5,938 research outputs found

    Causality in the association between p300 and alpha event-related desynchronization

    Get PDF
    Recent findings indicated that both P300 and alpha event-related desynchronization (alpha-ERD) were associated, and similarly involved in cognitive brain functioning, e.g., attention allocation and memory updating. However, an explicit causal influence between the neural generators of P300 and alpha-ERD has not yet been investigated. In the present study, using an oddball task paradigm, we assessed the task effect (target vs. non-target) on P300 and alpha-ERD elicited by stimuli of four sensory modalities, i.e., audition, vision, somatosensory, and pain, estimated their respective neural generators, and investigated the information flow among their neural generators using time-varying effective connectivity in the target condition. Across sensory modalities, the scalp topographies of P300 and alpha-ERD were similar and respectively maximal at parietal and occipital regions in the target condition. Source analysis revealed that P300 and alpha-ERD were mainly generated from posterior cingulate cortex and occipital lobe respectively. As revealed by time-varying effective connectivity, the cortical information was consistently flowed from alpha-ERD sources to P300 sources in the target condition for all four sensory modalities. All these findings showed that P300 in the target condition is modulated by the changes of alpha-ERD, which would be useful to explore neural mechanism of cognitive information processing in the human brain.published_or_final_versio

    Complex networks: new trends for the analysis of brain connectivity

    Full text link
    Today, the human brain can be studied as a whole. Electroencephalography, magnetoencephalography, or functional magnetic resonance imaging techniques provide functional connectivity patterns between different brain areas, and during different pathological and cognitive neuro-dynamical states. In this Tutorial we review novel complex networks approaches to unveil how brain networks can efficiently manage local processing and global integration for the transfer of information, while being at the same time capable of adapting to satisfy changing neural demands.Comment: Tutorial paper to appear in the Int. J. Bif. Chao

    Quantitative assessment of cerebral connectivity deficiency and cognitive impairment in children with prenatal alcohol exposure

    Get PDF
    We would like to thank the patients, their parents, and technicians for their participation in this study. This research was supported by the National Natural Science Foundation (Grant No. 61601361), the Natural Science Foundation of Shaanxi Province in China (Grant No. 2017JM6013), the Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing (Contract No. SKL2017CP07), the Xi’an University of Technology, and the National Institutes of Health (NIH) grants (J. Stephen and T. Zhang—Grant Nos. P20AA017068, NCRR P20RR021938, NIGMS P20GM103472, and 1P50AA022534).Peer reviewedPostprintPostprintPublisher PD

    Intra- and inter-hemispheric effective connectivity in the human somatosensory cortex during pressure stimulation

    Get PDF
    Background: Slow-adapting type I (SA-I) afferents deliver sensory signals to the somatosensory cortex during low-frequency (or static) mechanical stimulation. It has been reported that the somatosensory projection from SA-I afferents is effective and reliable for object grasping and manipulation. Despite a large number of neuroimaging studies on cortical activation responding to tactile stimuli mediated by SA-I afferents, how sensory information of such tactile stimuli flows over the somatosensory cortex remains poorly understood. In this study, we investigated tactile information processing of pressure stimuli between the primary (SI) and secondary (SII) somatosensory cortices by measuring effective connectivity using dynamic causal modeling (DCM). We applied pressure stimuli for 3 s to the right index fingertip of healthy participants and acquired functional magnetic resonance imaging (fMRI) data using a 3T MRI system. Results: DCM analysis revealed intra-hemispheric effective connectivity between the contralateral SI (cSI) and SII (cSII) characterized by both parallel (signal inputs to both cSI and cSII) and serial (signal transmission from cSI to cSII) pathways during pressure stimulation. DCM analysis also revealed inter-hemispheric effective connectivity among cSI, cSII, and the ipsilateral SII (iSII) characterized by serial (from cSI to cSII) and SII-level (from cSII to iSII) pathways during pressure stimulation. Conclusions: Our results support a hierarchical somatosensory network that underlies processing of low-frequency tactile information. The network consists of parallel inputs to both cSI and cSII (intra-hemispheric), followed by serial pathways from cSI to cSII (intra-hemispheric) and from cSII to iSII (inter-hemispheric). Importantly, our results suggest that both serial and parallel processing take place in tactile information processing of static mechanical stimuli as well as highlighting the contribution of callosal transfer to bilateral neuronal interactions in SII.open1

    Dynamic large-scale network synchronization from perception to action

    Get PDF
    Sensory-guided actions entail the processing of sensory information, generation of perceptual decisions, and the generation of appropriate actions. Neuronal activity underlying these processes is distributed into sensory, fronto-parietal, and motor brain areas, respectively. How the neuronal processing is coordinated across these brain areas to support functions from perception to action remains unknown. We investigated whether phase synchronization in large-scale networks coordinate these processes. We recorded human cortical activity with magnetoencephalography (MEG) during a task in which weak somatosensory stimuli remained unperceived or were perceived. We then assessed dynamic evolution of phase synchronization in large-scale networks from source-reconstructed MEG data by using advanced analysis approaches combined with graph theory. Here we show that perceiving and reporting of weak somatosensory stimuli is correlated with sustained strengthening of large-scale synchrony concurrently in delta/theta (3-7 Hz) and gamma (40-60 Hz) frequency bands. In a data-driven network localization, we found this synchronization to dynamically connect the task-relevant, that is, the fronto-parietal, sensory, and motor systems. The strength and temporal pattern of interareal synchronization were also correlated with the response times. These data thus show that key brain areas underlying perception, decision-making, and actions are transiently connected by large-scale dynamic phase synchronization in the delta/theta and gamma bands.Peer reviewe
    corecore