14,945 research outputs found

    A Deep-structured Conditional Random Field Model for Object Silhouette Tracking

    Full text link
    In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering.Comment: 17 page

    Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications

    Get PDF
    Three-dimensional television (3D-TV) has gained increasing popularity in the broadcasting domain, as it enables enhanced viewing experiences in comparison to conventional two-dimensional (2D) TV. However, its application has been constrained due to the lack of essential contents, i.e., stereoscopic videos. To alleviate such content shortage, an economical and practical solution is to reuse the huge media resources that are available in monoscopic 2D and convert them to stereoscopic 3D. Although stereoscopic video can be generated from monoscopic sequences using depth measurements extracted from cues like focus blur, motion and size, the quality of the resulting video may be poor as such measurements are usually arbitrarily defined and appear inconsistent with the real scenes. To help solve this problem, a novel method for object-based stereoscopic video generation is proposed which features i) optical-flow based occlusion reasoning in determining depth ordinal, ii) object segmentation using improved region-growing from masks of determined depth layers, and iii) a hybrid depth estimation scheme using content-based matching (inside a small library of true stereo image pairs) and depth-ordinal based regularization. Comprehensive experiments have validated the effectiveness of our proposed 2D-to-3D conversion method in generating stereoscopic videos of consistent depth measurements for 3D-TV applications

    Video Interpolation using Optical Flow and Laplacian Smoothness

    Full text link
    Non-rigid video interpolation is a common computer vision task. In this paper we present an optical flow approach which adopts a Laplacian Cotangent Mesh constraint to enhance the local smoothness. Similar to Li et al., our approach adopts a mesh to the image with a resolution up to one vertex per pixel and uses angle constraints to ensure sensible local deformations between image pairs. The Laplacian Mesh constraints are expressed wholly inside the optical flow optimization, and can be applied in a straightforward manner to a wide range of image tracking and registration problems. We evaluate our approach by testing on several benchmark datasets, including the Middlebury and Garg et al. datasets. In addition, we show application of our method for constructing 3D Morphable Facial Models from dynamic 3D data

    Characterizing and Improving Stability in Neural Style Transfer

    Get PDF
    Recent progress in style transfer on images has focused on improving the quality of stylized images and speed of methods. However, real-time methods are highly unstable resulting in visible flickering when applied to videos. In this work we characterize the instability of these methods by examining the solution set of the style transfer objective. We show that the trace of the Gram matrix representing style is inversely related to the stability of the method. Then, we present a recurrent convolutional network for real-time video style transfer which incorporates a temporal consistency loss and overcomes the instability of prior methods. Our networks can be applied at any resolution, do not re- quire optical flow at test time, and produce high quality, temporally consistent stylized videos in real-time

    Generalized Boundaries from Multiple Image Interpretations

    Full text link
    Boundary detection is essential for a variety of computer vision tasks such as segmentation and recognition. In this paper we propose a unified formulation and a novel algorithm that are applicable to the detection of different types of boundaries, such as intensity edges, occlusion boundaries or object category specific boundaries. Our formulation leads to a simple method with state-of-the-art performance and significantly lower computational cost than existing methods. We evaluate our algorithm on different types of boundaries, from low-level boundaries extracted in natural images, to occlusion boundaries obtained using motion cues and RGB-D cameras, to boundaries from soft-segmentation. We also propose a novel method for figure/ground soft-segmentation that can be used in conjunction with our boundary detection method and improve its accuracy at almost no extra computational cost

    A Fusion Approach for Multi-Frame Optical Flow Estimation

    Full text link
    To date, top-performing optical flow estimation methods only take pairs of consecutive frames into account. While elegant and appealing, the idea of using more than two frames has not yet produced state-of-the-art results. We present a simple, yet effective fusion approach for multi-frame optical flow that benefits from longer-term temporal cues. Our method first warps the optical flow from previous frames to the current, thereby yielding multiple plausible estimates. It then fuses the complementary information carried by these estimates into a new optical flow field. At the time of writing, our method ranks first among published results in the MPI Sintel and KITTI 2015 benchmarks. Our models will be available on https://github.com/NVlabs/PWC-Net.Comment: Work accepted at IEEE Winter Conference on Applications of Computer Vision (WACV 2019
    • …
    corecore