12,679 research outputs found

    A Decision-Theoretic Approach to Resource Allocation in Wireless Multimedia Networks

    Full text link
    The allocation of scarce spectral resources to support as many user applications as possible while maintaining reasonable quality of service is a fundamental problem in wireless communication. We argue that the problem is best formulated in terms of decision theory. We propose a scheme that takes decision-theoretic concerns (like preferences) into account and discuss the difficulties and subtleties involved in applying standard techniques from the theory of Markov Decision Processes (MDPs) in constructing an algorithm that is decision-theoretically optimal. As an example of the proposed framework, we construct such an algorithm under some simplifying assumptions. Additionally, we present analysis and simulation results that show that our algorithm meets its design goals. Finally, we investigate how far from optimal one well-known heuristic is. The main contribution of our results is in providing insight and guidance for the design of near-optimal admission-control policies.Comment: To appear, Dial M for Mobility, 200

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Measuring Welfare Loss Caused by Air Pollution in Europe: A CGE Analysis

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).To evaluate the socio-economic impacts of air pollution, we develop an integrated approach based on computable general equilibrium (CGE). Applying our approach to Europe shows that even there, where air quality is relatively high compared with other parts of the world, health-related damages caused by air pollution are substantial. We estimate that in 2005, air pollution in Europe caused a consumption loss of around 220 billion Euro (year 2000 prices, around 3 percent of consumption level) and a social welfare loss of around 370 billion Euro, measured as the sum of lost consumption and leisure (around 2 percent of welfare level). In addition, we estimated that a set of 2020-targeting air quality improvement policy scenarios, which are proposed in the 2005 CAFE program, would bring 18 European countries as a whole a welfare gain of 37 to 49 billion Euro (year 2000 prices) in year 2020 alone.This study received support from the MIT Joint Program on the Science and Policy of Global Change, which is funded by a consortium of government, industry and foundation sponsors

    Decomposition of the efficiency of the Chinese state-owned commercial banks at the provincial level

    Get PDF
    This study adopts a bank production function approach to the measurement of banking efficiency at the provincial level in the Chinese state-owned commercial banking sector from 1998 to 2003. Applying Data Envelopment Analysis and efficiency decomposition analysis, this paper has revealed a significant level of pure technical input inefficiency and, to a lesser extent, scale inefficiency across the provincial branches of all the banking groups. The study has also uncovered the extent of inefficiency in individual banking inputs and provincial branches. Finally, the provincial-level efficiency is further decomposed into within-banking-group and between-banking-group effects

    Enabling Adaptive Grid Scheduling and Resource Management

    Get PDF
    Wider adoption of the Grid concept has led to an increasing amount of federated computational, storage and visualisation resources being available to scientists and researchers. Distributed and heterogeneous nature of these resources renders most of the legacy cluster monitoring and management approaches inappropriate, and poses new challenges in workflow scheduling on such systems. Effective resource utilisation monitoring and highly granular yet adaptive measurements are prerequisites for a more efficient Grid scheduler. We present a suite of measurement applications able to monitor per-process resource utilisation, and a customisable tool for emulating observed utilisation models. We also outline our future work on a predictive and probabilistic Grid scheduler. The research is undertaken as part of UK e-Science EPSRC sponsored project SO-GRM (Self-Organising Grid Resource Management) in cooperation with BT

    AN EMPIRICAL SURVEY OF FRONTIER EFFICIENCY MEASUREMENT TECHNIQUES IN HEALTHCARE SERVICES

    Get PDF
    Healthcare institutions worldwide are increasingly the subject of analyses aimed at defining, measuring and improving organisational efficiency. However, despite the importance of efficiency measurement in healthcare services, it is only relatively recently that the more advanced econometric and mathematical frontier techniques have been applied to hospitals, nursing homes, health management organisations and physician practices. This paper attempts to provide a synoptic survey of the comparatively few empirical analyses of frontier efficiency measurement in healthcare services. Both the measurement of inefficiency in healthcare services and the determinants of healthcare efficiency are examined.data envelopment analysis; stochastic frontiers; technical, allocative and productive efficiency
    • 

    corecore