1,445 research outputs found

    A case study for NoC based homogeneous MPSoC architectures

    Get PDF
    The many-core design paradigm requires flexible and modular hardware and software components to provide the required scalability to next-generation on-chip multiprocessor architectures. A multidisciplinary approach is necessary to consider all the interactions between the different components of the design. In this paper, a complete design methodology that tackles at once the aspects of system level modeling, hardware architecture, and programming model has been successfully used for the implementation of a multiprocessor network-on-chip (NoC)-based system, the NoCRay graphic accelerator. The design, based on 16 processors, after prototyping with field-programmable gate array (FPGA), has been laid out in 90-nm technology. Post-layout results show very low power, area, as well as 500 MHz of clock frequency. Results show that an array of small and simple processors outperform a single high-end general purpose processo

    An Implementation of a Predictable Cache-coherent Multi-core System

    Get PDF
    Multi-core platforms have entered the realm of the embedded systems to meet the ever growing performance requirements of the real-time embedded applications. Real-time applications leverage the hardware parallelism from multi-cores while keeping the hardware cost minimum. However, when the real-time tasks are deployed on the multi-core platforms, they experience interference due to sharing of hardware resources such as shared bus, last level cache, and main memory. As a result, it complicates computing the worst-case execution time of the real-time tasks. In this thesis, I present a hardware prototype that implements a predictable cache-coherent real-time multi-core system. The designed hardware follows the design guidelines outlined in the predictable cache coherence protocol. The hardware uses a latency insensitive interfaces to integrate the multi-core components such as the processor, cache controller, and interconnecting bus. The prototyped multi-core hardware is synthesized and implemented in a low-cost and high-performing FPGA board. The hardware is validated and verified on a tethered system that enables the design to run multi-threaded pthread applications

    The potential of programmable logic in the middle: cache bleaching

    Full text link
    Consolidating hard real-time systems onto modern multi-core Systems-on-Chip (SoC) is an open challenge. The extensive sharing of hardware resources at the memory hierarchy raises important unpredictability concerns. The problem is exacerbated as more computationally demanding workload is expected to be handled with real-time guarantees in next-generation Cyber-Physical Systems (CPS). A large body of works has approached the problem by proposing novel hardware re-designs, and by proposing software-only solutions to mitigate performance interference. Strong from the observation that unpredictability arises from a lack of fine-grained control over the behavior of shared hardware components, we outline a promising new resource management approach. We demonstrate that it is possible to introduce Programmable Logic In-the-Middle (PLIM) between a traditional multi-core processor and main memory. This provides the unique capability of manipulating individual memory transactions. We propose a proof-of-concept system implementation of PLIM modules on a commercial multi-core SoC. The PLIM approach is then leveraged to solve long-standing issues with cache coloring. Thanks to PLIM, colored sparse addresses can be re-compacted in main memory. This is the base principle behind the technique we call Cache Bleaching. We evaluate our design on real applications and propose hypervisor-level adaptations to showcase the potential of the PLIM approach.Accepted manuscrip

    Towards a Time-predictable Dual-Issue Microprocessor: The Patmos Approach

    Get PDF
    Current processors are optimized for average case performance, often leading to a high worst-case execution time (WCET). Many architectural features that increase the average case performance are hard to be modeled for the WCET analysis. In this paper we present Patmos, a processor optimized for low WCET bounds rather than high average case performance. Patmos is a dual-issue, statically scheduled RISC processor. The instruction cache is organized as a method cache and the data cache is organized as a split cache in order to simplify the cache WCET analysis. To fill the dual-issue pipeline with enough useful instructions, Patmos relies on a customized compiler. The compiler also plays a central role in optimizing the application for the WCET instead of average case performance

    Microprocessor and FPGA interfaces for in-system co-debugging in field programmable hybrid systems

    Get PDF
    Modern trends in technology require efficient control and processing platforms based on connected software-hardware subsystems. Due to their complexity and size, algorithms implemented on these platforms are difficult to test and verify. When these types of solution are being designed, it is necessary to provide information of the internal values of registers and memories of both the software and hardware during the execution of the complete system. The final architecture of the targeted design and its debugging capabilities strongly depends on how the hybrid system is connected and clocked. This article discusses different architectural strategies that have been adopted for a hybrid hardware-software platform, built ready for debugging, and that uses components that can be easily found with a few special features. All the solutions have been implemented and evaluated using the UNSHADES-2 framework

    Design and Implementation of Real-Time Transactional Memory

    Get PDF
    Abstract—Transactional memory is a promising, optimistic synchronization mechanism for chip-multiprocessor systems. The simplicity of atomic sections, instead of using explicit locks, is also appealing for real-time systems. In this paper an implementation of real-time transactional memory (RTTM) in the context of a real-time Java chip-multiprocessor (CMP) is presented. To provide a predictable and analyzable solution of transactional memory, the transaction buffer is organized fully associative. Evaluation in an FPGA shows that an associativity of up to 64-way is possible without degrading the overall system performance. The paper presents synthesis results for different RTTM configurations and different number of processor cores in the CMP system. A CMP system with up to 8 processor cores with RTTM support is feasible in an Altera Cyclone-II FPGA

    Analog and Digital Signal Processing Strategies for a Six-Port based Direction of Arrival Detector

    Get PDF
    This thesis presents technologies and prototypes measurements to acquire and to process the data for a DOA system based on a Phase-Measurement performed by a Six-Portope
    • 

    corecore