5,854 research outputs found

    Data Aggregation and Packet Bundling of Uplink Small Packets for Monitoring Applications in LTE

    Full text link
    In cellular massive Machine-Type Communications (MTC), a device can transmit directly to the base station (BS) or through an aggregator (intermediate node). While direct device-BS communication has recently been in the focus of 5G/3GPP research and standardization efforts, the use of aggregators remains a less explored topic. In this paper we analyze the deployment scenarios in which aggregators can perform cellular access on behalf of multiple MTC devices. We study the effect of packet bundling at the aggregator, which alleviates overhead and resource waste when sending small packets. The aggregators give rise to a tradeoff between access congestion and resource starvation and we show that packet bundling can minimize resource starvation, especially for smaller numbers of aggregators. Under the limitations of the considered model, we investigate the optimal settings of the network parameters, in terms of number of aggregators and packet-bundle size. Our results show that, in general, data aggregation can benefit the uplink massive MTC in LTE, by reducing the signalling overhead.Comment: to appear in IEEE Networ

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    On the Fundamental Limits of Random Non-orthogonal Multiple Access in Cellular Massive IoT

    Get PDF
    Machine-to-machine (M2M) constitutes the communication paradigm at the basis of Internet of Things (IoT) vision. M2M solutions allow billions of multi-role devices to communicate with each other or with the underlying data transport infrastructure without, or with minimal, human intervention. Current solutions for wireless transmissions originally designed for human-based applications thus require a substantial shift to cope with the capacity issues in managing a huge amount of M2M devices. In this paper, we consider the multiple access techniques as promising solutions to support a large number of devices in cellular systems with limited radio resources. We focus on non-orthogonal multiple access (NOMA) where, with the aim to increase the channel efficiency, the devices share the same radio resources for their data transmission. This has been shown to provide optimal throughput from an information theoretic point of view.We consider a realistic system model and characterise the system performance in terms of throughput and energy efficiency in a NOMA scenario with a random packet arrival model, where we also derive the stability condition for the system to guarantee the performance.Comment: To appear in IEEE JSAC Special Issue on Non-Orthogonal Multiple Access for 5G System

    From 5G to 6G: Has the Time for Modern Random Access Come?

    Get PDF
    This short paper proposes the use of modern random access for IoT applications in 6G. A short overview of recent advances in uncoordinated medium access is provided, highlighting the gains that can be achieved by leveraging smart protocol design intertwined with advanced signal processing techniques at the receiver. The authors' vision on the benefits such schemes can yield for beyond-5G systems is presented, with the aim to trigger further discussion.Comment: 2 pages, 1 figure, presented at 6G Summit, Levi, Finland, 201
    • …
    corecore