREASURE ISLAND *VANriY_FAIRJJJ

L-Sene]j
Value

I :

 J
SB

Close

S After Dark | Z? Mictomft Wor...||:7 Alegro Cl T>anZi-C:\... | TranZH Fie Lo...| ^ 5 0 © 11:25

Figure 6-8: ZAL Execution Feedback Window on Executing Schema Borrow

In this case we see that the binding for Anne in loans has indeed been updated as

expected. Depending upon the particular validation strategy, the user now has the option

in ZAL to promote the post condition o f loans to become the new current value. This

allows a series o f animation scenarios to be chained together.

The system can now be used to explore various additional properties o f this

specification. As a provocative example, it is decided to investigate what happens when

an attempt is made to borrow a book that is already on loan (assuming the library holds a

single copy o f each book). In this case schema borrow is executed again, but this time

the values o f Heidi and Bob are supplied for b? and p ? respectively, recalling that Heidi

is already on loan to Anne. Surprisingly, executing schema borrow again returns the

result TRUE, and the state o f loans ’ shows that both Anne and Bob appear to have

borrowed the same book, as seen in Figure 6-9.

244

LOANS' has value H H I H I id

• A. [*['ANNE {‘HEIDI ‘MOLL_FLANDERS}) HfBOB {‘HEIDI
^ ‘TREASURE JSLAND ’VANITY_FAIR})]

Figure 6-9: Provocative Testing of the Library Animation

It is unlikely that this behaviour should be allowed, hence it is clear that there is a need to

assign a further predicate to the borrow schema in the original specification. A brief

analysis, shows that the addition o f the predicate:

b? g U (ran loans)

will resolve this problem.

The original specification is modified accordingly in the TranZit window, and the

TranZit transformation engine is invoked to produce a new executable representation.

This is then re-loaded into ZAL as shown in Figure 6-10. Again, this transformation

process is fully automated by TranZit.

245

• H
- | 9 | x |

File Edit Search Window Package;- Tools Builder

lixi I pMalal«g| l̂ wlel iq^h ggai y u \ m \ i ti» ic it
Trull

Schema

[Borrow

View

“3

2*1
<p
Bach

Close

(SCHEMA b o rro w
:? (b? p ?)
: INCLUDE d e l t a _ l i b r a r y
:PREDICATE
(a n d

(mem p? b o r r o w e r s)
(n o t-m em b? (u n i o n - d i s (r a n l o a n s)))
(o r

(n o t-m em p? (dom l o a n s))
(a n d

(mem p? (dom l o a n s))
(\< (c a r d (a p p ly z l o a n s p?)) 3)))

(e q z l o a n s ' (o v e r r i d e l o a n s -(# (p ? (u n io n z (a p p ly z l o a

J

3 TranZit - C:\WIND0WSVLIBHARY1.ZED

■borrow-

Al ibr ary

b? : BOOK

p? : PERSON

p? e borrow ers

b? ^ U (ran loans)

S S I a r t l ^ □ y j V IS Alter Datk [Z7 Microsoft... | IT Alegro CL ...|| -~l TianZit... - liarZkFL.. | * £ © 11:50

Figure 6-10: Executing the Revised Library Animation

The schema borrow is now executed again, supplying the same parameters as previously.

This time, as expected, executing schema borrow returns FALSE as shown in Figure

6- 11.

Figure 6-11: Output from ZAL on Executing the Revised Library Animation

246

6.4.6 Discussion

This case study indicates how it is possible to investigate the validity of requirements

represented by a formal Z specification, using the TranZit and ZAL toolset. The

approach taken by the toolset offers not only the possibility of validation, but also the

important capability of exploration of the specification. Because the transformation

process is automated as far as is possible by TranZit, it is possible to make exploratory

changes to the original Z specification and rapidly investigate the effect of these changes

in the animation environment. Thus, not only is it possible to confirm expected properties

of the specification, it is also possible to explore provocative scenarios in order to

uncover undesirable behaviour. A case in point in this example is the fact that the original

specification assumes there to be more than one copy of each book. Hence the animation

process helps to reveal what is implicit as well as explicit in a specification.

This approach also offers learning benefits. As reported in Siddiqi et a l (1998), it has

been found that novice specification writers are often unsure whether they have added

sufficient constraints within the schema predicates, to ensure the proper context for an

operation. However, many users are experienced designers and programmers, who

naturally make the association between validation of specifications and testing of

programs. With the TranZit and ZAL toolset, it is possible for such people to bring many

of the skills learned in testing programs, into the animation environment for the purposes

of validation. Thus the toolset creates an important link between the unfamiliar validation

domain and the familiar testing domain. This in turn brings a greater knowledge of

individual Z constructs and also a deeper understanding of the wider context of writing

formal specifications. Whilst the design of TranZit in particular, has gone to some

lengths to preserve the divide between the formal specification and its executable

representation, the fact that people view executable specifications as programs brings a

number of benefits to the process as a whole.

247

6.5 Case Study II: The Telephone Network

As a more complex case study, Morgan’s (1993) Telephone Network specification will

be investigated. In this specification, connections may be established between pairs of

telephones. If a request cannot be satisfied, because the called party is involved in

another call (i.e. engaged), it will be stored for completion at some later time.

The original version of this specification published by Morgan (1987) contains an error,

which is identified by TranZit as a type error. However, in what follows the discussion is

confined to the amended version indicated above.

6.5.1 Z Specification Development

The specification itself is captured directly in TranZit, verbatim from Morgan’s original

paper. The specification is shown in its entirety below with natural language comments

added for readability. These are delineated by the 7*’ and **/’ sequences:

248

/* Morgan’s Telephone Network
Firstly, we define a given set of telephone numbers. */

[PHONE]

/* We proceed to represent a connection as a set of such numbers (this allows for
the possibility of multi-party call features, e.g. conference). */

CONN == PHONE

/*In a similar way, we proceed to represent call requests that have not yet terminated. */

reqs == CONN

/* There are two system invariants to be satisfied :
• only requested connections are active, and
• no phone may be engaged in more than one connection at any particular time.

The invariant is represented by Schema TN as follows: */

TN---

reqs, conns : CONN

conns c reqs

disjoint conns

/* Where disjoint S <—> (c1, c2 : S • c1 & c2 => c1 D c2 = {})

However, an efficient TN would ensure that at any time, as many connections as possible
are activated. That is the set of connections conns is maximal with respect to TN. This is
represented by the corresponding ejficientTN schema shown below: */

249

efficientTN

TN

n(3 connsO : CONN •

conns cz connsO a

connsO Q reqs A

disjoint connsO)

/* Each of the network operations is described in terms of the state before, represented
by schema efficientTN, and the state after, represented by schema efficientTN', and the
phone from which it is initiated

p h : PHONE
We collect these conditions in schema ATN, and impose the additional minimality
constraint that a connection will never terminate unless termination is necessary to
preserve the invariant. */

Atn--

efficientTN

efficientTN'

ph? : PHONE

-i(3 conns 1 : CONN •

(conns \ conns 1) cz (conns \ conns') A

efficientTN' [connsl / conns'])

/* We can now proceed to define operations on the abstract state space. The first
operation Call, requests a connection between the initiating phone ph and the phone
dialled. The request {ph,dialled] is added to the set of requests, and the maximality
constraint of efficientTN' ensures that if the request can be satisfied immediately, it will
be. Similarly, the minimality constraint of ATN ensures no other changes will occur in
conns. */

250

Call----------------------

Atn

dialled? : PHONE

reqs' = reqs u {{ph?,dial led?}}

/* The Hangup operation terminates any connection in which the initiating phone ph is
participating. Any such connection c is removed from the set of requests, which
therefore also forces it to be removed from the set of connections. */

HangUp---

Atn

reqs' = reqs \ {c : conns | ph? e c}

6.5.2 Capturing in TranZit and Transformation into ZAL

This specification is easily captured in TranZit in a very short period of time, and any

errors eliminated using the TAS. The study then proceeds to the transformation phase.

On running the transformation engine, TranZit presents the user with three requests from

the TranZit transformation assistant as shown in Figure 6-12:

251

TranZit Transformation Assistant H f l

T ranZit cannot determine a Finite Constraint tor the following
variable, which has been used in a Set Comprehension or a
Univeral or Existential quantification. P lease enter a ZAL
Expression which TranZit can use to constrain this variable in
the transformation.

Schem a Name

effic ien tT N

Quantified Variable Name

connsO

ZAL Expression

(powerset (powerset phone))

Figure 6-12: TranZit Transformation Assistant Request Dialog for ConnsO

The transformation assistant is invoked by TranZit, since the existentially quantified

variable connsO in schema efficientTN is unconstrained, being a search o f the potential

infinite set o f sets, P CONN. One could argue that in this case there is the potential to

identify an implicit enumeration function, since CONN is defined as P PHONE, and

PHONE must be enumerated in order for the animation to make sense. However, since

there is a level o f indirection, it could be the case that the animator does not wish to

enumerate the set PHONE, and prefers to work at the level o f the set CONN. TranZit

cannot make this judgement since it is dependent upon the mechanism that the animator

wishes to adopt in his scenarios. The TranZit Transformation assistant therefore offers a

choice. In this case, it is decided to enumerate the set PHONE, and therefore the

corresponding enumeration function supplied for connsO is (powerset (powerset phone)),

where phone is the user-supplied ZAL binding representing the set PHONE. This

enumeration function is therefore equivalent to P(P PHONE)).

A similar issue arises with the existential quantifier for quantified variable connsl in

schema ATN, as shown in Figure 6-13.

252

TranZit T ransformation Assistant B f l
TranZit cannot determine a Finite Constraint for the following
variable, which has been used in a Set Comprehension or a
Univeral or Existential quantification. P lease enter a ZAL
Expression which TranZit can use to constrain this variable in
the transformation.

Schem a Name

Quantified Variable Name

c o n n s 1

ZAL Expression

(powerset (powerset phone)J

QIC |

Figure 6-13: TranZit Transformation Assistant Request Dialog for Connsl

Again it is decided to supply the enumeration function (powerset (powerset phone)),

representing P(P PHONE)), for the quantified variable connsl.

Finally, the Transformation Assistant presents the following request associated with the

variable c used in the set comprehension in Schema Hangup, as shown in Figure 6-14.

TranZit T ransformation Assistant i d

T ranZit cannot determine a Finite Constraint for the following
variable, which has been used in a Set Comprehension or a
Univeral or Existential quantification. P lease enter a ZAL
Expression which TranZit can use to constrain this variable in
the transformation.

Schem a Name

HangUp

Quantified Variable Name

ZAL Expression

(powerset (powerset phone))

OK

Figure 6-14: TranZit Transformation Assistant Request Dialog for Variable C

253

Again, working back through the schema hierarchy, it is found that c is actually of type P

CONN, and hence the same argument applies as previously. Again it is decided to supply

the enumeration function (powerset (powerset phone)).

Having supplied the required enumeration functions, the TranZit transformation engine

automatically completes to produce the following executable representation in ZAL.

(SCHEMA TN
:PREDICATE
(and

(subset conns reqs)
(disjoint-dis conns)
)

(SCHEMA efficientTN
:INCLUDE TN
:PREDICATE
(not

(exist connsO (powerset (powerset phone))
(and

(true)

(and
(psubset conns connsO)
(subset connsO reqs)
(disjoint-dis connsO)

)
)

))

)

(SCHEMA delta_TN
: ? ph?
:INCLUDE (efficientTN efficientTN')
:PREDICATE
(not

(exist connsl (powerset (powerset phone))
(and

(true)
(and

(psubset (setsub conns connsl)
(setsub conns conns'))

(execute efficientTN'
(schema-rename efficientTN' connsl conns'))

)

)

)

)
)

254

(SCHEMA Call
:? dialled?
:INCLUDE delta_TN
:PREDICATE
(eqz reqs' (unionz reqs { (ph? dialled? } }))
)

(SCHEMA HangUp
:INCLUDE delta_TN
:PREDICATE
(eqz reqs' (setsub reqs (mksi 'c 'c (powerset (powerset phone))

'(mem ph? c)))))

(SCHEMA efficientTN1
:PREDICATE
(execute efficientTN

(schema-rename efficientTN (reqs reqs')(conns conns')))
)

It is noted that in this case the specification writer has supplied an explicit schema ATN

within the original specification, and hence the TranZit Transformation engine uses this

definition to resolve associated references in preference to an internally generated

implicit schema. However, reference is made to the implicitly defined schema

efficientTN\ for which the Transformation engine provides a corresponding,

automatically generated schema definition.

6.5.3 Animation in the ZAL Environment

The transformation shown above can now be loaded directly into the ZAL Animation

environment as shown in Figure 6-15:

255

-In i xl
(SCHEMA TH

:PREDICATE
(a n d

Schema
(s u b s e t c o n n s r e q s)
(d i s j o i n t - d i s c o n n s)

(SCHEMA e f f i c i e n t T N
: INCLUDE TN
:PREDICATE
(n o t

(e x i s t con n sO (p o w e r s e t (p o w e r s e t p h o n e))
(a n d

(t r u e)Close

TranZit - C:\REQENG\TELEPHON.ZED
file Ed*)fiew Symbols fools Rotation

IP CONN

conns C reqs

disjoint conns

Alegro CL 3.0 [QVA.J 21:24^ Start | j & ® , Q /} V]f S Alter Park ?? Microsoft Word-C.. | | v TianZit CARE.

Figure 6-15: Executing the Telephone Network Animation

6.5.4 Creating Candidate Data

Before animation can begin, it is necessary to create some candidate data in order to

populate the global data instances associated with the particular scenario to be

investigated. The binding browser in ZAL is used for this purpose as described

previously in the Library case study. This is illustrated in Figure 6-16.

Firstly, we shall create a simple set o f Phone identities using the ZAL language as:

phone = { 1 2 3 }

N.B. Being based on LISP, ZAL requires no commas to delineate individual elements o f a set.

The current state o f the sets conns and reqs is then established as:

• conns = { { 1 2 } } representing a connection between phones 1 and 2.

• reqs = { { 1 2 } { 1 3 } } representing a connection request between phones 1 and 2 and

phones 1 and 3.

256

~ Allegio CL 3.0 [CAALLEGR0\alle9io.img]
Fie £dt Search Window Package* look guilder Pieferences Help

(SCHEMA TN
:PREDICATE
(a n d

Schema

Efficienttn (s u b s e t c o n n s r e q s)
(d i s j o i n t - d i s c o n n s)

(SCHEMA e f f i c i e n t T N
: INCLUDE TN
:PREDICATE
(n o t _________________

ZAL Object Binding B tow ter

Figure 6-16: Creating Candidate Data for the Telephone Network Animation

6.5.5 Executing the Telephone Network Animation

It is now possible to explore properties o f the specification by animation o f scenarios.

Firstly, executing Schema TN on this candidate data produces the result shown in Figure

6-17:

execution

TN
True

Figure 6-17: Result of Executing Schema TN

257

This is because both o f the system constraints required by the network are satisfied for

the candidate data set described previously. However, we now proceed to modify the

candidate data as follows:

• conns = { { 2 3 } } representing a connection between phones 2 and 3.

• reqs = { { 1 2 } { 1 3 } } representing a connection request between phones 1 and 2 and

phones 1 and 3.

In this case, executing schema TN returns the result FALSE, as shown in Figure 6-18:

4 execution J*j

x i tn
F a l s e 1

[o « S y l l
1 - - - - -

Figure 6-18: Result of Executing Schema TN with Revised Candidate Data

This is because the current connection {2 3} is not recorded as requested.

Similarly, we proceed to modify the candidate data again as:

• conns = { { 1 2 } { 1 3 } } representing a connection between phones 1 and 2 and

phones 1 and 3.

• Reqs = { { 1 2 } { 1 3 } } representing a connection request between phones 1 and 2

and phones 1 and 3.

258

In this case, executing Schema TN again returns the result FALSE, as shown in Figure

6-19:

T execution *1

X
False

TN

!....Okay.....I....

Figure 6-19: Result of Executing Schema TN with further Candidate Data Changes

This is because phone 1 cannot be involved in two connections at once.

Having understood the operation o f schema 77V, it is possible to explore the properties o f

schema efficientTN, to determine in what way it behaves differently. For this purpose the

candidate data is populated as follows:

• conns = { { 1 2 } } representing a connection between phones 1 and 2.

• reqs = { { 1 2 } {3}} representing a connection request between phones 1 and 2 and

phone 3 to itself.

Executing Schema TN returns the result TRUE, as shown in Figure 6-20:

execution id

TN
True

r

Figure 6-20: Result of Executing Schema TN as part of evaluating EfficientTN

259

However, executing Schema efficientTN for the same candidate data gives the result

FALSE, as shown in Figure 6-21:

!£* execution xl

X
False

EFFICIENTTN

M a y ... 11

Figure 6-21: Result of Executing Schema EfficientTN

Executing schema efficientTN returns FALSE, because the candidate data for conns is

not maximal. This is because there is nothing to prevent a connection between phone 3

and itself, however this is not recorded by the set conns. Thus we have demonstrated the

property that efficientTN ensures that the set conns is maximal with respect to TN.

The study continues by exploring the properties o f the Call operation. To achieve this

the candidate data items are populated as follows:

• conns = { { 1 2 } } representing a pre-condition connection between phones 1 and 2.

• conns’ = { { 1 2 } } representing a post condition connection between phones 1 and 2.

• reqs = { { 1 2 } } representing the existing connection request between phones 1 and 2.

Executing the call schema, and supplying the parameters dialled} = 3 and p h i = 1,

produces the result TRUE, and the execution feedback window appears as shown in

Figure 6-22.

2 6 0

Execution Feedback

Shown objects
Object value post value Promote

111 2H1 311.........

Promote All

other (global) objeete

Value

1

Figure 6-22: ZAL Execution Feedback Window on Executing Schema Call

The post value reqs ’ now identifies the fact that a call request between phones 1 and 3

has been made, but not yet connected.

Finally, the hangup operation is defined to terminate any connection in which phone ph?

is involved. The study explores the expectation that hanging up a particular phone should

automatically reconnect the phone to another if such a connection is in the set o f

requests reqs. That is, it is asserted that:

3 Hangup • (conns ’ \ conns) * 0

To proceed, the candidate data is populated as follows:

• conns = { { 1 2 } } representing a pre-condition connection between phones 1 and 2.

• conns’ = { { 1 3 } } representing a post condition connection between phones 1 and 3.

• reqs = {{1 2}{1 3}} representing the existing connection requests between phones 1

and 2, and phones 1 and 3.

2 6 1

• reqs’ = {{1 3}} representing the post condition connection request between phones

1 and 3, hypothesising the condition that when phone 1 hangs up breaking the

existing connection with phone 2, it is immediately reconnected to phone 3.

The candidate data is created in ZAL using the browser interface described previously, as

illustrated in Figure 6-23.

T Allegio CL 3.0 [C:\ALLEGRO\attegro.img]
Fie Search Window Packages Joob guilder Preferences Help

lephon.zal'

gWtelephon.zal'
rrioirkiTTkii ■_____

T ZAL Object Binding Btor

Reqs'
R eqs
Conns
Conns'
PhoneError: Un

Inspect/Edit

Mo docuaentation was supplied
when this object was (re)bound

= = = = =
Multi-Line-Editable-Text :EDUABLE-TEXT-2

Figure 6-23: Creating Candidate Data for the Hangup Operation

On executing the Hangup schema, ZAL confirms the result TRUE, as shown in Figure

6-24.

f execution

HANGUP
True

Figure 6-24: Result of Executing the Hangup Schema

2 6 2

This result actually mirrors the formal proof given in Morgan (1993) as follows:

Hangup a

reqs = {{a,b},{a,c}} a

conns = {{a,b}} a

ph? = a

=>

reqs’ = {{a,c}} a conns’ = {{a,c}}

(conns’ \ conns) & 0

6.5.6 Discussion

This case study demonstrates a different animation approach to that used in the previous

library example. In the library case study, the user provided pre-conditions for state

variables and used the ZAL environment to calculate post-conditions. This is because

the original Z specification is written in an operational style, which lends itself to this

approach. However, in the telephone network specification many of the state variable

conditions are defined indirectly, and the imposition of a procedural mechanism in order

to derive the value of an unknown is generally not feasible. The approach taken to

animation is therefore one in which hypotheses are proposed which are confirmed (or

not) by the user providing inputs and outputs together with pre and post conditions for

state variables.

It could be argued that this specification lacks clarity, being written in an abstract

mathematical style, which introduces fairly complex constraints on the values populating

its state space. This is also revealed by the additional assistance required from the user in

performing the transformation of this specification. The more abstract nature of the

specification inherently utilises potentially non-computable Z constructs, which requires

263

the user to reason about the nature of the animation and provide corresponding

constraints for TranZit to use in the associated executable representation.

Whilst the Z specification could be written in a more procedural style, there is nothing

inherently wrong with the way in which it is currently captured and the transformation

and animation tools must be able to deal with such problems if they are to be generally

applicable. Hence this study shows how the TranZit transformation assistant effectively

bridges the gap between the more abstract use of the Z notation, and the requirements

for an executable representation.

6.6 Summary

This chapter has described the testing strategy adopted during system validation to

ensure that the TranZit tool developed is a high quality software product, which is

reliable, robust and fit for purpose. In addition, ensuring that the set of product

requirements developed earlier in the research programme has been met by the current

implementation in turn validates the tool itself. In addition to validating the product

requirements, a user questionnaire has also been devised to validate that features of the

tool have been implemented in the most usable way, and to provide important feedback

on improvements and possible future development directions for TranZit.

The remainder of this chapter has described two case studies, which have been selected

to demonstrate the operation of the TranZit editor, analysis subsystem and

transformation engine working in conjunction with the ZAL animation environment.

These specifications have been chosen on the basis of their contrasting styles, aiming to

highlight the way in which the TranZit transformation engine deals with specifications

written in an operational style and also specifications written in a more abstract

mathematical style. The later case is also used to demonstrate the operation of the

TranZit animation assistant and indicate likely conditions in which the assistant can

resolve otherwise non-computable problems.

Together these case studies illustrate the use of TranZit as a key component in an

integrated animation environment, providing the means whereby users can rapidly

264

capture and explore properties of Z specifications for the purposes of validation by

execution.

The final chapter draws results and conclusions from this work by considering what has

been achieved in this project, as well as exploring the possibilities for future research

work. Lastly, general conclusions are drawn concerning the achievements of the overall

project and the possibilities for formal specification and animation in the future.

265

7. Results and Conclusions

In this final chapter, the general results and conclusions of this research programme are

identified. In particular, the achievements of the programme are reviewed against the

original objectives in order to measure the overall success of the project. Secondly, the

possibilities for future improvements and enhancement of the TranZit system are

identified, in order to ensure that there is continuity of the work and a foundation for

continued development. Finally, general conclusions are drawn concerning the overall

project results and the future use of animation and formal methods in requirements

engineering.

7.1 Review of Achievement Against Research Programme Objectives

The original objectives of the research programme were identified in section 1.3, and are

reiterated below:

To research, implement and critically evaluate a CASE tool fo r requirements

engineering, which will allow the capture o f formal specifications and subsequently

produce an executable representation o f the specification, suitable fo r use as a rapid

prototype within an animation system. The project should make a contribution to

knowledge in terms o f addressing the problems association with the transformation o f

non-executable specifications.

This was to be achieved by a number of objectives also outlined in section 1.3. It is now

possible to establish how well the research programme has succeeded in achieving these

objectives.

• Objective 1: Definition o f a process model fo r requirements engineering based on

the use o f the toolset.

This research programme has identified and developed the REALiZE process, which

forms the foundation upon which the integrated toolset consisting of TranZit, ZAL and

ViZ is constructed. REALiZE embodies the concept of validation o f specifications by

266

execution, which provides the important link between formal specification and

specification validation by the customer. REALiZE is not a prescriptive process, but

seeks to acknowledge that the task of requirements engineering involves human qualities

such as creativity, elicitation, understanding and reasoning, whilst at the same time

providing structure to the process in terms of the definition of tools to maximise the

efficiency of specific tasks.

• Objective 2: Definition and implementation o f a computer-based tool that can be

used to capture and store specifications efficiently in a formal notation.

This research programme has focussed on the research and development of the TranZit

tool This tool has been successfully implemented a full-screen editor which makes use of

the MS Windows platform as a basis for capturing formal specifications written in the Z

notation. TranZit makes use of the standard Windows GUI to provide an integrated and

efficient set of features for the construction and manipulation of Z specifications. This

GUI has been extensively tested and trialled. In addition user questionnaires have shown

that there is a general consensus that TranZit is well designed and presents information in

a logical fashion to assist in the specification development process.

• Objective 3: Definition and implementation o f an analysis system fo r checking the

internal consistency and correctness o f the specification that is captured.

The TranZit tool incorporates a highly optimised syntax and type checker subsystem

termed the TranZit Analyser Subsystem (TAS). The TAS is able to identify a wide range

of errors in a captured specification, based on Spivey’s (1992) original Z notation

grammar together with extensions from the developing Z base standard (Brien and

Nicholls, 1992). The design of the TAS is based on innovative techniques combining

traditional compiler technology with object-oriented data structures and Z grammar

manipulation, to produce a highly efficient solution. User questionnaires have also

identified that the TAS is considered to be one of the most useful features of the TranZit

tool.

267

• Objective 4: Definition and implementation o f a computer-based mechanism to

automate (as fa r as is possible) the transformation o f the captured specification, into

a procedural or executable representation, suitable for use as a rapid prototype in

an animation system for the purposes o f validating the captured specification by

execution.

The most important part of this research programme has been the research and

development of the TranZit Transformation Engine (TTE). The development of this

engine has been based on extensive research into prototyping and animation techniques,

coupled with an investigation into the non-computable aspects of formal specification

languages. It has been demonstrated that the TranZit Transformation Engine is able to

automatically transform a high proportion of Z notation constructs into a corresponding

executable representation in the ZAL language. In addition, the TTE is supported by an

innovative component termed the computability analyser which is able to determine a

range of conditions under which automated transformation is possible, and elicit help

from the user when these conditions do not apply. Using this novel, eclectic approach,

TranZit is able to perform the transformation of a wide variety of Z notation constructs

automatically and also provides a mechanism to resolve the transformation of Z notation

constructs which are potentially non-computable.

• Objective 5: Testing and Evaluation o f what has been achieved including

comparison with other computer-based requirements engineering tools, and

demonstration o f the efficacy o f the solutions embodied through practical

application in an animation environment.

The TranZit tool has been validated by a carefully controlled development programme

involving a series of testing phases conducted at strategic points in its development. This

provides a high level of confidence in the quality of the delivered software product. In

addition TranZit has been made available to a large number of staff and students at SHU

and therefore exposed to a wide variety of specification problems. Very few problems

have been reported with the tool itself and it is generally believed to be a reliable and

stable product. In terms of achievement, TranZit has been successfully integrated with

268

the ZAL animation environment by the development of the transformation engine, and it

has also been shown to be a sophisticated requirements engineering tool in its own right.

These achievements have been evaluated by comparison with the Formaliser tool

(Logica Inc., 1995) and the ZFDSS toolset (Zin, 1993), to highlight the unique

characteristics presented by the TranZit tool in its approach to supporting computer-

based Z specification construction and transformation to an executable representation. In

addition, the practical application of the TranZit tool to a significant number of

specification problems at SHU has demonstrated that the TranZit Transformation Engine

is able to transform a wide variety of Z specifications directly into the ZAL language.

These can then be imported directly into the ZAL animation environment to support the

requirements engineering goal of validation by execution.

From the preceding discussion, it has been shown that the research and development of

the TranZit tool has been successful in achieving all the original objectives of the

research programme.

7.2 Opportunities for Further Research Work

Through the development and practical application of the TranZit tool, together with the

results of user questionnaires, it has become apparent that there are several avenues of

research that could be pursued in the future, based on this work.

The major area of future research should concentrate on enhancing the computability

analyser of the TTE. Whilst this project has identified strategies and implemented

solutions to address a number of key problems in the transformation of potentially non-

computable clauses in Z, there is now the possibility to build on this work to increase the

level of automation which can be achieved. As discussed previously in Chapter 5,

enhanced strategies such as automated re-writing of clauses in the specification to make

the transformation process easier, coupled with increased language intelligence in the

recognition engine associated with identifying enumeration functions, suggest intriguing

possibilities to further enhance the capabilities of the computability analyser. It is also

likely that the ZAL language definition will mature to incorporate more elements of the Z

269

notation, allowing more complex specifications to be transformed by the TTE in the

future.

Within the TranZit editor there is the possibility to include a number of useful teaching

aids, which would enhance the process of specification construction. One of the major

problems identified by most people new to the Z notation, is the understanding of the Z

type system. There is therefore an opportunity to enhance the way in which type

information is presented to the user. One of the suggested mechanisms would be to

implement quick examination of types using Windows tooltips. Tooltips is becoming very

popular in Windows programs, and allows instant feedback of information to the user.

The user would simply place the cursor over an element of the specification or a

selection, and tooltips would display the type of that variable or composite expression

immediately. The aim is to afford learning as the specification is actually constructed, and

to assist in identifying type errors in the specification earlier. A further extension to this

idea would be to provide context-dependent help for syntax errors generated by the

TAS, as this was identified in the user questionnaire as an area for potential

improvement. A further teaching aid may also be the automatic expansion of schema

expressions associated with the Z schema calculus, together with the automatic

expansion of schemas which reference other schemas hidden by inclusion.

A second major enhancement to the TranZit editor would be to implement the Windows

Multiple Document Interface (MDI), allowing several Z specifications to be loaded into

the editor simultaneously. Whilst this is not required for smaller problems, a large

requirements engineering task may require that many specifications are constructed, each

pertaining to a particular sub-component of the system. The ability to be able to load and

manipulate these specifications within the same editor session then becomes important,

allowing the specifier to quickly refer to other parts of the system specification. In

addition this approach could be supported by a specification librarian, in which

specification projects are stored, each project consisting of many individual specifications

in different states. The specification project would then be loaded into TranZit, making

all the subordinate specifications accessible to the user by simple selection. The

specification librarian may also support configuration management by maintaining

270

different versions of a particular specification in a controlled manner. This may be

especially important in larger projects, where several people may be working on the same

set of specifications.

In addition, the results of the user questionnaire suggest that the editor could be

improved in the presentation and access of Z notation characters. Most people who

criticised this feature of the editor identified the fact that access to characters via the

menu system is too slow, and the power-user option of access via the Windows

accelerator keys makes it too difficult to remember the required key combination.

Clearly, what is required is an intermediate access method. One suggestion is the

development of a floating toolbar on the menu system, which users could customise to

add their particular set of commonly used Z notation characters. These characters would

then be accessible via a single mouse click.

In terms of improving the interface between TranZit and the ZAL animation

environment, one of the major enhancements which would increase the efficiency of

information transfer would be to make use of the DDE server implemented in the

Allegro LISP environment. At present, TranZit to ZAL information transfer uses an

intermediate storage medium, which is either a separate file or the internal Windows

clipboard. This enhancement would require the implementation of a DDE Client within

TranZit to transfer information directly into the ZAL animation environment without

intermediate clipboard or file storage.

In terms of specification portability, at present TranZit stores Z specification files in a

proprietary format. To increase portability, it would be useful if TranZit could import

and export Z specification files in the standard Z Interchange format (ZIF) defined in the

Z base standard (Brien and Nicholls, 1992), as well as the popular LaTeX type-setting

system (Lamport, 1985). In particular, the LaTeX format is supported by several other Z

editor tools such as Spivey’s (1988) fuzz package and the CADiZ tool from York

Software Engineering (1991). More recently, the advent of the world-wide web has

opened up possibilities to publish Z specifications on web pages, making them accessible

over geographically wide areas. Some work on extending HTML to support Z has been

271

instigated at CERN, although no standards exists as yet. These portability enhancements

would make the possibility for interchange of specifications between different tools more

practicable, allowing integration with other toolsets addressing different elements of the

requirements engineering task

In a wider context, the integration of the REALiZE toolset into other software

engineering methods offers many avenues for research into the development of a

methodology combining the capture, transformation and animation process with software

design techniques. There is also the possibility of enhancing the REALiZE process by

researching the requirements acquisition phase with a view to providing a front-end tool

to assist in the formalisation of informal requirements at the beginning of the

requirements engineering task. In addition, the extension of the REALiZE process to

encompass non-functional requirements may provide a significant intellectual challenge

in developing relationships between formal notations and system-oriented requirements

such as performance and reliability factors.

7.3 General Conclusions

The approach to requirements engineering described in this thesis involves the

application of executable formal specifications, based on the use of the Z notation, for

the construction and validation of a rapid prototype of the system requirements. This

approach seeks to maximise the strengths of formal specification, whilst at the same time

minimising communication problems engendered by the mathematical knowledge

required to understand the notation involved. This is achieved by a systematic process

supported by computer-based tools, involving the capture of a clear, concise, precise and

unambiguous specification of requirements in the TranZit tool, which can then be

transformed to an executable representation in the ZAL language.

It has been argued that in using this approach, the behaviour and properties of the system

embodied by the formal specification can be explored within a precise framework. This

framework can be animated, and thus supports both the specification development itself

and its subsequent validation by the user. The case studies described illustrate the

potential value of formal specification and animation in improving comprehension and

clarifying informal requirements.

272

Above all, the work presented herein has been guided by the principle of developing a

practical tool, which combines the technical benefits offered by formal systems

engineering techniques with the sociological and communication factors which influence

the development of specifications for real-world applications. The understanding of the

dynamics of specification development is critical in the design of a tool which adds value

to this process, and the research undertaken to establish the underlying stakeholder

interactions has been crucial in providing the foundation for the development of TranZit.

It is impossible to predict the eventual impact that the information revolution we are

currently witnessing will have on the practical everyday aspects of our lives and the

social fabric of our society in the future. However, what is clear is that the complexity of

the software systems enabling this technology will continue to increase, and the efficient

development of such systems will demand a corresponding increase in the power of

software engineering methodologies, processes and tools.

Whilst software design techniques are well-developed and understood, effective

techniques for requirements engineering continue to perplex all but the most mature of

industrial development organisations. It is hoped that by the research and development of

computer-based tools such as TranZit, industrial organisations will achieve their goal of

developing quality system specifications, and the discipline of software engineering will

advance to meet the challenges of the future.

273

Bibliography

Abelson, H. and Sussman, G J. (1985), The Structure and Interpretation o f Computer

Programs, McGraw-Hill. Maidenhead, UK.

Agresti, W.W. (1986), New Paradigms fo r Software Development, IEEE Computer

Society Press, Los Alamitos, California, USA.

Alavi, M. (1984), “An Assessment of the prototyping approach to Information Systems

Development, ” Communications o f the ACM, 27, 6, 556 - 563.

Alencar, A.J. and Goguen, J.A. (1991), “OOZE: An Object Oriented Z Environment,” In

ECOOP ’91 Proceedings, P. America, Ed., Lecture Notes in Computer Science,

512, Springer-Verlag, Berlin, Germany, 180-199.

Alford, M.W. and Lawson, J.T. (1979), Software Requirements Engineering

Methodology (Development), RADC-TR-79-168, U.S. Air Force Rome Air

Development Centre, Griffiss AFB, NY, June 1979, (DDC-AD-A073132).

Atkinson, W.D., Booth, J.P. and Quirk, W.J. (1991), “ Model Action logic for the

specification and validation of safety,” In Mathematical Structures for Software

Engineering, The Institute of Mathematics and its Applications Conference

Series 27, Clarendon Press, Oxford, UK.

Avison, D.E. and Fitzgerald, G. (1988), Information Systems Development:

Methodologies, Techniques and Tools, Blackwell Scientific Publications, Oxford,

UK.

Avison, D.E. and Wood-Harper, A.T. (1991), “Information Systems Development

Research: An exploration of ideas in practice,” The Computer Journal, 2, 34, 98

- 112.

Avizienis, A. and Wu, C-S. (1990), “A Comparative Assessment of Formal Specification

techniques,” In Proceedings o f the 5th Annual Knowledge-Based Software

Assistant Conf, 1990.

B Core UK Limited. (1994), B Toolkit Reference Manual, Oxford Science Park, Oxford,

UK.

Backhouse, R.C. (1979), Syntax o f Programming Languages: Theory and Practice,

Prentice-Hall International, Englewood Cliffs, NJ, USA.

274

Backus, J.W. (1959), ‘The syntax and semantics of the proposed international algebraic

language of the Zurich ACM-GAMM Conference,” In Proceedings o f

International Conference on Information Processing, UNESCO, 125-132.

Balzar, R.M. (1985), “A 15 year perspective on Automatic Programming,” IEEE

Transactions on Software Engineering, 11, 11, 1257-1268.

Barden, R., Stepney, S. and Cooper, D. (1994), Z in Practice, Prentice Hall, London,

UK.

Belkhouche, B. and Urban, J.E. (1986), “Direct implementation of Abstract Data types

from Abstract Specifications,” IEEE Transactions on Software Engineering, 12,

5, 649-661.

Bergstra, J.A., Heering, J. and Klint, P. (1989), Algebraic Specification, ACM Press,

New York, USA.

Berzins, V., Luqi, K. and Yehudai, A. (1993), “Using Transformations in Specification-

based Prototyping,” IEEE Transactions on Software Engineering, 19, 5, 437 -

452.

Bhabuta, L. (1989), “Balancing Systems and Organisational Needs: User Involvement in

Requirements Analysis,” In Participation in Systems Development, K. Knight,

Ed., Kogan Page, 134 -151.

Bidoit, M. and Choppy, C. (1985), “Asspegique: An Integrated Environment for

Algebraic Specifications,” Proceedings o f TAPSOFT Conference, 246-260.

Boehm, B.W. (1981), Software Engineering Economics, Prentice Hall, Englewood

Cliffs, New Jersey, USA.

Boehm, B.W. (1987), “Improving Software Productivity,” Computer, September 1987,

43-57.

Boehm, B.W. (1988), “A Spiral model of Software Development,” Tutorial: Software

Engineering Project Management, R.H. Thayer and M. Dorfman, Eds., IEEE

Computer Society Press, Los Alamitos, California, 128 - 142.

Boehm, B.W and In, H. (1996), “Identifying Quality-Requirement Conflicts,” In Proc.

ICRE, 2nd International Conference on Requirement Engineering, Colorado

Springs, Colorado, IEEE Computer Society Press, Los Alamitos, California,

USA, 218 - 219

275

Booch. G. (1994). Object oriented design with Applications, Benjamin/Cummings,

Redwood City, California, USA.

Bowen, J.P. and Hinchey, M.G. (1995), “Seven more myths of Formal Methods, ” IEEE

Software, 12, 4, 34 - 41.

Bowen, J.P. and Gordon, M. (1994), “Z and HOL,” In Proceeding o f the Z User

Workshop (ZUM’94), Cambridge, UK, J. Bowen and J. Hall, Eds., Workshops in

Computing, Springer-Verlag, Berlin, 141-167.

Bowen, J.P. and Gordon, M. (1995), “A Shallow embedding of Z in HOL,” Information

and Software Technology, 37, 5, 269-276.

Brackett, L. (1990), “Case tools for Requirements Analysis and Software Design,” In

Tutorial notes, 12th international conference on Software Engineering, Nice,

France.

Breuer, P. and Bowen, J. (1994), ‘Towards Correct Executable Semantics for Z,” In

Proceedings o f the 8fh Z Users Workshop (ZUM94), Cambridge, J. Bowen and J.

Hall, Eds., Workshops in Computing, Springer-Verlag, Berlin, 185 - 212.

Brien S.M. and Nicholls J.E. (1992), Z Base Standard Version 1.0, Oxford University

Computing Laboratory Programming Research Group, Technical Monograph

PRG-107, Oxford University Press, Oxford, UK.

Brooks, F.P. Jr (1987), Report o f the Defense Science Board Task Force on Military

Software, September 1987, Office of the Under Secretary of Defense for

Acquisition, U.S. Department of Defence, Washington D.C., USA.

Brown, P.G. (1991), “QFD: Echoing the voice of the Customer,” in AT&T Technical

Journal, March-April 1991, 18-32 .

Bustard, D.W. (1994), “Progress Towards RACE, a 'Soft-Centred' Requirements

Definition Method,” In Proceedings o f the 1st IFIP/SQI International

Conference on Software Quality and Productivity, Hong Kong, Chapman &

Hall, 29-36.

Bustard, D.W. and Dobbin, T.J. (1996), “Integrating Soft Systems and Object-oriented

Analysis,” In Proceedings o f the 2nd International Conference on Requirements

Engineering 1CRC96, April 15th—18th, Colorado Springs, IEEE Computer

Society Press, Los Alamitos, California, USA, 52 - 59.

276

Cadre Technologies Inc. (1990), Teamwork Environment Reference Manual, Release

4.0, DX046XX4A, December 1990, Cadre Technologies Inc, USA.

Carrington, D., Duke D., Duke, R., King, P., Rose, G.A. and Smith, G. (1990). “Object-

Z: An object-oriented extension to Z,” In Formal Description Techniques II,

(FORTE’98), North Holland, 281-296.

Checkland, P.B. (1981), Systems Thinking, Systems Practice, John Wiley, Chichester,

UK.

Checkland, P.B. (1995), “Model Validation in Soft Systems Practice, ” Systems

Research, 1, 12, 46 - 54.

Chemiavsky, J.C. (1990), “Software Failures attract Congressional Attention,”

Computer Research Review, 2, 1, 4 - 5.

Chomsky, N. (1956), ‘Three models for the Description of Language,” IEEE

Transactions on Information Theory, IT2, 113-124.

Ciancarini, P., Cimato, S. and Mascolo, C. (1997), “Engineering Formal Requirements:

An Analysis and Testing Method for Z documents,” Annals o f Software

Engineering, 3(1997), 189 - 219.

Coad, P. and Yourdon, E. (1991), Object Oriented Analysis, Second Edition, Prentice

Hall, Englewood Cliffs, New Jersey, USA.

Collins, B.P., Nicholls, J.E. and Sprensen, I.H. (1988), Introducing Formal Methods:

The CICS Experience with Z, Technical Report, Programming Research Group,

Oxford University. Oxford, UK.

Cusack, E. (1991), “Object-oriented Modelling in Z,” In ECOOP ’91 Proceedings, P.

America, Ed., Lecture Notes in Computer Science, Springer-Verlag, Berlin,

Germany.

Cusack, E. and Wezeman C. (1993), “Deriving Tests for Objects specified in Z,” In Z

User Meeting 1992, J. Nicholls, Ed., Workshops in Computing, Springer-Verlag,

Berlin.

Damon, C. and Jackson, D. (1996), “Efficient Search as a means of Executing

Specifications,” In Proceedings ofTACAS’96, T. Margaria and B. Steffens, Eds.,

Lecture Notes in Computer Science, 1055, Springer-Verlag, Berlin, 70-86.

Daniels, A. and Yeates, D.A. (1971), Basic Training in Systems Analysis, Second

Edition, Pitman Press, London, UK.

277

Davis, A.M. (1988), “A Comparison of Techniques for the Specification of External

System behaviour,” Communications o f the ACM, 31, 9, 1098-1115.

Davis, A.M. (1993), Software Requirements: Objects, Functions and States, Prentice

Hall International, Englewood Cliffs, New Jersey, USA.

Davis, A.M., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G.,

Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A. and Theofanos, M. (1993),

“Identifying and Measuring Quality in Software Requirements Specification, ” In

Proceedings o f the 1st International Software Metrics Symposium, 1993, 141-

152.

Davis G.B. (1981), ’’Information Analysis for Information Systems Development,” In

Systems Analysis and Design: A Foundation for the 1980's, W.W. Cottermann,

J.D. Cougar, N.L.Enger and F. Harold, Eds,.

DeMarco, T. (1978), Structured Analysis and System Specification, Yourdon Inc, New

Jersey, USA.

Dick, A.J., Krause, P.J. and Cozens, J. (1990), “Computer Aided Transformation of Z

into Prolog,” Z User Workshop , J.E. Nicholls, Ed., Workshops in Computing, Z

User Group, Springer-Verlag, Berlin, 71-85 .

Diller, A. (1990), Z: An Introduction to Formal Methods, John Wiley and Sons,

Chichester, UK.

Doma, V. and Nicholl, R. (1991), “EZ: A System for Automatic Prototyping of Z

Specifications,” VDM'91: Formal Software Development Methods, S. Prehn and

W.J. Toetenel, Eds., Lecture Notes in Computer Science, Springer-Verlag,

Berlin, Germany.

Dorfman, M. (1997), “Requirements Engineering,” Software Requirements Engineering

2nd Edition, R.H Thayer and M. Dorfman, Eds., IEEE Computer Society Press,

Los Alamitos, California, USA, 7 - 22.

Dorfman, M. and Thayer, R.H. (1990), IEEE standard 610-12: Standard, Guidelines

and Examples on System and Software Requirements Engineering, IEEE

Computer Society Press, Los Alamitos, California, USA.

Downs, E., Clare, P. and Coe, I. (1988), Structured Systems Analysis and Design

Methodology: Application and Context, Prentice-Hall, Hemel Hempstead, Herts,

UK.

278

Durr, E., Duursma, A. and Plat, N. (1994), VDM++ Language Reference Manual,

Technical Report AFRO/CG/ED/LRM, V9.1, May 1994, CAP Gemini

Innovation, UK.

Ebert, C. (1997), “Dealing with Nonfunctional Requirements,” Annals o f Software

Engineering, 3(1997), 367 - 396.

Eisenbach, S. (1987), Functional Programming: Languages, Tools and Architectures,

Ellis Horwood, Chichester, UK.

Elmstrpm, R., Larsen, P.G. and Lassen P.B. (1994), ‘The IFAD VDM-SL Toolbox: A

Practical Approach to Formal Specification,” ACM SIGPLAN, 29, 9, 77 - 81.

Floyd, C., Mehl, W., Reisen, F., Schmidt, G. and Wolf, G. (1989), “Out of Scandanavia:

Alternative approaches to systems design and systems development”. Human

Computer Interaction, 4, 235 - 250.

Flynn, D.J. (1992), Information Systems Requirements: Determination and Analysis,

McGraw-Hill, Europe.

Forberg K. and Mooz H (1997), “System Engineering Overview,” Software

Requirements Engineering, 2nd Edition, R.H. Thayer and M. Dorfman,

Eds.,IEEE Computer Society Press, Los Alamitos, California, USA, 44 - 72.

Fuchs, N.E. (1992), “Specifications are (preferably) executable,” IEEE Software

Engineering Journal, 7, 5, 323 - 334.

Gane, C. and Sarson, T. (1979), Structured Systems Analysis: Tools and Techniques,

Prentice Hall, New York, USA.

George, C., Haff, P., Havelund, K., Haxthausen, E., Milne, R., Prehn, S., Wagner, K.R.

and Nielson, C. (1992), The RAISE Specification Language, Prentice-Hall, New

York, USA.

George, C. and Prehn, S. (1992), The RAISE Justification Handbook, Technical Report,

LA-COS/CRI/DOC/7/V4, Computer Resources International, October 1992.

Gladden, G.R. (1982), “Stop the Life-Cycle, I want to get off,” ACM Software

Engineering Notes, SE-7, 2, 35 - 39.

Glasson, B.C. (1984), “Guidelines for User Participation in the Systems Development

Process,” In Human Computer Interaction (Interact *84), B. Shackel, Ed., North

Holland.

279

Goguen, J.A. and Meseguer, J, (1982), “Rapid Prototyping in the OBJ Specification

Language,” ACM SIGSOFT Software Engineering Notes, 7, 5, 75 - 84.

Goguen, J.A. and Linde, C. (1993), ‘Techniques for Requirements Elicitation,” In

Proceeding o f the IEEE International Symposium on Requirements Engineering,

San Diago, California, IEEE Computer Society Press, Los Alamitos, California,

USA, 152 - 164.

Goguen, J.A. and Winkler, T. (1988), Introducing OBJ3, SRI International, USA.

Goguen, J.A. and Wolfram, D. (1990), “On Types and FOOPS,” In Proceeding o f the

Working Conference on Database Semantics, Windermere, Lake District, UK,

July 1990.

Goldberg, A. and Robson, D. (1983), Smalltalk-80: The Language and its

implementation, Addison-Wesley, Massachusetts, USA.

Goldschlager, L. and Lister, A. (1982), Computer Science: A Modem Introduction,

Prentice-Hall International, Englewood Cliffs, New Jersey, USA.

Gomaa, H. and Scott, D.B.H. (1981), “ Prototyping as a tool in the specification of User
thRequirements,” In Proceeding o f the 5 International Conference on Software

Engineering, IEEE Computer Society Press, Los Alamitos, California, USA. 333

-342 .

Gomma. H. (1997), ‘The Impact of Prototyping in Software System Engineering,”

Software Requirements Engineering 2nd Edition, R.H Thayer and M. Dorfman,

Eds., IEEE Computer Society Press, Los Alamitos, California, USA, 431 - 440.

Greenbaum, J. and Kyng, M. (1991), Design at Work: Co-operative Design o f

Computer Systems, Hillsdale, New Jersey, USA, Lawrence Erlbaum.

Gries, D. (1971), Compiler Construction fo r Digital Computers, John Wiley and Sons,

New York, USA.

Gries, D. (1981), The Science o f Programming, Springer-Verlag, New York, USA.

Guttag, J.V. and Homing, J.J. (1993), LARCH: Language and Tools fo r Formal

Specification, Springer-Verlag, New York, USA.

Hall, A. (1990), “Seven Myths of Formal Methods,” IEEE Software, 7,5, 11 - 19.

Harel, D. (1987), ’’Statecharts: A Visual Formalism for Complex Systems,” Science o f

Computer Programming, 8, 231-374.

280

Hartson H.R. and Smith E.C. (1991), “Rapid Prototyping in Human-Computer Interface

Development,” Interacting with Computers, 3 ,1 , 5 1 -6 2 .

Hasselbring, W. (1994), “Animation of Object-Z specifications with a Set-Oriented

Prototyping Language,” In Proceedings o f the 8fh Z User Workshop, Cambridge,

UK, J. Bowen and J.Hall, Eds., Workshops in Computing, Springer-Verlag,

Berlin, Germany. 337 - 358.

Haughton, H. and Lano, K. (1995), B Abstract Machine Notation: A Reference Manual,

McGraw-Hill, London, UK.

Hauser, J.R. and Clausing, D. (1988), ‘The House of Quality,” Harvard Business

Review, 66, 3, 63 - 73.

Hayes, I..J. and Jones, C.B. (1989), “Specifications are not (necessarily) executable,”

Software Engineering Journal, November 1989, 330 - 338.

Hayes, I..J. and Mahoney, B. (1992), “ A Case Study in Timed Refinement: A Mine

Pump,” IEEE Software, 18, 9.

Hayes, I. (1993), Specification Case Studies: 2nd Edition. Prentice Hall International,

Hemel Hempstead, Hertfordshire, UK.

Heckmatpour, S. (1988), Lisp and Symbol Manipulation, Open University Press, UK.

Heckmatpour, S. and Ince, D. (1988), Software Prototyping, Formal Methods and

VDM, Addison-Wesley, Wokingham, UK.

Henderson P. and Minkowitz, C. (1985), ‘The me-too method of Software Design, ”

University of Stirling, Department of Computing Science, FPN-10, Oct 1985.

Henderson, P. (1986), “Functional Programming, Formal Specification and Rapid

Prototyping, ” IEEE Transactions on Software Engineering, SE-12, 2.

Hoare, C.A.R. (1969), “An Axiomatic Basis for Computer Programming,”

Communications o f the ACM, 12.

Hoare, C.A.R. (1985), Communicating Sequential Processes, Prentice-Hall

International, Englewood Cliffs, New Jersey, USA.

Holbrook, H, III. (1990), “A Scenario-based methodology for conducting Requirements

Elicitation,” ACM SIGSOFTSoftware Engineering Notes, 15, 1, 95-104.

Holub, A.I. (1990), Compiler Design in C, Prentice-Hall International, Englewood

Cliffs, New Jersey, USA.

281

Horcher, H-M. (1994), “Animation and Prototyping of Implicit Specifications,”

Geschaftsbereich, DST Deutsche System-Technik GmbH, May 13, 1994.

Hsai, P. and Yaung, A.T. (1988), “Screen-Based Scenario Generator: A Tool for

Scenario-based Prototyping,” In Proceeding o f the Hawaii International

Conference on Systems Sciences, Jan 4th-7th, Honalulu, USA, 455 - 461.

Iachini, P.L. and Giovanni, R. Di. (1990), “HOOD and Z for the development of

Complex Software Systems,” VDM and Z, VDM 90, 428, Lecture Notes in

Computer Science, Springer-Verlag, Berlin, Germany. 262 - 289.

IEEE (1984), “IEEE Guide to Software Requirements Specifications,” IEEE Std 830-

1984. IEEE inc, 345 East 47,h Street, New York, NY 10017, USA.

IEEE (1993), “IEEE Recommended Practise for Software Requirements Specifications,”

IEEE Std 830-1993. IEEE inc, 345 East 47lh Street, New York, NY 10017,

USA.

Jackson, M.A. (1975), Principles o f Program Design, Academic Press, London, UK.

Jackson, M.A. (1983), Systems Development, Prentice-Hall, Englewood Cliffs, New

Jersey, USA.

Jackson, D. (1994), “Abstract Model Checking of Infinite Specifications,” In

Proceedings o f the 2nd International Symposium o f Formal Methods Europe

(FME), Barcelona, Spain, M. Naftalin, T. Denvir and M. Bertran, Eds., Lecture

Notes in Computer Science, 873, Springer-Verlag, Berlin, Germany, 519-531.

Jalote, P. (1987), “Synthesising Implementation of Abstract data types from Axiomatic

Specification,” Software Practise and Experience, 17, 11, 847-858.

Jarke, M. and Pohl, K. (1994), “Requirements Engineering in 2001: (Virtually) managing

a changing Reality,” Software Engineering Journal, November 1994.

Jones, C.B. (1990), Systematic Software Development using VDM, Prentice-Hall

International, Englewood Cliffs, New Jersey, USA.

Johnson, M. and Sanders, P. (1990), “From Z Specification to Functional

Implementations,” In Proceedings o f the Z User Workshop, Oxford, UK, J.E.

Nicholls, Ed., Workshops in Computing, Springer-Verlag, Berlin, Germany, 86-

112 .

Jia, X. (1994), ZTC: A type checker for Z: User Guide, Institute of Software

Engineering.

282

Kano, N., Seraku, N., Takahashi, F. and Tsuju, S. (1984), “Attractive and Normal

Quality,” (in Japanese), Quality, 14, 2, 39 - 48.

Kemighan, B.W. and Richtie, D.M. (1978), The C Programming Language, Prentice-

Hall, Englewood Cliffs, New Jersey, USA.

King, S., S0rensen, I.H. and Woodcock, J. (1988), Z: Grammar and Concrete and

Abstract Syntaxes (Version 2.0), Technical Monograph PRG-68, Oxford

University Programming Research Group, July 1988, ISBN-0-902928-50-3.

Knott, R.D. and Krause, P.J. (1988), ”An Approach to Animating Z using Prolog,”

Report No A l .l , University of Surrey, Department of Mathematics, Alvey

Project SE/065. July 1988.

Knott, R.D. and Krause, P.J, (1992), ”The Implementation of Z specifications using

Program Transformation Systems: The SuZan Project, ” The Unified

Computation Laboratory, C. Rattray and R.G. Clark, Eds., IMA Conference

Series, 35, Oxford University Press, Oxford, UK, 207-220.

Kowalski, R.A. (1979), “Algorithm = Logic + Control,” Communications o f the ACM,

22,1, 424-435 .

Kowalski, R.A. (1985), ‘The Relation between logic programming and logic

specification,” Mathematical Logic and Programming Languages, C.A.R Hoare

and J.C. Shepherdson, Eds., Prentice-Hall, Englewood Cliffs, New Jersey, USA.

Kramer, J. and Keng, N. (1988), “Animation of Requirements Specifications,” Software

Practice and Experience, 18, 8, 749 - 774.

Kuznik, F. (1994), “Blundersat,” A/r and Space Smithsonian, Dec. 1993/ Jan 1994, 41-

47.

Lamport, L. (1985), ifTpX: A Document Preparation System, Addison-Wesley,

Massachusetts, USA.

Lano, K. (1991), “An Object-oriented Extension to Z,” In Proceedings o f the Z User

Meeting, Oxford, UK, J. Nicholls, Ed., Workshops in Computing, Springer-

Verlag, Berlin, Germany.

Lano, K. and Haughton, H. (1993), Object-oriented Specification Case Studies (First

Edition), Prentice-Hall, Englewood Cliffs, New Jersey, USA.

Lano, K. (1995), Formal Object-Oriented Development, Springer-Verlag, New York,

USA.

283

Lee, B. (1979), Introducing Systems Analysis and Design, Vols 1 and 2, NCC,

Manchester.

Lehman, M. M. (1980), “Programs, Life Cycles and the Laws of Software Evolution,”

Proceedings o f the IEEE, 68, 9,1060-1076.

Lehmann, T. and Loeckx, J. (1987), ‘The Specification Language of OBSCURE,” In
thProceeding o f the 5 Workshop on Specification o f Abstract Data Types: Recent

Trends in Data Type Specification, 131-153.

Leveson, N.G. (1990), “Guest Editor’s Introduction: Formal methods in Software

Engineering,” IEEE Transactions on Software Engineering, 16, 9, 929 - 931.

Logica Inc. (1995), Formaliser: A Formal Methods support tool for Small Computers,

Logica Cambridge Ltd, UK.

Lubars, M., Potts, C. and Richter, C. (1993), “A Review of the State of Practise in

Requirements Modelling,” In Proceedings o f the IEEE International Symposium

on Requirements Engineering, San Diego, California, IEEE Computer Society

Press, Los Alamitos, California, USA, 2 -1 5 .

Macaulay, L.A. (1996), Requirements Engineering, Springer-Verlag, London, UK.

May, D. (1990), “Use of Formal Methods by a Silicon Manufacturer,” Developments in

Concurrency and Communication, C.A.R.Hoare, Ed., Addison-Wesley, New

York, USA, 107-129.

McCracken, D.D. and Jackson, M.A. (1981), “A Minority Dissenting Position, “ Systems

Analysis and Design - A foundation for the 80’s, W.W. Cotterman, Ed., 551 —

553.

McCracken, D.D. and Jackson, M.A. (1982), “Lifecycle Concept Considered Harmful,”

ACM Software Engineering Notes, SE-7, 2, 29 - 32.

McMenamin, S. and Palmer, J. (1984), Essential Systems Analysis, Prentice-Hall,

Englewood Cliffs, New Jersey, USA.

Meira, S.R.L and Cavalcanti, A.L.C. (1991), “Modular Object-oriented Z

Specifications,” Z User Meeting 1990, Workshops in Computing, Springer-

Verlag, London, UK, 173-192.

Microsoft Corp. (1992), Microsoft Windows Programmer’s Reference: Volume 1

Overview, Microsoft Press, USA.

284

Mills, H.D., Dyer, M. and Linger, R.C. (1987), “Cleanroom Software Engineering/4

IEEE Software, 4,5, 19 - 26.

Morgan, C. (1987), ‘Telephone Network,” Specification Case Studies: First Edition, I.

Hayes, Ed., Prentice-Hall, Englewood Cliffs, New Jersey, USA.

Morgan, C. (1993), ‘Telephone Network,” in Specification Case Studies: Second

Edition, I. Hayes, Ed., Prentice-Hall, Englewood Cliffs, New Jersey, USA, 31 -

42.

Morgan C., Robinson K. and Gardinier, P. (1988), “On the Refinement Calculus,”

Technical Monograph PRG-70, Oxford University Computing Laboratory

Programming Research Group, Oxford, UK.

Morrey, I., Siddiqi, J.I.A, and Briggs, J. (1992), “Z Animation in LISP,” In Proceedings

o f the 5th International Conference on Putting into Practise Methods fo r

Information Systems Design, Nantes, France.

Morrey, I., Siddiqi, J. I. A., Buckberry, G., and Hibberd, R. (1994), “Systematic

Development of Quality Production Prototypes,” In Proceeding o f the IEEE

International Conference on Requirements Engineering, Colorado USA, IEEE

Computer Society Press, Los Alamitos, California, USA.

Morrey, I., Siddiqi, J. I. A., Hibberd, R. and Buckberry, G. (1998), “A Toolset to

Support the Construction and Animation of Formal Specifications,” Journal o f

Systems and Software, 41 (1998), 147 - 160.

Moulding, M.R. and Newton, A.R. (1992), “Rapid Prototyping from VDM

Specifications using ADA,” I EE Colloquium on Automating Formal Methods fo r

Computer-Assisted Prototyping, 14th January 1992.

Mumford, E. and Weir, M. (1979), Computer Systems in Work Design, The Ethics

Method, Associated Business Press.

Myopoulos, J., Chung, L., and Nixon, B. (1992), ’’Representing and Using

Nonfunctional Requirements: A Process-Oriented approach,” in IEEE

Transactions on Software Engineering, 18, 6, 483 - 497.

Naumann, J.D., Davis, G.B. and McKeen, J.D. (1980), “Determining Information

Requirements: A Contingency Method for selection of a Requirements Assurance

Strategy,” Journal o f Systems Software, 1, 4.

285

Naur, P. and Randell, B. (1969), “Software Engineering: Report on a Conference

Sponsored by the NATO Science Commission,” Garmisch, Germany, 7-11 Oct,

1968. Scientific Affairs Division, NATO, Brussels.

Nicholls, J.E. (1991), “ Domain of Application for Formal Methods”, In Proceedings of

the Z User Meeting, York, December 1991.

North, N.D. (1990), An Implementation o f Sets and Maps as Miranda Abstract Data

Types, NPL Report DITC 162/90, February 1990.

O’Neill, G. (1992), “Automatic Translation of VDM Specifications into Standard ML

Programs,” The Computer Journal, 35, 6, 623 - 624.

Parry, P.W., Ozcan, M.B. and Siddiqi, J. (1995), ‘The Application of Visualisation to

Requirements Engineering,” In Proceedings o f the Conference on Software

Engineering and its Applications, France, 699 - 710.

Place, P.R.H., Wood, W. and Tudball, M. (1990), “Survey of Formal Specification

techniques for Reactive Systems,” Software Engineering Institute, CMU/SEI-90-

TR-5. May 1990.

Pohl, K. (1993), ‘The three dimensions of Requirements Engineering,” In Proceedings

o f the 5th International Conference on Advanced Information Systems

Engineering (CaiSE '93), C. Rolland., F. Bodart. and C. Cauvet, Eds., Springer-

Verlag, Paris, 175 - 292.

Potter, B., Sinclair, J. and Till, D. (1991), An Introduction to Formal Specification and

Z, Prentice-Hall, Englewood Cliffs, New Jersey, USA.

Pressman, R.S. (1982), Software Engineering: A Practitioners Approach, McGraw Hill

Inc, Singapore.

QSS Inc. (1998), DOORS Reference, Quality Systems and Software Inc, 200 Valley

Road, Suite 306, Mt. Arlington, NJ 07856, USA.

Ramesh, B., Stubbs, C., Powers, T., and Edwards, M. (1997), “Requirements

Traceability: Theory and Practice,” Annals o f Software Engineering, 3(1997),

397-416.

Rayward-Smith, V J. (1995), A First Course in Formal Language Theory 2nd Edition,

McGraw-Hill Book Company, London, UK.

286

Reilly, J.P. (1997), “Entity Relationship Approach to Data Modelling,” Software

Requirements Engineering 2nd Edition, R.H. Thayer and M. Dorfman, Eds.,

IEEE Computer Society Press, Los Alamitos, California, USA, 275 - 285.

Richardson, D., Aha, S. and O’Malley, T. (1992), “Specification-Based Test Oracles for

Reactive Systems,” In Proceedings o f the 14th IEEE International Conference on

Software Engineering, Melbourne, Australia, 105-118.

Ritchie, B. (1993), Proof with Mural, Rutherford Appleton Laboratory, Informatics

Department, Chilton, Didcot, Oxon, UK.

Robinson, B. (1994), “Social Context and Conflicting Interests.” In Proceedings o f the

Second BCS Conference on Infomation Systems Methodologies, Edinburgh, UK,

British Computer Society, 235 - 249.

Rolland,C. and Plihon, V. (1996), “ Using Generic Method Chunks to Generate Process

Model Fragments, ” In Proceedings o f ICRE Second International Conference

on Requirements Engineering, Colorado, USA, IEEE Computer Society Press,

Los Alamitos, California. USA, 173 - 189.

Ross, D.T. (1977), “Structured Analysis (SA): A Language for Communicating Ideas,”

IEEE Transactions on Software Engineering, 3, 1, 16-33.

Royce, W.W. (1970), “Managing the Development of Large Software Systems,” In

Proceedings o f the IEEE, WESCON, 1 - 9 .

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenson, W. (1991), Object-

Oriented Modelling and Design, Prentice-Hall, EngleWood Cliffs, New Jersey,

USA.

Saiedian, H (1997), “Formal Methods in Information Systems Engineering,” Software
fidRequirements Engineering 2 Edition, R.H. Thayer and M. Dorfman, Eds.,

IEEE Computer Society Press, Los Alamitos, California, USA, 336 - 348.

Saaltnik, M. (1989), “Z and Eves,” In Proceedings o f the Z User Workshop, Oxford,

UK, J. Nicholls, Ed., Workshops in Computing, Springer-Verlag, Berlin, 223 -

242.

Sampio, A. and Meria, S. (1990), “ Modular Extensions to Z,” VDM and Z, Lecture

Notes in Computer Science, 428, Springer-Verlag, Berlin.

Semmens, L.T., France, R.B. and Docker, T.W.G. (1992), “Integrated Structured

Analysis and Formal Specification Techniques,” Computer, 35, 6.

287

Semmens, L.T. and Allen, P. (1991), “Using Yourdon and Z: An Approach to formal

Specification,” In Proceedings o f the 5th Z user Workshop, Oxford, UK, J.

Nicholls, Ed., Springer-Verlag, Heidelberg, Germany.

Semmens, L.T. and Allen, P. (1992), “Formalising Yourdon,” In Proceedings o f the

Methods Integration Workshop, Leeds, UK, P. Allen, A. Bryant and L.

Semmens, Eds., Springer-Verlag, Heidelberg, Germany.

Sherrell, L.B. and Carver, D.L. (1993), “Z Meets Haskell: A Case Study,” In

Proceedings o f the 17th Annual International Computer Software & Applications

Conference, 320-326.

Shlaer, S. and Mellor, S. (1992), Object LifeCycles : Modelling the world in States,

Yourdon Press. New York, USA

Siddiqi, J., Morrey, I., Shaw, S. and Briggs, J. (1991), “Rapid Prototyping of Formal

Specifications,” In Proceedings o f the 4th International Conference on Software

Engineering and its Applications, Toulouse, France.

Siddiqi, J. I. A., Morrey, I., Ozcan, M. and Roast, C. (1997), ‘Towards Quality

Requirements via Animated Formal Specifications,” Annals o f Software

Engineering, 3(1997), 131 - 155.

Siddiqi, J. I. A , Morrey, I., Hibberd, R. and Buckberry, G. (1998) “Understanding and

Exploring Formal Specifications,” Annals o f Software Engineering, 6(1998), 411

-432.

Sommerville, I. (1985), Software Engineering 2nd Edition, Addison-Wesley Publishing

Company Inc, Wokingham, UK.

Sommerville, I. and Sawyer, P. (1997), Requirements Engineering, John Wiley,

Chichester, UK.

Spanoudakis, G. and Finkelstein, A. (1997), “Reconciling Requirements: A Method for

managing interference, inconsistency and conflict,” Annals o f Software

Engineering, 3 (1997), 433 - 457.

Spivey, J.M. (1988), The FUZZ manual, Oxford Programming Research Group, Oxford,

UK.

Spivey, J.M. (1989), “An Introduction to Z and Formal Specification, ” Software

Engineering Journal, 4,1, 40 - 50.

288

Spivey, J.M. (1992), The Z Notation: A Reference Manual: Second Edition, Prentice

Hall International, Hemel Hempstread, Hertfordshire, UK.

Tenenbaum, A.M. and. Augenstein, MJ. (1986), Data structures using Pascal, 2nd

Edition, Prentice-Hall, Englewood Cliffs, New Jersey, USA.

Thimbleby, H. (1990), User Interface Design, ACM Press, New York, USA.

Turner, D.A. (1985), “Functional Programs as Executable Specifications,” Mathematical

Logic and Programming Languages, C.A.R. Hoare and J.C. Shepherdson, Eds.,

Prentice-Hall, Englewood Cliffs, New Jersey, USA.

Vadera, S. and Meziane, F. (1997), ‘Tools for Producing Formal Specification: A view

of current architectures and future directions,” Annals of Software Engineering,

3(1997), 273 - 290.

Valentine, S.H. (1995), ‘The Programming Language Z— Information and Software

Technology, 37, 5, 293 - 301.

Valusek, J.R. and Fryback, D.G. (1985), “Information Requirements Determination:

Obstacles within, among and between participants, ” In Proceedings of the End-

User Computing Conference, ACM. Press, New York, USA.

Vienneau, R. (1991), An Overview of Object-Oriented Design, Data & Analysis Centre

for Software, Apr 30,1991.

Vienneau, R. (1997), “A Review of Formal Methods,” Software Requirements

Engineering 2nd Edition, R.H. Thayer and M. Dorfman, Eds., IEEE Computer

Society Press, Los Alamitos, California, USA, 324 - 335.

Verheijen, G.M. and Van Bekkum, J. (1982), “NIAM: An information analysis method,”

Information Systems Design Methodologies: A comparative view, T.W. Olle,

Ed., North Holland.

Ward, P. and Mellor, S. (1985), Structured Development for Real-Time Systems,

Prentice-Hall, Englewood Cliffs, New Jersey, USA.

Wassermann, A.I., Freeman, P. and Porcella, M. (1983), “Characteristics of Software

Design methodologies,” Information System Design methodologies: A Feature

Analysis, T.W. Olle, Ed., North Holland.

Wassermann, A.I. and Shewmake, D.T. (1985), “The role of prototypes in the User

Software Engineering (USE) Methodology,” Advances in Human-Computer

Interaction, 1, H.R. Hartson, Ed., Norwood, New Jersey, USA.

289

Weinburg, V. (1978), Structured Analysis, Prentice-Hall, New York, USA.

West, M. and Eaglestone, B. (1992), “Software Development: Two approaches to

Animation of Z specifications using Prolog,” I EE Software Engineering Journal,

7, 4, 264-276.

Wilensky, R. (1986), Common LISPcraft, W.W. Norton and Company, New York,

USA.

Wing, J.M. (1990), “A specifier’s introduction to Formal Methods,” Computer, 23, 9, 8

-23.

Wirth, N. (1971), “Program Development by Stepwise Refinement,” Communications

of the ACM, 14, A, 221-227.

Wordsworth, J.B. (1987), A Z Development Method, Technical Report, IBM UK

Laboratories Ltd, Hursley Park, UK.

Wordsworth, J.B. (1989), “A Z Development Method,” In Proceedings of the Workshop

on Refinement, Milton Keynes, UK, The Open University.

Wulf, W.A., Shaw, W., Hilfinger, P.N. and Flon, L. (1981), Fundamental Structures of

Computer Science, Addison-Wesley Publishing Company, Massachusetts, USA.

York Software Engineering. (1991), CADIZ - The CADiZ Tutorial, Version 1.0, York

Software Engineering Ltd, York, UK.

Yourdon, E. and Constantine, L. (1979), Structured Design, Yourdon Press, New

York, USA.

Yourdon, E. (1989), Modem Structured Analysis, Prentice-Hall, Englewood Cliffs, New

Jersey, USA.

Zin, A.M. (1993), ZFDSS: A Formal Development Support System based on the Liberal

Approach, Ph.D Thesis, University of Nottingham, UK.

Zin, A.M. and Foxley, E. (1991) “Automatic Program Quality Assessment System,” In

Proceedings of the IFIP Conference on Software Quality, S.P. University,

Vidyanagar, India.

Zultner, R.E. (1991), “Quality Function Deployment (QFD) for Software: Structured

Requirements Exploration”. Total Quality management for Software, 297 - 319.

Zultner, R.E. (1993), ‘TQM for technical Teams”. Communications of the ACM, 36, 10,

7 9 -9 1 .

290

Appendix I: LL(A:) Grammar for the Z Notation

This appendix contains the re-written LL(fc) grammar for the Z notation used in the

implementation of the TranZit Analyser Subsystem (TAS). It is based on the grammar

originally devised by Spivey (1992). The re-written LL(fc) grammar removes direct-left

recursion from Spivey’s original grammar and ensures that the set of first symbols in

each rule is pairwise disjoint. The grammar contains meta-symbols as defined in Table 7.

Table 7: Table of Meta-Symbols for the LL(£) Grammar

Newline symbols (NL) are not treated as white-space characters in the Z grammar.

Newline symbols may only occur where specified in the grammar, or surrounding the

symbols defined in Table 8:

I • = = = : : = = e a v =><=> x \ t

Spaces are not considered significant, except where they serve to separate one symbol

from another. Non-terminal symbols are identified as beginning with an upper-case

character in italics; all terminal symbols are in bold lower case.

Terminal Symbols are defined in Table 9.

Grammar Meta-Symbols Meanin

[X]
(X)
{Xj

Symbol X is optional
factoring of Symbol X
zero or more occurrences of symbol X (iteration)

X . ..X

One or more instances of Symbol X, separated by
commas (iteration)
One or more instances of Symbol X, with no
separators (iteration)___________________________

Table 8: Symbols Which Can Be Surrounded by NL Characters

291

Specification ::= Paragraph NL ... NL Paragraph

Paragraph ::= [1dent, . . . , 1dent]
I Axiomatic-Box
I Schema-Box
I Generic-Box
I Schema-Name [Gen-Formals] = Schema-Exp
I Ident (::= Ident | . . . | I dent

I In-Gen Ident == Expression
I [Gen-Formals] == Expression
)

I {Op-Name) [Gen-Formals] == Expression
I Pre-Gen Ident == Expression
I Predicate

Axiomatic-Box ::=
Decl-Part [

Axiom-Part]

Schema-Box ::= Schemn-Namp [Gpn-Fnrmnls]

Decl-Part [

Axiom-Part]

Generic-Box ::= — Schemn-Name [G en-Fnrm ah] --------------------------------

Decl-Part [

Axiom-Part]

292

Decl-Part ::= Basic-Decl Sep ... Sep Basic-Decl

Axiom-Part ::= Predicate Sep ... Sep Predicate

Sep ::= ; INL

Schema-Exp ::= V Schema-Text • Schema-Exp
1 3 Schema-Text • Schema-Exp
1 Schema-Exp-1

Schema-Exp-1

[Sc/zema-Tejtf]
1 Schema-Ref
1 -«Schema-Exp-1
1 pre Schema-Exp-1
1 {Schema-Exp)

f t
(aIvI=*I<=>IM|) Schema-Exp-1

i \ (Decl-Name, . . . , Decl-Name)

Schema-text ::= Declaration [I Predicate]

Schema-Ref ::= Schema-Name Decoration [Gen-Actuals]
[Renaming]

Renaming ::= [Decl-Name / Decl-Name ,...,
Decl-Name / Decl-Name\

293

Declaration ::= Basic-Decl; ... ; Basic-Decl

Basic-Decl Ident, ... , : Expression
i Schema-Ref
i Op-Name , . . . , Op-Name : Expression

Predicate V Schema-Text • Predicate
1 3 Schema-Text • Predicate
1 let Let-Def;. . . ; Let-Def • Predicate
1 Predicate-1

Predicate-1 ::=
(

Pre-Rel Expression
I pre Schema-Ref
I true
I false
I -i Predicate-1
I {Expression Rel Expression R e l ...

Rel Expression)
I {Predicate)
I Expression Rel Expression R e l ...

Rel Expression

)
[(

(a I v I = > I <=>) Predicate-1
)]

Rel ::= =1 e 1 In-Rel Decoration

Let-Def ::= Var-Name == Expression

294

Expression-0 ::= X Schema-Text • Expression
1 Ji Schema-Text [• Expression]
1 let Let-Def \ L e t - D e f • Expression
1 Expression

Expression ::= Expression-1 { X Expression-1 }
[In-Gen Decoration Expression]

1 if Predicate then Expression else Expression

Expression-1 ::= (
Pre-Gen Decoration Expression-3

I (P I U I O) Expression-3
I - Decoration Expression-3
I Expression-3 ({Expression-3}

I Post-Fun Decoration
I ^Expression-0 D

) [In-Fun Decoration Expression-1]

Expression-3 ::= (
Word Decoration [Gen-Actuals]

I Schema-Ref [([Ident / Ident]
I [Gen-Actuals]
)]

I String
I ((Op-Name

I X Schema-Text • Expression
I \L Schema-Text [• Expression]
I Expression

))
I Number
I { [(

Schema-Text [• Expression]
I Expression { , Expression]

)] }

I ([Expression { , Expression]])
I 0 Schema-Name Decoration [Renaming]
I I [Expression { , Expression]] J

) [. Var-Name]

295

Ident ::= Word Decoration

Decl-Name ::= Op-Name I Ident

Var-Name Ident 1 (Op-Name)

Op-Name •• _ In-Sym Decoration _ 1 Pre-Sym Decoration _
1 _ Post-Sym Decoration 1 _ 0_ D Decoration

1 - Decoration

In-Sym In-Gen 1 In-Fun 1 In-Rel

Rel = 1 e 1 In-Rel

Pre-Sym Pre-Gen \ Pre-Rel

Post-Sym Post-Fun

Decoration [Stroke, , Stroke]

Gen-Formals [Ident, . . . , Ident]

Gen-Actuals [Expression , . . . , Expression]

String “ [char... char] “

296

Terminal Symbol Sets_________________Symbols
Word Undecorated name or special symbol
Char Any character
Stroke Single decoration ‘ , ? ,!
Schema-Name Word used as a schema name
In-Fun Priority 1:

Priority 2:..
Priority 3: + - u \ ~ i±J

Priority 4: * div mod n \ 9 0
Priority 5: © #
Priority 6: > x <

Post-Fun * - +

In-Rel £ * c c < > prefix suffix in partition <>

Pre-Rel disjoint
In-Gen — > >-+> >—> ̂ >—» <—>

Pre-Gen Id F seq iseq bag
Number (0 - 9/

Table 9: Table of Terminal Symbols for LL(k) Grammar

297

Appendix II: Context-Free Grammar of the ZAL Language
This appendix contains the CFG of the ZAL Language, as derived for the purposes of

transforming a Z notation specification to the ZAL language. The grammar is described

using meta-symbols as defined in Table 10.

Spaces are not considered significant, except where they serve to separate one symbol

from another. Non-terminal symbols are identified as beginning with an upper-case

character in Italics. All terminal symbols are in bold lower case.

In common with Spivey’s (1992) nomenclature, each production for which a binding

power is relevant is marked with either an upper case ‘L’ or ‘R’ indicating association to

the left or right respectively. Unary symbols are marked with a ‘U \ To make explicit the

mapping between ZAL functions and Spivey’s original organisation of the mathematical

toolkit, symbolic group names have been retained from Spivey’s original grammar.

The set of terminal symbols for this grammar is shown in Table 11.

Grammar Meta-Symbols Meanin:

[X]
(X)
{Xj

Symbol X is optional
factoring of Symbol X
zero or more occurrences of symbol X (iteration)

X . . .X

One or more instances of Symbol X, separated by
commas (iteration)
One or more instances of Symbol X, separated by
spaces (iteration)______________________________

Table 10: Table of Meta-Symbols for the ZAL Grammar

298

Transformation ::= [Make-Declaration] Paragraph NL ... NL Paragraph

Paragraph ::= Schema-box
1 Shortform-Schema

Schema-Box ::= (SCHEMA Schema-Name Decl-Part
(Shows) : PREDICATE Axiom-Part)

Shortform-Schema ::= (SCHEMA Schema-Name)

D eel-Part ::= [Included-Schemas] [Input-vars] [Output-vars]

Included-Schemas ::= :INCLUDE Schema-Name
1 :INCLUDE (Schema-Name... Schema-Name)

Input-vars ::= :? I dent
1 :? (Ident... Ident)

Output-vars ::= :! Ident
1 :! (Ident... Ident)

Axiom-Part ::= t
1 Predicate
1 (and Predicate ... Predicate)

Predicate ::= (forall Generator Predicate)
1 (exists Generator Predicate)
1 Predicate-1

299

Generator ::= Ident Expression Generator

Binary-Relation ::= (Rel Expression Expression)
I (Rel Expression Binary-Relation)

Predicate-1 *
(disjoint Expression)

1 (disjoint-dis Expression)
1 (not Predicate-1) U
1 Binary-Relation
1 (and Predicate-1 Predicate-1) L
1 (or Predicate-1 Predicate-1) L
1 (imply Predicate-1 Predicate-1) R

Rel ::= eqzl mem I In-Rel

Expression ::= Expression-1
1 (if Predicate Expression Expression)

Expression-1 ::= {In-Gen Expression-1 Expression-1) R
1 (card Expression-4)
1 (Pre-Gen Expression-4)
1 Expression-3
1 (rel-image Expression-4 Expression)
1 {In-Fun Expression-1 Expression-1) L
1 # (Expression-1 Expression 1)

Expression-3 ::= Expression-3 Expression 4
1 Expression-4
1 (applyz Func-Name Var-name)

Renaming ::= (schema-rename Schema-Name Renames)

Renames ::= Renames I ident ident

300

Expression-4 ::=
1
1
1
1
1
1

Var-Name
‘ Literal
Number
Set-Exp
(execute Schema-Name [renaming])
(inverse Expression-4)
< [Expression ... Expression] >

Set-Exp ::=
1

{ Expression... Expression }
(mksi GenVars Generator ‘Expression)

Decl-Name ::= Ident

Ident ::= Word

Pre-Sym ::= Pre-Gen 1 Pre-Rel

In-Sym ::= In-Gen 1 In-Fun 1 In-Rel

Var-Name ::= Ident

GenVars ::= ‘Ident GenVars

301

Terminal Symbol Sets_________________Symbols
Word Undecorated identifier name
Char Any character
Func-Name Word used as a function name
Schema-Name Word used as a schema name
Literal Word used as a literal name introduced

by Free Type definition
In-Fun Priority 1: mks

Priority 2: + - unionz setsub appendz
Priority 3: * floor mod inter rel-compose
Priority 4: override
Priority 5: domsub domres ransub ranres

In-Rel Subset psubset not-mem neqz \< \> \<=
\>=

Pre-Rel disjoint
In-Gen makemap
Pre-Gen Powerset intersect-dis union-dis
Number f0 .. 9/

Table 11: Table of Terminal Symbols for the ZAL Grammar

302

Appendix III: A Review of Current Requirements Engineering Toolsets

As part of this project, it is instructive to review other well-documented toolsets

currently available, which address similar problems in requirements engineering to those

addressed by the REALiZE toolset. The current state-of-the-art is summarised in Table

12 below.

This table gives general details of other tools available that have been documented, and

identifies their associated capabilities. In addition, Table 13 defines the corresponding

capabilities of the REALiZe toolset, for the purposes of comparison with the tools

described in Table 12.

303

Tool
Name

Application Language
Basis

Language
support
S = Syntax

Check

G = Graphical

Language

Support

P = Proof

Support

R =

Refinement

Support

T = Type

Check

C = Test Case

Generation

Interface
type/Host
Platform

Animation
Support/
Code
Generation

Contact

Atelier B The B method is

used to develop

critical software

components as

well as to validate

critical system

specifications

B method/

Abstract

Machine

Notation

S/G/P/RfT Sun Sparc

station running

SunOS 4.1.x or

Solaris 2.x

HP 9000 station

running HP-UX

9.x PC running

Linux 2.x

Yes atelierb.ai

x@steria.f

r

B-Toolkit These integrated

tools support

software

development

ranging from

specification,

through design and

coding to

maintenance

Abstract

Machine

Notation

(AMN)

S/G/P/T/R IBM/RS6000

running AIX

Sun Sparc

running SunOS

4.1.x. Solaris

5.x Dec Alpha

running OSF1

Silicon Graphics

running IRIX

PC running

Linux

Yes info@b-

core.com

CADiZ Analysis of and

investigation of

properties of Z

specifications.

Z S/G/T/P UNIX with X

(Sun Solaris-

2.5; SGI IRIX-5;

486 Linux).

Some ian@cs.vork

.ac.uk

304

CADP

toolbox

The CADP toolbox

is dedicated to the

efficient

compilation,

simulation, formal

verification, and

testing of

descriptions written

in the ISO

language LOTOS

[ISO standard

8807].

LOTOS S/G/T/P/R Sun 3, Sun4

under SunOS

4.1.*, Sun4

under Solaris 2.*

The X-windows

system (at least

X11R5 or

Openwin)

The "Ghostview"

software

Yes Hubert.Garav

el@inria.fr

Centaur-

VDM

environm e

nt

Graphical tool for

manipulating

specifications

written in BSI

VDM-SL

VDM-SL S/G/R/C Sun SPARC,

X11 version R4.

No facon@cna

m.cnam.fr

DisCo Specification of

distributed reactive

systems.

DisCo

Language

G/P Sun SPARC,

SunOS 4.1 with

Open Windows

Yes Dk@cs.tut.fi

DST-fuzz!

DST-Z

Toolbox

A set of tools to

supply syntax

checking and type

checking. LaTeX

based pretty

printing for Z

specifications.

Z S/G//T/C HP-UX 9.0,

SunOS 4.1.x,

Solaris 2.2.

SoftBench

required

Yes hoercher@v

st.vossloh.d

e

Form aliser Formaliser is a

syntax-directed

editor and type

checker for Z

Z

ZEST

s/Gn* Windows 3.1,

Windows '95

No steonevs@l

oaica.com

ForMooz ForMooZ supports

the development of

formal

specifications

written in MooZ, an

OO extension of Z

MooZ S/G/T S pares tati on

under SunOS

with

OpenWindows

and LaTeX

No formooz@

di.ufbe.br

ICOS Specification,

simulation,

verification and

synthesis of

reactive systems.

PTL,

Symbolic

Timing

Diagrams

VHDL Code

generation

S/G/P/T UNIX and Tcl/Tk Yes Kars ten. Lue

th@ Informat

ik.Uni-

Oldenbura.

DE

305

mailto:el@inria.fr
mailto:Dk@cs.tut.fi

IFAD VDM-
SL

Toolbox

The Toolbox

includes a syntax

checker, static

semantic checker,

pretty printer

generating LaTeX

output. In addition

to this it contains a

debugger and an

interpreter which

can execute all

executable

constructs of VDM-

SL

ISO VDM-SL S/T Sun Sparc

running SunOS

4 .1.x or SunOS

5.3 (Solaris 2.3).

HP 9000/700
architecture

running HP-UX

9.Ox

Silicon Graphics

running IRIX

5.3/6.2

PC/386, 486 or

compatible

running Linux

Yes toolbox @i

fad.dk

LOTOS The LOTOS

toolbox contains a

number of tools

supporting the

specification and

implementation of

LOTOS

specifications

LOTOS S/G Sun 3, Sun 4,

SunOS 16 Mb

memory, 35 Mb

disk; Hp, HP

Unix, 16 Mb

memory, 35 Mb

disk

Code

generation in

C

vdvloedt

@ ita.nl

Mathias Helps with drafting

of a formal

specification (e.g.

in Z) as the

specification itself

can be animated

and test cases tried

out.

Z/ PROLOG S/G Any PROLOG

system

Yes R.Knott®su

rrev.ac.uk

Pet Dingo Tool provides a

mechanism to

generate a formal

system description

in ESTELLE to a

distributed

implementation

framework in C++.

Estelle S Sun SPARC,

4Mb memeory,

25Mb disk Sun

OS 4.0x, X11,

GNU C++1.xx

Yes National

Institute of

Standards

and

Technology

306

PiZA PiZA allows Z to be

used for animation

and rapid

prototyping. It also

acts as a front end

to the LaTeX

typesetting

language and other

tools such as

CADiZ, fuzz and

Z T C .

Z S/G Quintus Prolog

3.2 on UNIX is

required to

compile the tool

Yes M.A.Hewitt

@oascal.dra.

hme.eb

Proof

Power

ProofPower

supports document

preparation, syntax

checking, type

checking and

formal proof

development using

Higher Order Logic

and/or the Z

language

Z, HOL S/T/P Sun SPARC,

50Mb disk

No rda@win.i

cl.co.uk

SCR

T oolset

The toolset

supports the

creation of SCR

requirements

specs which

specify the

required, externally-

visible behaviour of

software and

systems

SCR/NRL/A7

function

tables

S/G/T Sun's SunOS

and Solaris,

HP’s UNIX,

DEC'S Alpha

UNIX

Yes labaw@it

d.nrl.naw

.mil

SpecBox Development of

formal software

specifications and

designs

VDM-SL S PC 386 or later

running MS

DOS 3.2 or

later; or

Sparcstations

running SunOs

4.1 or later

No Dkdf@ade

lard.co.uk

VDM

Through

Pictures

be able to work in

both graphical and

textual form in

capturing a formal

specification

VDM-SL S/T/G SunOS with

Software thru

Pictures

No idick@co

mlab.ox.a

c.uk

VisualiZer Tool for creating Z

specifications

using icons.

Z S/G NeXTSTEP 3.3 No c.vaoOdcs.

shef.ac.uk

Venus Venus provides an OMT Class S/T/G Sun-4 and HP- Yes toolbox® ifa

307

environment for

graphical (in terms

of the diagrams

used with OMT)

and formal (in

terms of VDM++,

an object-oriented

extension of VDM-

SL) specification of

object-oriented,

concurrent

systems

diagrams and

VDM++

9000/700 d.dk

ZOLA Zola is an

integrated support

tool for the Z

specification

language, providing

automated

assistance for all

stages of the

specification

construction,

proving and

maintenance

process

Z S/G/T/P Zola requires a

Sun workstation

No fms@ist.c

o.uk

Z Browser Besides displaying

Z paragraphs as

they appear in

printed form, Z

Browser has rich

help for the entire Z

Notation which

covers both the

ZRM and ZRM 2nd

Edition

Z S/G Windows

3.1x, 95, NT

No lmikusia

@ingr.co

m

Table 12: Review of Requirements Engineering Toolsets

In order to make a comparison with the tools listed above, it is necessary to express the

capabilities of the REALiZE toolset in similar terms, as shown in Table 13:

308

Tool Name Application Language
Basis

Language
support
S = Syntax
Check
G =
Graphical
Language
Support
P = Proof
Support
R =
Refinement
Support
T= Type
Check
C - Test
Case
Generation

Interface
type/Host
Platform

Animation
Support/
Code
Generation

Contact

REALIZE Integrated

toolset

comprising

TranZitZ editor,

Checker and

Transformation

Engine, ZAL

Animation

Environment

and ViZ Object-

oriented

visualisation

engine

Z SIGfT Windows

3.1/95/98 and

NT.

Allegro

Common LISP

environment

required by

ZAL

Yes i.c.morrev@

shu.ac.uk

Table 13: REALiZE Toolset Capabilities

309

Appendix IV: TranZit User Questionnaire Results

This appendix contains details o f the TranZit User questionnaire and associated results.

The questionnaire is divided into four sections dealing with population statistics,

requirements engineering, the Z notation and TranZit respectively. The questions are

colour coded to the right o f each table, with the associated results shown in the bar

graph. The height o f the bar graph indicates the number o f respondents as labelled on the

^-axis.

Appendix TV-1: Population Statistics

This section presents two tables o f data associated with the types o f people who

answered the questionnaire.

□ Proficiency with
Mathematics

■ Understanding
of Software
Engineering

□ Experience of
writing
specifications

Table 14: Questionnaire Results: User Experience I

310

□ Experience of
Microsoft
Windows
Applications

■ Experience of
Formal
Methods

□ Experience in
Computer
Programming

Table 15: Questionnaire Results: User Experience II

Appendix IV-II: About Requirements Engineering

This section presents three tables o f data associated with opinions on requirements

engineering.

311

35
30
25
20
15
10
5
0

©

o> o>

■ H

Q

□ I believe that Requirements
Engineering is a key process
in software systems
development

■ I believe that producing a
specification of requirements
is a difficult process

□ I believe that producing a
concise, complete and
unambiguous specification of
requirements is a pre-requisite
to the design process

□ I would expect to modify the
system requirements as
development progresses

Table 16: Questionnaire Results: Opinions on Requirements Engineering I

Agree Disagree Don't Know

□ i believe that
specifications should
be captured in a
formal language,
rather than natural

■ I believe that
prototyping is
important

□ I would expect to
discard my prototype
once the specification
process is complete

Table 17: Questionnaire Results: Opinions on Requirements Engineering n

312

Don't Know

□ I believe that the use of
formal specification, would
reduce the cost of systems
development

■ I believe that more people
would use formal
specification techniques if
there where computer-
based tools to support

□ I believe that writing formal
specifications is easy

Table 18: Questionnaire Results: Opinions on Requirements Engineering III

Appendix IV-III: About the Z Notation

This section presents three tables of data associated with opinions on the Z notation.

□ I believe that Z is flexible
enough to caputure a wide
range of problems

■ The Z notation is too
mathematical to
understand

□ Specifications written in Z
are easy to modify

Agree Disagree Don't Know

Table 19: Questionnaire Results: Opinions on the Z Notation I

313

□ I fully understand the
syntax of Z

■ I fully understand the Type
system of Z

□ I think specifications
written in Z are easy to
read and understand

Agree Disagree Don't Know

Table 20: Questionnaire Results: Opinions on the Z Notation II

Don't Know

□ I could easily convery a Z
specification to a computer
program

■ I am confident that the Z
specification I write
capture exactly what the
system is required to do

□ I can easily spot errors in
my Z specification

Table 21: Questionnaire Results: Opinions on the Z Notation in

314

Appendix IV-IV: About TranZit

This section presents four tables o f data associated with opinions on the TranZit Tool.

□ The TranZit User Interface
is easy to use

■ TranZit presents
information in a well-
structured and logical way

□ TranZit provides all the
features needed to capture
specifications efficiently

Agree Disagree Don't Know

Table 22: Questionnaire Results: Opinions on the TranZit Tool I

25n

5 ' -

Agree Disagree Don't Know

□ TranZit Syntax Analyser
provides enough
information to resolve
syntax errors

■ TranZit Type checker
provides enough
information to resolve type
errors

□ Using TranZit increases
understanding of Z

Table 23: Questionnaire Results: Opinions on the TranZit Tool II

315

□ TranZit is easy to Use

■ TranZit and ZAL work well
together

Agree Disagree Don't Know

Table 24: Questionnaire Results: Opinions on the TranZit Tool III

s (o <o

(Q CO

□ What is the most useful feature of
TranZit

■ What is the most badly implemented
feature of TranZit

Table 25: Questionnaire Results: Opinions on the TranZit Tool IV

316

Appendix V: Publication History

Table 26 contains details of the history of publications associated with this project.

Morrey [93a] Morrey, I., Siddiqi, J. I. A., Hibberd, R. and Buckberry, G. “Use of Formal
Specification Tools to teach Formal Methods,” Fifteenth International Conference
"Information Technology Interfaces", TTV 93, Pula, Croatia, June 1993.

Morrey [93b] Morrey, I., Siddiqi, J. I. A., Hibberd, R. and Buckberry, G. “Use of a specification
construction and animation tools to teach formal methods, ” IEEE Compsac 93, The
Seventeenth Annual International Computer Software and Applications Conference,
Phoenix, Arizona, USA, November 1993.

Siddiqi [93] Siddiqi, J. I. A., Morrey, I., Buckberry, G. and Hibberd, R. “Towards Case Tools for
Proto-typing Z specifications, ” IEEE. Case 93, Sixth International Workshop on
CASE, National University of Singapore, Singapore, July 1993.

Morrey [94] Morrey, I., Siddiqi, J. I. A., Buckberry, G. and Hibberd, R. “Systematic Development
of Quality Production Prototypes, ” IEEE International Conference on Requirements
Engineering, Colorado, USA, April 1994.

Siddiqi [95] Siddiqi, J. I. A. and Morrey, I. “A Toolset to support a software engineering strategy
for AI development,” IEEE International conference on Tools with AI, Washington,
USA, November 1995.

Siddiqi [96] Siddiqi, J. I. A., Morrey, I. and Hibberd, R. “A Toolset to Support the Formal
Specification of AI Systems,” 1996 Florida AI Research Symposium, Florida, USA.
May 1996.

Siddiqi [97] Siddiqi, J. I. A., Morrey, I., Ozcan, M. and Roast, C. “Towards Quality Requirements
via Animated Formal Specifications,” Annals o f Software Engineering , 5(1997), 131 -
155.

Ozcan [98] Ozcan, M., Parry, P., Morrey, I. and Siddiqi, J. I. A. “Requirements Validation Based
on the Visualisation of Executable Formal Specifications,” Proc. 22nd Annual
International Computer Software and Application Conference (COMPSAC 98),
Vienna, Austria, 1998, 381-386.

Morrey [98] Morrey, I., Siddiqi, J. I. A., Hibberd, R. and Buckberry, G. “A Toolset to Support the
Construction and Animation of Formal Specifications,” Journal o f Systems and
Software, 41 (1998), 147 - 160.

Siddiqi [98] Siddiqi, J. I. A., Morrey, I., Hibberd, R. and Buckberry, G. “Understanding and
Exploring Formal Specifications,” Annals o f Software Engineering 6 (1998), 411 -
432

Table 26: Table of Publications Associated with this Project

For further details, visit the project web page at http://kingfisher.cms.shu.ac.uk/~rea-
engA

317

http://kingfisher.cms.shu.ac.uk/~rea-

Appendix VI: Glossary of Abbreviations

4GL Fourth Generation Language
ADT Abstract Data Type
ATM Automated Teller Machine
BNF Backus-Normal Form
CASE Computer-Aided Software Engineering
CFG Context-Free Grammar
CFL Context-Free Language
CICS Customer Information and Control System
CSP Communicating Sequential Processes
DDE Dynamic Data Exchange
ETB Expression Type Builder
FSA Finite State Automata
GUI Graphical User Interface
HOL Higher Order Logic
HOQ House of Quality
IEEE Institute of Electrical and Electronic Engineers
IT Information Technology
JSD Jackson Structured Design
MDI Multiple Document Interface
MS Microsoft Corporation
NASA North American Space Agency
NFR Non-Functional Requirement
NFSA Non-deterministic Finite State Automata
NPDA Non-deterministic Pushdown Automata
OMT Object Modelling Technology
0 0 Object Oriented
OOA Object Oriented Analysis
OOD Object Oriented Design
PABX Private Automatic Branch Exchange
PC Personal Computer
PD Participatory Design
QFD Quality Function Deployment
REALiZE Requirements Engineering by Animating LISP incorporating Z

Extensions
SA Systems Analysis
SEI Software Engineering Institute
SHU Sheffield Hallam University
SSM Soft Systems Methodology
TAS TranZit Analyser Subsystem
TDSR Top-Down Stepwise Refinement
TPM Type Pattern Matcher
TTE TranZit Transformation Engine
UCD User-Centred Design
VDM Vienna Development Methodology

318

ViZ Visualisation in Z
WYSIWSG What You See Is What You Get
Z The Z Notation
ZAL Z Animation in LISP
ZIF Z Interchange Format

319

