2,721 research outputs found

    Machine Learning For In-Region Location Verification In Wireless Networks

    Full text link
    In-region location verification (IRLV) aims at verifying whether a user is inside a region of interest (ROI). In wireless networks, IRLV can exploit the features of the channel between the user and a set of trusted access points. In practice, the channel feature statistics is not available and we resort to machine learning (ML) solutions for IRLV. We first show that solutions based on either neural networks (NNs) or support vector machines (SVMs) and typical loss functions are Neyman-Pearson (N-P)-optimal at learning convergence for sufficiently complex learning machines and large training datasets . Indeed, for finite training, ML solutions are more accurate than the N-P test based on estimated channel statistics. Then, as estimating channel features outside the ROI may be difficult, we consider one-class classifiers, namely auto-encoders NNs and one-class SVMs, which however are not equivalent to the generalized likelihood ratio test (GLRT), typically replacing the N-P test in the one-class problem. Numerical results support the results in realistic wireless networks, with channel models including path-loss, shadowing, and fading

    From Averaging to Acceleration, There is Only a Step-size

    Get PDF
    We show that accelerated gradient descent, averaged gradient descent and the heavy-ball method for non-strongly-convex problems may be reformulated as constant parameter second-order difference equation algorithms, where stability of the system is equivalent to convergence at rate O(1/n 2), where n is the number of iterations. We provide a detailed analysis of the eigenvalues of the corresponding linear dynamical system , showing various oscillatory and non-oscillatory behaviors, together with a sharp stability result with explicit constants. We also consider the situation where noisy gradients are available, where we extend our general convergence result, which suggests an alternative algorithm (i.e., with different step sizes) that exhibits the good aspects of both averaging and acceleration

    Improving Feature Extraction by Replacing the Fisher Criterion by an Upper Error Bound

    Get PDF
    A lot of alternatives and constraints have been proposed in order to improve the Fisher criterion. But most of them are not linked to the error rate, the primary interest in many applications of classification. By introducing an upper bound for the error rate a criterion is developed which can improve the classification performance. --Fisher criterion,Linear discriminant analysis,Feature extraction

    A Novel Hybrid Dimensionality Reduction Method using Support Vector Machines and Independent Component Analysis

    Get PDF
    Due to the increasing demand for high dimensional data analysis from various applications such as electrocardiogram signal analysis and gene expression analysis for cancer detection, dimensionality reduction becomes a viable process to extracts essential information from data such that the high-dimensional data can be represented in a more condensed form with much lower dimensionality to both improve classification accuracy and reduce computational complexity. Conventional dimensionality reduction methods can be categorized into stand-alone and hybrid approaches. The stand-alone method utilizes a single criterion from either supervised or unsupervised perspective. On the other hand, the hybrid method integrates both criteria. Compared with a variety of stand-alone dimensionality reduction methods, the hybrid approach is promising as it takes advantage of both the supervised criterion for better classification accuracy and the unsupervised criterion for better data representation, simultaneously. However, several issues always exist that challenge the efficiency of the hybrid approach, including (1) the difficulty in finding a subspace that seamlessly integrates both criteria in a single hybrid framework, (2) the robustness of the performance regarding noisy data, and (3) nonlinear data representation capability. This dissertation presents a new hybrid dimensionality reduction method to seek projection through optimization of both structural risk (supervised criterion) from Support Vector Machine (SVM) and data independence (unsupervised criterion) from Independent Component Analysis (ICA). The projection from SVM directly contributes to classification performance improvement in a supervised perspective whereas maximum independence among features by ICA construct projection indirectly achieving classification accuracy improvement due to better intrinsic data representation in an unsupervised perspective. For linear dimensionality reduction model, I introduce orthogonality to interrelate both projections from SVM and ICA while redundancy removal process eliminates a part of the projection vectors from SVM, leading to more effective dimensionality reduction. The orthogonality-based linear hybrid dimensionality reduction method is extended to uncorrelatedness-based algorithm with nonlinear data representation capability. In the proposed approach, SVM and ICA are integrated into a single framework by the uncorrelated subspace based on kernel implementation. Experimental results show that the proposed approaches give higher classification performance with better robustness in relatively lower dimensions than conventional methods for high-dimensional datasets
    • …
    corecore