
HAL Id: hal-01136945
https://hal.archives-ouvertes.fr/hal-01136945

Submitted on 30 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Averaging to Acceleration, There is Only a
Step-size

Nicolas Flammarion, Francis Bach

To cite this version:
Nicolas Flammarion, Francis Bach. From Averaging to Acceleration, There is Only a Step-size. Pro-
ceedings of The 28th Conference on Learning Theory, (COLT) , 2015, Paris France. �hal-01136945�

https://hal.archives-ouvertes.fr/hal-01136945
https://hal.archives-ouvertes.fr


From Averaging to Acceleration, There is Only a Step-size

Nicolas Flammarion and Francis Bach
INRIA - Sierra project-team
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Abstract

We show that accelerated gradient descent, averaged gradient descent and the heavy-
ball method for non-strongly-convex problems may be reformulated as constant pa-
rameter second-order difference equation algorithms, where stability of the system is
equivalent to convergence at rate O(1/n2), where n is the number of iterations. We
provide a detailed analysis of the eigenvalues of the corresponding linear dynamical sys-
tem, showing various oscillatory and non-oscillatory behaviors, together with a sharp
stability result with explicit constants. We also consider the situation where noisy gra-
dients are available, where we extend our general convergence result, which suggests an
alternative algorithm (i.e., with different step sizes) that exhibits the good aspects of
both averaging and acceleration.

1 Introduction

Many problems in machine learning are naturally cast as convex optimization problems
over a Euclidean space; for supervised learning this includes least-squares regression, logistic
regression, and the support vector machine. Faced with large amounts of data, practitioners
often favor first-order techniques based on gradient descent, leading to algorithms with
many cheap iterations. For smooth problems, two extensions of gradient descent have had
important theoretical and practical impacts: acceleration and averaging.

Acceleration techniques date back to Nesterov (1983) and have their roots in momentum
techniques and conjugate gradient (Polyak, 1987). For convex problems, with an appropri-
ately weighted momentum term which requires to store two iterates, Nesterov (1983) showed
that the traditional convergence rate of O(1/n) for the function values after n iterations of
gradient descent goes down to O(1/n2) for accelerated gradient descent, such a rate being
optimal among first-order techniques that can access only sequences of gradients (Nesterov,
2004). Like conjugate gradient methods for solving linear systems, these methods are how-
ever more sensitive to noise in the gradients; that is, to preserve their improved convergence
rates, significantly less noise may be tolerated (d’Aspremont, 2008; Schmidt et al., 2011;
Devolder et al., 2014).
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Averaging techniques which consist in replacing the iterates by the average of all iterates
have also been thoroughly considered, either because they sometimes lead to simpler proofs,
or because they lead to improved behavior. In the noiseless case where gradients are exactly
available, they do not improve the convergence rate in the convex case; worse, for strongly-
convex problems, they are not linearly convergent while regular gradient descent is. Their
main advantage comes with random unbiased gradients, where it has been shown that they
lead to better convergence rates than the unaveraged counterparts, in particular because
they allow larger step-sizes (Polyak and Juditsky, 1992; Bach and Moulines, 2011). For
example, for least-squares regression with stochastic gradients, they lead to convergence
rates of O(1/n), even in the non-strongly convex case (Bach and Moulines, 2013).

In this paper, we show that for quadratic problems, both averaging and acceleration are two
instances of the same second-order finite difference equation, with different step-sizes. They
may thus be analyzed jointly, together with a non-strongly convex version of the heavy-
ball method (Polyak, 1987, Section 3.2). In presence of random zero-mean noise on the
gradients, this joint analysis allows to design a novel intermediate algorithm that exhibits
the good aspects of both acceleration (quick forgetting of initial conditions) and averaging
(robustness to noise).

In this paper, we make the following contributions:

– We show in Section 2 that accelerated gradient descent, averaged gradient descent
and the heavy-ball method for non-strongly-convex problems may be reformulated as
constant parameter second-order difference equation algorithms, where stability of the
system is equivalent to convergence at rate O(1/n2).

– In Section 3, we provide a detailed analysis of the eigenvalues of the corresponding linear
dynamical system, showing various oscillatory and non-oscillatory behaviors, together
with a sharp stability result with explicit constants.

– In Section 4, we consider the situation where noisy gradients are available, where we
extend our general convergence result, which suggests an alternative algorithm (i.e., with
different step sizes) that exhibits the good aspects of both averaging and acceleration.

– In Section 5, we illustrate our results with simulations on synthetic examples.

2 Second-Order Iterative Algorithms for Quadratic Func-
tions

Throughout this paper, we consider minimizing a convex quadratic function f : Rd → R
defined as:

f(θ) =
1

2
〈θ,Hθ〉 − 〈q, θ〉, (1)

with H ∈ Rd×d a symmetric positive semi-definite matrix and q ∈ Rd. Without loss of
generality, H is assumed invertible (by projecting onto the orthogonal of its null space),
though its eigenvalues could be arbitrarily small. The solution is known to be θ∗ = H−1q,
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but the inverse of the Hessian is often too expensive to compute when d is large. The excess
cost function may be simply expressed as f(θn)− f(θ∗) = 1

2〈θn − θ∗, H(θn − θ∗)〉.

2.1 Second-order algorithms

In this paper we study second-order iterative algorithms of the form:

θn+1 = Anθn +Bnθn−1 + cn, (2)

started with θ1 = θ0 in Rd, with An ∈ Rd×d, Bn ∈ Rd×d and cn ∈ Rd for all n ∈ N∗. We
impose the natural restriction that the optimum θ∗ is a stationary point of this recursion,
that is, for all n ∈ N∗:

θ∗ = Anθ∗ +Bnθ∗ + cn. (θ∗-stationarity)

By letting φn = θn−θ∗ we then have φn+1 = Anφn+Bnφn−1, started from φ0 = φ1 = θ0−θ∗.
Thus, we restrict our problem to the study of the convergence of an iterative system to 0.

In connection with accelerated methods, we are interested in algorithms for which f(θn)−
f(θ∗) = 1

2〈φn, Hφn〉 converges to 0 at a speed of O
(
1/n2

)
. Within this context we impose

that An and Bn have the form :

An =
n

n+ 1
A and Bn =

n− 1

n+ 1
B ∀n ∈ N with A,B ∈ Rd×d. (n-scalability)

By letting ηn = nφn = n(θn − θ∗), we can now study the simple iterative system with
constant terms ηn+1 = Aηn + Bηn−1, started at η0 = 0 and η1 = θ0 − θ∗. Showing that
the function values remain bounded, we directly have the convergence of f(θn) to f(θ∗) at
the speed O

(
1/n2

)
. Thus the n-scalability property allows to switch from a convergence

problem to a stability problem.

For feasibility concerns the method can only access H through matrix-vector products.
Therefore A and B should be polynomials in H and c a polynomial in H times q, if possible
of low degree. The following theorem clarifies the general form of iterative systems which
share these three properties (see proof in Appendix B).

Theorem 1. Let (Pn, Qn, Rn) ∈ (R[X])3 for all n ∈ N, be a sequence of polynomials. If the
iterative algorithm defined by Eq. (2) with An = Pn(H), Bn = Qn(H) and cn = R(H)q sat-
isfies the θ∗-stationarity and n-scalability properties, there are polynomials (Ā, B̄) ∈ (R[X])2

such that:

An = 2
n

n+ 1

(
I −

(
Ā(H) + B̄(H)

2

)
H

)
,

Bn = −n− 1

n+ 1

(
I − B̄(H)H

)
and cn =

(
nĀ(H) + B̄(H)

n+ 1

)
q.

Note that our result prevents An and Bn from being zero, thus requiring the algorithm to
strictly be of second order. This illustrates the fact that first-order algorithms as gradient
descent do not have the convergence rate in O(1/n2).
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We now restrict our class of algorithms to lowest possible order polynomials, that is, Ā = αI
and B̄ = βI with (α, β) ∈ R2, which correspond to the fewest matrix-vector products per
iteration, leading to the constant-coefficient recursion for ηn = nφn = n(θn − θ∗):

ηn+1 = (I − αH) ηn + (I − βH) (ηn − ηn−1) . (3)

Expression with gradients of f . The recursion in Eq. (3) may be written with gradients
of f in multiple ways. In order to preserve the parallel with accelerated techniques, we
rewrite it as:

θn+1 =
2n

n+ 1
θn −

n− 1

n+ 1
θn−1 −

nα+ β

n+ 1
f ′
(
n(α+ β)

nα+ β
θn −

(n− 1)β

nα+ β
θn−1

)
. (4)

It may be interpreted as a modified gradient recursion with two potentially different affine
(i.e., with coefficients that sum to one) combinations of the two past iterates. This refor-
mulation will also be crucial when using noisy gradients. The allowed values for (α, β) ∈ R2

will be determined in the following sections.

2.2 Examples

Averaged gradient descent. We consider averaged gradient descent (referred to from
now on as “Av-GD”) (Polyak and Juditsky, 1992) with step-size γ ∈ R defined by:

ψn+1 = ψn − γf ′(ψn), θn+1 =
1

n+ 1

n+1∑
i=1

ψi.

When computing the average online as θn+1 = θn + 1
n+1(ψn+1 − θn) and seeing the average

as the main iterate, the algorithm becomes (see proof in Appendix B.2):

θn+1 =
2n

n+ 1
θn −

n− 1

n+ 1
θn−1 −

γ

n+ 1
f ′
(
nθn − (n− 1)θn−1

)
.

This corresponds to Eq. (4) with α = 0 and β = γ.

Accelerated gradient descent. We consider the accelerated gradient descent (referred
to from now on as “Acc-GD”) (Nesterov, 1983) with step-sizes (γ, δn) ∈ R2 :

θn+1 = ωn − γf ′(ωn), ωn = θn + δn(θn − θn−1).

For smooth optimization the accelerated literature (Nesterov, 2004; Beck and Teboulle,
2009) uses the step-size δn = 1 − 3

n+1 and their results are not valid for bigger step-size

δn. However δn = 1 − 2
n+1 is compatible with the framework of Lan (2012) and is more

convenient for our set-up. This corresponds to Eq. (4) with α = γ and β = γ. Note that
accelerated techniques are more generally applicable, e.g., to composite optimization with
smooth functions (Nesterov, 2013; Beck and Teboulle, 2009).
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Heavy ball. We consider the heavy-ball algorithm (referred to from now on as “HB”)
(Polyak, 1964) with step-sizes (γ, δn) ∈ R2 :

θn+1 = θn − γf ′(θn) + δn(θn − θn−1),

when δn = 1 − 2
n+1 . We note that typically δn is constant for strongly-convex problems.

This corresponds to Eq. (4) with α = γ and β = 0.

3 Convergence with Noiseless Gradients

We study the convergence of the iterates defined by: ηn+1 = (I − αH) ηn+(I − βH) (ηn − ηn−1).
This is a second-order iterative system with constant coefficients that it is standard to cast
in a linear framework (see, e.g., Ortega and Rheinboldt, 2000). We may rewrite it as:

Θn = FΘn−1, with Θn =

(
ηn
ηn−1

)
and F =

(
2I − (α+ β)H βH − I

I 0

)
∈ R2d×2d.

Thus Θn = FnΘ0. Following O’Donoghue and Candes (2013), if we consider an eigenvalue
decomposition of H, i.e., H = PDiag(h)P> with P an orthogonal matrix and (hi) the
eigenvalues of H, sorted in decreasing order: hd = L ≥ hd−1 ≥ · · · ≥ h2 ≥ h1 = µ > 0, then
Eq. (3) may be rewritten as:

P>ηn+1 = (I − αDiag (h))P>ηn + (I − βDiag (h))
(
P>ηn − P>ηn−1

)
. (5)

Thus there is no interaction between the different eigenspaces and we may consider, for the
analysis only, d different recursions with ηin = p>i ηn, i ∈ {1, ..., d}, where pi ∈ Rd is the i-th
column of P :

ηin+1 = (1− αhi) ηin + (1− βhi)
(
ηin − ηin−1

)
. (6)

3.1 Characteristic polynomial and eigenvalues

In this section, we consider a fixed i ∈ {1, . . . , d} and study the stability in the corresponding
eigenspace. This linear dynamical system may be analyzed by studying the eigenvalues of

the 2 × 2-matrix Fi =

(
2− (α+ β)hi βhi − 1

1 0

)
. These eigenvalues are the roots of its

characteristic polynomial which is:

det(XI−Fi) = det (X (X − 2 + (α+ β)hi) + 1− βhi) = X2−2X
(

1−
(α+ β

2

)
hi

)
+1−βhi.

To compute the roots of the second-order polynomial, we compute its reduced discriminant:

∆i =
(

1−
(α+ β

2

)
hi

)2
− 1 + βhi = hi

((α+ β

2

)2
hi − α

)
.

Depending on the sign of the discriminant ∆i, there will be two real distinct eigenvalues
(∆i > 0), two complex conjugate eigenvalues (∆i < 0) or a single real eigenvalue (∆i = 0).
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Figure 1: Area of stability of the algorithm, with the three traditional algorithms repre-
sented. In the interior of the triangle, the convergence is linear.

We will now study the sign of ∆i. In each different case, we will determine under what
conditions on α and β the modulus of the eigenvalues is less than one, which means that the
iterates (ηin)n remain bounded and the iterates (θn)n converge to θ∗. We may then compute
function values as f(θn)− f(θ∗) = 1

2n2

∑d
i=1(η

i
n)2hi = 1

2

∑d
i=1(φ

i
n)2hi.

The various regimes are summarized in Figure 1: there is a triangle of values of (αhi, βhi)
for which the algorithm remains stable (i.e., the iterates (ηn)n do not diverge), with either
complex or real eigenvalues. In the following lemmas (see proof in Appendix C), we provide
a detailed analysis that leads to Figure 1.

Lemma 1 (Real eigenvalues). The discriminant ∆i is strictly positive and the algorithm is
stable if and only if

α ≥ 0, α+ 2β ≤ 4/hi, α+ β > 2
√
α/hi.

We then have two real roots r±i = ri ±
√

∆i, with ri = 1− (α+β2 )hi. Moreover, we have:

(φin)2hi =
(φi1)

2
hi

4n2

[
(ri +

√
∆i)

n − (ri −
√

∆i)
n
]2

∆i
. (7)

Therefore, for real eigenvalues, ((φin)2hi)n will converge to 0 at a speed of O(1/n2) however
the constant ∆i may be arbitrarily small (and thus the scaling factor arbitrarily large).
Furthermore we have linear convergence if the inequalities in the lemmas are strict.

Lemma 2 (Complex eigenvalues). The discriminant ∆i is stricly negative and the algorithm
is stable if and only if

α ≥ 0, β ≥ 0, α+ β <
√
α/hi.

We then have two complex conjugate eigenvalues: r±i = ri ±
√
−1
√
−∆i. Moreover, we

have:

(φin)
2
hi =

(φi1)
2

n2
sin2(ωin)(

α− (α+β2 )2hi
)ρ2n. (8)

with ρi =
√

1− βhi, and ωi defined through sin(ωi) =
√
−∆i/ρi and cos(ωi) = ri/ρi.
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Therefore, for complex eigenvalues, there is a linear convergence if the inequalities in the
lemma are strict. Moreover, ((φin)2hi)n oscillates to 0 at a speed of O(1/n2) even if hi is
arbitrarily small.

Coalescing eigenvalues. When the discriminant goes to zero in the explicit formulas of
the real and complex cases, both the denominator and numerator of ((φin)2hi)n will go to
zero. In the limit case, when the discriminant is equal to zero, we will have a double real
eigenvalue. This happens for β = 2

√
α/hi−α. Then the eigenvalue is ri = 1−

√
αhi, and the

algorithm is stable for 0 < α < 4/hi, we then have (φin)2hi = hi(φ
i
1)

2(1−
√
αhi)

2(n−1). This
can be obtained by letting ∆i goes to 0 in the real and complex cases (see also Appendix C.3).

Summary. To conclude the iterate (ηin)n = (n(θin − θi∗))n will be stable for α ∈ [0, 4/hi]
and β ∈ [0, 2/hi−α/2]. According to the values of α and β this iterate will have a different
behavior. In the complex case, the roots are complex conjugate with magnitude

√
1− βhi.

Thus, when β > 0, (ηin)n will converge to 0, oscillating, at rate
√

1− βhi. In the real
case, the two roots are real and distinct. However the product of the two roots is equal
to
√

1− βhi, thus one will have a higher magnitude and (ηin)n will converges to 0 at rate
higher than in the complex case (as long as α and β belong to the interior of the stability
region).

Finally, for a given quadratic function f , all the d iterates (ηin)n should be bounded, therefore
we must have α ∈ [0, 4/L] and β ∈ [0, 2/L− α/2]. Then, depending on the value of hi, some
eigenvalues may be complex or real.

3.2 Classical examples

For particular choices of α and β, displayed in Figure 1, the eigenvalues are either all real
or all complex, as shown in the table below.

Av-GD Acc-GD Heavy ball

α 0 γ γ
β γ γ 0

∆i (γhi)
2 −γhi(1− γhi) −γhi(1− γhi

4 )
r±i 1, 1− γhi

√
1− γhie±iωi e±iωi

cos(ωi)
√

1− γhi 1− γ
2hi

ρi
√

1− γhi 1

Averaged gradient descent loses linear convergence for strongly-convex problems, because
r+i = 1 for all eigensubspaces. Similarly, the heavy ball method is not adaptive to strong
convexity because ρi = 1. However, accelerated gradient descent, although designed for
non-strongly-convex problems, is adaptive because ρi =

√
1− γhi depends on hi while α

and β do not. These last two algorithms have an oscillatory behavior which can be observed
in practice and has been already studied (Su et al., 2014).
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Note that all the classical methods choose step-sizes α and β either having all the eigenvalues
real either complex; whereas we will see in Section 4, that it is significant to combine both
behaviors in presence of noise.

3.3 General bound

Even if the exact formulas in Lemmas 1 and 2 are computable, they are not easily inter-
pretable. In particular when the two roots become close, the denominator will go to zero,
which prevents from bounding them easily. When we further restrict the domain of (α, β),
we can always bound the iterate by the general bound (see proof in Appendix D):

Theorem 2. For α ≤ 1/hi and 0 ≤ β ≤ 2/hi − α, we have

(ηin)2 ≤ min

{
2(ηi1)

2

αhi
,

8(ηi1)
2n

(α+ β)hi
,

16(ηi1)
2

(α+ β)2h2i

}
. (9)

These bounds are shown by dividing the set of (α, β) in three regions where we obtain
specific bounds. They do not depend on the regime of the eigenvalues (complex or real);
this enables us to get the following general bound on the function values, our main result
for the deterministic case.

Corollary 1. For α ≤ 1/L and 0 ≤ β ≤ 2/L− α:

f(θn)− f(θ∗) ≤ min

{
‖θ0 − θ∗‖2

αn2
,
4‖θ0 − θ∗‖2

(α+ β)n

}
. (10)

We can make the following observations:

– The first bound ‖θ0−θ∗‖
2

αn2 corresponds to the traditional acceleration result, and is only
relevant for α > 0 (that is, for Nesterov acceleration and the heavy-ball method, but
not for averaging). We recover the traditional convergence rate of second-order methods
for quadratic functions in the singular case, such as conjugate gradient (Polyak, 1987,
Section 6.1).

– While the result above focuses on function values, like most results in the non-strongly
convex case, the distance to optimum ‖θn−θ∗‖2 typically does not go to zero (although
it remains bounded in our situation).

– When α = 0 (averaged gradient descent), then the second bound 4‖θ0−θ∗‖2
(α+β)n provides a

convergence rate of O(1/n) if no assumption is made regarding the starting point θ0,

while the last bound of Theorem 2 would lead to a bound 8‖H−1/2(θ0−θ∗)‖
2

(α+β)2n2 , that is a

rate of O(1/n2), only for some starting points.

– As shown in Appendix E by exhibiting explicit sequences of quadratic functions, the
inverse dependence in αn2 and (α+ β)n in Eq. (10) is not improvable.
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Figure 2: Trade-off between averaged and accelerated methods for noisy gradients.

4 Quadratic Optimization with Additive Noise

In many practical situations, the gradient of f is not available for the recursion in Eq. (4),
but only a noisy version. In this paper, we only consider additive uncorrelated noise with
finite variance.

4.1 Stochastic difference equation

We now assume that the true gradient is not available and we rather have access to a noisy
oracle for the gradient of f . In Eq. (4), we assume that the oracle outputs a noisy gradient

f ′
(n(α+β)
nα+β θn−

(n−1)β
nα+β θn−1

)
− εn+1. The noise (εn) is assumed to be uncorrelated zero-mean

with bounded covariance, i.e., E[εn ⊗ εm] = 0 for all n 6= m and E[εn ⊗ εn] 4 C, where
A 4 B means that B −A is positive semi-definite.

For quadratic functions, for the reduced variable ηn = nφn = n(θn − θ∗), we get:

ηn+1 = (I − αH)ηn + (I − βH)(ηn − ηn−1) + [nα+ β]εn+1. (11)

Note that algorithms with α 6= 0 will have an important level of noise because of the term

nαεn+1. We denote by ξn+1 =

(
[nα+ β]εn+1

0

)
and we now have the recursion:

Θn+1 = FΘn + ξn+1, (12)

which is a standard noisy linear dynamical system (see, e.g., Arnold, 1998) with uncorrelated
noise process (ξn). We may thus express Θn directly as Θn = FnΘ0 +

∑n
k=1 F

n−kξk, and its

expected second-order moment as, E
(
ΘnΘn

)>
= FnΘ0Θ

>
0 (Fn)>+

∑n
k=1 F

n−kE
(
ξkξ
>
k

)
(Fn−k)>.

In order to obtain the expected excess cost function, we simply need to compute tr

(
0 H
0 0

)
E
(
ΘnΘn

)>
,

which thus decomposes as a term that only depends on initial conditions (which is exactly
the one computed and studied in Section 3.3), and a new term that depends on the noise.
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4.2 Convergence result

For a quadratic function f with arbitrarily small eigenvalues and uncorrelated noise with
finite covariance, we obtain the following convergence result (see proof in Appendix F);
since we will allow the parameters α and β to depend on the time we stop the algorithm,
we introduce the horizon N :

Theorem 3 (Convergence rates with noisy gradients). With E[εn ⊗ εn] = C for all n ∈ N,
for α ≤ 1

L and 0 ≤ β ≤ 2
L − α. Then for any N ∈ N, we have:

Ef(θN )− f(θ∗) ≤

min

{
‖θ0 − θ∗‖2

αN2
+

(αN + β)2

αN
tr(C),

4‖θ0 − θ∗‖2

(α+ β)N
+

4(αN + β)2

α+ β
tr(C)

}
. (13)

We can make the following observations:

– Although we only provide an upper-bound, the proof technique relies on direct moment
computations in each eigensubspace with few inequalities, and we conjecture that the
scalings with respect to n are tight.

– For α = 0 and β = 1/L (which corresponds to averaged gradient descent), the second

bound leads to 4L‖θ0−θ∗‖2
N + 4 tr(C)

L , which is bounded but not converging to zero. We
recover a result from Bach and Moulines (2011, Theorem 1).

– For α = β = 1/L (which corresponds to Nesterov’s acceleration), the first bound leads

to L‖θ0−θ∗‖2
N2 + (N+1) tr(C)

L , and our bound suggests that the algorithm diverges, which
we have observed in our experiments in Appendix A.

– For α = 0 and β = 1/L
√
N , the second bound leads to 4L‖θ0−θ∗‖2√

N
+ 4 tr(C)

L
√
N

, and we

recover the traditional rate of 1/
√
N for stochastic gradient in the non-strongly-convex

case.

– When the values of the bias and the variance are known we can choose α and β such
that the trade-off between the bias and the variance is optimal in our bound, as the
following corrollary shows. Note that in the bound below, taking a non zero β enables
the bias term to be adaptive to hidden strong-convexity.

Corollary 2. For α = min
{
‖θ0−θ∗‖

2
√
trCN3/2

, 1/L
}

and β ∈ [0,min{Nα, 1/L}], we have:

Ef(θN )− f(θ∗) ≤
2L‖θ0 − θ∗‖2

N2
+

4
√

trC‖θ0 − θ∗‖√
N

.

4.3 Structured noise and least-square regression

When only the noise total variance tr(C) is considered, as shown in Section 4.4, Corollary
2 recover existing (more general) results. Our framework however leads to improved result
for structured noise processes frequent in machine learning, in particular in least-squares
regression which we now consider but this goes beyond (see, e.g. Bach and Moulines, 2013).
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Assume we observe independent and identically distributed pairs (xn, yn) ∈ Rd × R and
we want to minimize the expected loss f(θ) = 1

2E[(yn − 〈θ, xn〉)2]. We denote by H =
E(xn ⊗ xn) the covariance matrix which is assumed invertible. The global minimum of f
is attained at θ∗ ∈ Rd defined as before and we denote by rn = yn − 〈θ∗, xn〉 the statistical
noise, which we assume bounded by σ. We have E[rnxn] = 0. In an online setting, we
observe the gradient (xn⊗xn)(θ− θ∗)− rnxn, whose expectation is the gradient f ′(θ). This
corresponds to a noise in the gradient of εn = (H − xn ⊗ xn)(θ − θ∗) + rnxn. Given θ, if
the data (xn, yn) are almost surely bounded, the covariance matrix of this noise is bounded
by a constant times H. This suggests to characterize the noise convergence by tr(CH−1),
which is bounded even though H has arbitrarily small eigenvalues.

However, our result will not apply to stochastic gradient descent (SGD) for least-squares,
because of the term (H − xn ⊗ xn)(θ − θ∗) which depends on θ, but to a “semi-stochastic”
recursion where the noisy gradient is H(θ − θ∗) − rnxn, with a noise process εn = rnxn,
which is such that E[εn ⊗ εn] 4 σ2H, and has been used by Bach and Moulines (2011) and
Dieuleveut and Bach (2014) to prove results on regular stochastic gradient descent. We
conjecture that our algorithm (and results) also applies in the regular SGD case, and we
provide encouraging experiments in Section 5.

For this particular structured noise we can take advantage of a large β:

Theorem 4 (Convergence rates with structured noisy gradients). Let α ≤ 1
L and 0 ≤ β ≤

3
2L −

α
2 . For any N ∈ N, Ef(θN )− f(θ∗) is upper-bounded by:

min

{
‖θ0 − θ∗‖2

N2α
+

(αN + β)2

αβN2
tr(CH−1),

4L‖θ0 − θ∗‖2

(α+ β)N
+

8(αN + β)2 tr(CH−1)

(α+ β)2N

}
. (14)

We can make the following observations:

– For α = 0 and β = 1/L (which corresponds to averaged gradient descent), the second

bound leads to 4L‖θ0−θ∗‖2
N + 8 tr(CH−1)

N . We recover a result from Bach and Moulines
(2013, Theorem 1). Note that when C 4 σ2H, tr(CH−1) 6 σ2d.

– For α = β = 1/L (which corresponds to Nesterov’s acceleration), the first bound leads

to L‖θ0−θ∗‖2
N2 + tr(CH−1), which is bounded but not converging to zero (as opposed to

the the unstructured noise where the algorithm may diverge).

– For α = 1/(LNa) with 0 ≤ a ≤ 1 and β = 1/L, the first bound leads to L‖θ0−θ∗‖2
N2−a +

tr(CH−1)
Na . We thus obtain an explicit bias-variance trade-off by changing the value of a.

– When the values of the bias and the variance are known we can choose α and β with
an optimized trade-off, as the following corrollary shows:

Corollary 3. For α = min

{
‖θ0−θ∗‖√

L tr(CH−1)N
, 1/L

}
and β = min {Nα, 1/L} we have:

Ef(θN )− f(θ∗) ≤ max

{
5 tr(CH−1)

N
,
5
√

tr(CH−1)L‖θ0 − θ∗‖
N

,
2‖θ0 − θ∗‖2L

N2

}
. (15)
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4.4 Related work

Acceleration and noisy gradients. Several authors (Lan, 2012; Hu et al., 2009; Xiao,
2010) have shown that using a step-size proportional to 1/N3/2 accelerated methods with

noisy gradients lead to the same convergence rate of O
(L‖θ0−θ∗‖2

N2 +
‖θ0−θ∗‖

√
tr(C)√

N

)
than

in Corollary 2, for smooth functions. Thus, for unstructured noise, our analysis provides
insights in the behavior of second-order algorithms, without improving bounds. We get
significant improvements for structured noises.

Least-squares regression. When the noise is structured as in least-square regression and
more generally in linear supervised learning, Bach and Moulines (2011) have shown that
using averaged stochastic gradient descent with constant step-size leads to the convergence

rate of O
(L‖θ0−θ0‖2

N +σ2d
N

)
. It has been highlighted by Défossez and Bach (2014) that the bias

term L‖θ0−θ∗‖2
N may often be the dominant one in practice. Our result in Corollary 3 leads

to an improved bias term in O(1/N2) with the price of a potentially slightly worse constant
in the variance term. However, with optimal constants in Corollary 3, the new algorithm
is always an improvement over averaged stochastic gradient descent in all situations. If
constants are unknown, we may use α = 1/(LNa) with 0 ≤ a ≤ 1 and β = 1/L and we
choose a depending on the emphasis we want to put on bias or variance.

Minimax convergence rates. For noisy quadratic problems, the convergence rate nicely
decomposes into two terms, a bias term which corresponds to the noiseless problem and
the variance term which corresponds to a problem started at θ∗. For each of these two
terms, lower bounds are known. For the bias term, if N ≤ d, then the lower bound is,
up to constants, L‖θ0 − θ∗‖2/N2 (Nesterov, 2004, Theorem 2.1.7). For the variance term,
for the general noisy gradient situation, we show in Appendix H that for N ≤ d, it is
(trC)/(L

√
N), while for least-squares regression, it is σ2d/N (Tsybakov, 2003). Thus, for

the two situations, we attain the two lower bounds simultaneously for situations where
respectively L‖θ0 − θ∗‖2 ≤ (trC)/L and L‖θ0 − θ∗‖2 ≤ dσ2. It remains an open problem
to achieve the two minimax terms in all situations.

Other algorithms as special cases. We also note as shown in Appendix G that in
the special case of quadratic functions, the algorithms of Lan (2012); Hu et al. (2009);
Xiao (2010) could be unified into our framework (although they have significantly different
formulations and justifications in the smooth case).

5 Experiments

In this section, we illustrate our theoretical results on synthetic examples. We consider
a matrix H that has random eigenvectors and eigenvalues 1/km, for k = 1, . . . , d and
m ∈ N. We take a random optimum θ∗ and a random starting point θ0 such that r =
‖θ0−θ∗‖ = 1 (unless otherwise specified). In Appendix A, we illustrate the noiseless results

12
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Figure 3: Quadratic optimization with regression noise. Left σ = 1, r = 1. Right σ = 0.1,
r = 10.

of Section 3, in particular the oscillatory behaviors and the influence of all eigenvalues,
as well as unstructured noisy gradients. In this section, we focus on noisy gradients with
structured noise (as described in Section 4.3), where our new algorithms show significant
improvements.

We compare our algorithm to other stochastic accelerated algorithms, that is, AC-SA (Lan,
2012), SAGE (Hu et al., 2009) and Acc-RDA (Xiao, 2010) which are presented in Ap-
pendix G. For all these algorithms (and ours) we take the optimal step-sizes defined in
these papers. We show results averaged over 10 replications.

Homoscedastic noise. We first consider an i.i.d. zero mean noise whose covariance ma-
trix is proportional to H. We also consider a variant of our algorithm with an any-time
step-size function of n rather than N (for which we currently have no proof of convergence).
In Figure 3, we take into account two different set-ups. In the left plot, the variance domi-
nates the bias (with r = ‖θ0 − θ∗‖ = σ). We see that (a) Acc-GD does not converge to the
optimum but does not diverge either, (b) Av-GD and our algorithms achieve the optimal
rate of convergence of O(σ2d/n), whereas (c) other accelerated algorithms only converge at
rate O(1/

√
n). In the right plot, the bias dominates the variance (r = 10 and σ = 0.1). In

this situation our algorithm outperforms all others.

Application to least-squares regression. We now see how these algorithms behave for
least-squares regressions and the regular (non-homoscedastic) stochastic gradients described
in Section 4.3. We consider normally distributed inputs. The covariance matrix H is the
same as before. The outputs are generated from a linear function with homoscedatic noise
with a signal-to-noise ratio of σ. We consider d = 20. We show results averaged over 10
replications. In Figure 4, we consider again a situation where the bias dominates (left)
and vice versa (right). We see that our algorithm has the same good behavior than in the
homoscedastic noise case and we conjecture that our bounds also hold in this situation.
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Figure 4: Least-Square Regression. Left σ = 1, r = 1. Right σ = 0.1, r = 10.

6 Conclusion

We have provided a joint analysis of averaging and acceleration for non-strongly-convex
quadratic functions in a single framework, both with noiseless and noisy gradients. This
allows to define a class of algorithms that can benefit simultaneously of the known improve-
ments of averaging and accelerations: faster forgetting of initial conditions (for acceleration),
and better robustness to noise when the noise covariance is proportional to the Hessian (for
averaging).

Our current analysis of our class of algorithms in Eq. (4), that considers two different affine
combinations of previous iterates (instead of one for traditional acceleration), is limited
to quadratic functions; an extension of its analysis to all smooth or self-concordant-like
functions would widen its applicability. Similarly, an extension to least-squares regression
with natural heteroscedastic stochastic gradient, as suggested by our simulations, would be
an interesting development.
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A Additional experimental results

In this appendix, we provide additional experimental results to illustrate our theoretical
results.

A.1 Deterministic convergence

Comparaison for d = 1. In Figure 5, we minimize a one-dimensional quadratic function
f(θ) = 1

2θ
2 for a fixed step-size α = 1/10 and different step-sizes β. In the left plot, we

compare Acc-GD, HB and Av-GD. We see that HB and Acc-GD both oscillate and that
Acc-GD leverages strong convexity to converge faster. In the right plot, we compare the
behavior of the algorithm for different values of β. We see that the optimal rate is achieved
for β = β∗ defined to be the one for which there is a double coalescent eigenvalue, where
the convergence is linear at speed O(1−

√
αL)n. When β > β∗, we are in the real case and

when β < β∗ the algorithm oscillates to the solution.

Comparison between the different eigenspaces. Figure 6 shows interactions between
different eigenspaces. In the left plot, we optimize a quadratic function of dimension d = 2.
The first eigenvalue is L = 1 and the second is µ = 2−8. For Av-GD the convergence is
of order O(1/n) since the problem is “not” strongly convex (i.e., not appearing as strongly
convex since nµ remains small). The convergence is at the beginning the same for HB
and Acc-GD, with oscillation at speed O(1/n2), since the small eigenvalue prevents Acc-
GD from having a linear convergence. Then for large n, the convergence becomes linear
for Acc-GD, since µn becomes large. In the right plot, we optimize a quadratic function
in dimension d = 5 with eigenvalues from 1 to 0.1. We show the function values of the
projections of the iterates ηn on the different eigenspaces. We see that high eigenvalues first
dominate, but converge quickly to zero, whereas small ones keep oscillating, and converge
more slowly.
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different oscillatory behaviors.
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Comparison for d = 20. In Figure 7, we optimize two 20-dimensional quadratic functions
with different eigenvalues with Av-GD, HB and Acc-GD for a fixed step-size γ = 1/10. In
the left plot, the eigenvalues are 1/k2 and in the right one, they are 1/k8, for k = 1, . . . , d.
We see that in both cases, Av-GD converges at a rate of O(1/n) and HB at a rate of
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O(1/n2). For Acc-GD the convergence is linear when µ is large (left plot) and becomes
sublinear at a rate of O(1/n2) when µ becomes small (right plot).

A.2 Noisy convergence with unstructured additive noise

We optimize the same quadratic function, but now with noisy gradients. We compare our
algorithm to other stochastic accelerated algorithms, that is, AC-SA (Lan, 2012), SAGE
(Hu et al., 2009) and Acc-RDA (Xiao, 2010), which are presented in Appendix G. For all
these algorithms (and ours) we take the optimal step-sizes defined in these papers. We plot
the results averaged over 10 replications.

We consider in Figure 8 an i.i.d. zero mean noise of variance C = I. We see that all the
accelerated algorithms achieve the same precision whereas Av-GD with constant step-size
does not converge and Acc-Gd diverges. However SAGE and AC-SA are anytime algorithms
and are faster at the beginning since their step-sizes are decreasing and not a constant (with
respect to n) function of the horizon N .
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Figure 8: Quadratic optimization with additive noise.

B Proofs of Section 2

B.1 Proof of Theorem 1

Let (Pn, Qn, Rn) ∈ (R[X])3 for all n ∈ N be a sequence of polynomials. We consider the
iterates defined for all n ∈ N∗ by

θn+1 = Pn(H)θn +Qn(H)θn−1 +R(H)q,

started from θ0 = θ1 ∈ Rd. The θ∗-stationarity property gives for n ∈ N∗:

θ∗ = Pn(H)θ∗ +Qn(H)θ∗ +Rn(H)q.
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Since θ∗ = H−1q we get for all q ∈ Rd

H−1q = Pn(H)H−1q +Qn(H)H−1q +Rn(H)q.

For all q̃ ∈ Rd we apply this relation to vectors q = Hq̃:

q̃ = Pn(H)q̃ +Qn(H)q̃ +Rn(H)Hq̃ ∀q̃ ∈ Rd,

and we get
I = Pn(H) +Qn(H) +Rn(H)H ∀n ∈ N∗.

Therefore there are polynomials (P̄n, Q̄n) ∈ (R[X])2 and qn ∈ R for all n ∈ N∗ such that we
have for all n ∈ N:

Pn(X) = (1− qn)I +XP̄n(X)

Qn(X) = qnI +XQ̄n(X)

Rn(X) = −(P̄n(X) + Q̄n(X)). (16)

The n-scalability property means that there are polynomials (P,Q) ∈ (R[X])2 independent
of n such that:

Pn(X) =
n

n+ 1
P (X),

Qn(X) =
n− 1

n+ 1
Q(X).

And in connection with Eq. (16) we can rewrite P and Q as:

P (X) = p̄+XP̄ (X),

Q(X) = q̄ +XQ̄(X),

with (p̄, q̄) ∈ R2 and (P̄ , Q̄) ∈ (R[X])2. Thus for all n ∈ N:

qn =
n− 1

n+ 1
q̄ (17)

Q̄n(X) =
n− 1

n
Q(X)

n

n+ 1
p̄ = (1− qn) (18)

P̄n(X) =
n

n+ 1
P (X).

Eq. (17) and Eq. (18) give:
n

n+ 1
p̄ =

(
1− n− 1

n+ 1
q̄

)
.

Thus for n = 1, we have p̄ = 2. Then −n−1
n+1 q̄ = 2n

n+1 − 1 = n−1
n+1 and q̄ = −1. Therefore

Pn(H) =
2n

n+ 1
I +

n

n+ 1
P̄ (H)H

Qn(H) = −n− 1

n
I + Q̄(H)H

Rn(H) = −
(
nP̄ (H) + (n− 1)Q̄(H)

n+ 1

)
.
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We let Ā = −(P̄ + Q̄) and B̄ = Q̄ so that we have:

Pn(H) =
2n

n+ 1

(
I −

(
Ā(H) + B̄(H)

2

)
H

)
Qn(H) = −n− 1

n

(
I − B̄(H)H

)
Rn(H) =

(
nĀ(H) + B̄(H)

n+ 1

)
,

and with φn = θn − θ∗ for all n ∈ N, the algorithm can be written under the form:

φn+1 =

[
I −

(
n

n+ 1
Ā(H) +

1

n+ 1
B̄(H)

)
H

]
φn+

(
1− 2

n+ 1

)[
I − B̄(H)H

]
(φn−φn−1).

B.2 Av-GD as two steps-algorithm

We show now that when the averaged iterate of Av-GD is seen as the main iterate we have
that Av-GD with step-size γ ∈ R is equivalent to:

θn+1 =
2n

n+ 1
θn −

n− 1

n+ 1
θn−1 −

γ

n+ 1
f ′
(
nθn − (n− 1)θn−1

)
.

We remind

ψn+1 = ψn − γf ′(ψn),

θn+1 = θn +
1

n+ 1
(ψn+1 − θn).

Thus, we have:

θn+1 = θn +
1

n+ 1
(ψn+1 − θn)

= θn +
1

n+ 1
(ψn − γf ′(ψn)− θn)

= θn +
1

n+ 1
(θn + (n− 1)(θn − θn−1)− γf ′(θn + (n− 1)(θn − θn−1))− θn)

=
2n

n+ 1
θn −

n− 1

n+ 1
θn−1 −

γ

n+ 1
f ′(nθn − (n− 1)θn−1).

C Proof of Section 3

C.1 Proof of Lemma 1

The discriminant ∆i is strictly positive when
(α+β

2

)2
hi − α > 0. This is always true for α

strictly negative. For α positive and for hi 6= 0, this is true for |α+β2 | >
√
α/hi . Thus the

discriminant ∆i is strictly positive for

α < 0 or

α ≥ 0 and
{
β < −α− 2

√
α/hi or β > −α+ 2

√
α/hi

}
.
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Figure 9: Stability in the real case, with all contraints plotted.

Then we determine when the modulus of the eigenvalues is less than one (which corresponds
to −1 ≤ r−i ≤ r

+
i ≤ 1).

r+i ≤ 1 ⇔

√√√√hi

((
α+ β

2

)2

hi − α

)
≤
(
β + α

2

)
hi

⇔ hi

((
β + α

2

)2

hi − α

)
≤
[(

β + α

2

)
hi

]2
and

α+ β

2
≥ 0

⇔ hiα ≥ 0 and
α+ β

2
≥ 0

⇔ α ≥ 0 and α+ β ≥ 0.

Moreover, we have :

r−i ≥ −1 ⇔

√√√√hi

((
β + α

2

)2

hi − α

)
≤ 2−

(
β + α

2

)
hi

⇔ hi

((
β + α

2

)2

hi − α

)
≤
[
2−

(
β + α

2

)
hi

]2
and 2−

(
β + α

2

)
hi ≥ 0

⇔ hi

((
β + α

2

)2

hi − α

)
≤ 4− 4

(
β + α

2

)
hi +

[(
β + α

2

)
hi

]2
and

(
β + α

2

)
≤ 2/hi

⇔ −hiα ≤ 4− 4

(
β + α

2

)
hi and

β

2
≤ 2/hi −

α

2

⇔ β ≤ 2/hi − α/2 and β ≤ 4/hi − α.

Figure 9 (where we plot all the constraints we have so far) enables to conclude that the
discriminant ∆i is strictly positive and the algorithm is stable when the following three
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conditions are satisfied:

α ≥ 0

α+ 2β ≤ 4/hi

α+ β ≥ 2
√
α/h1.

For any of those α et β we will have:

ηin = c1(r
−
i )

n
+ c2(r

+
i )

n
.

Since ηi0 = 0, c1 + c2 = 0 and for n = 1, c1 = ηi1/(r
−
i − r

+
i ); we thus have:

ηin =
ηi1
2

(r+i )
n − (r−i )

n

√
∆i

.

Thus, we get the final expression:

(φin)2hi =
(φi1)

2

4n2

{[
ri +
√

∆i

]n − [ri −√∆i

]n}2
∆i/hi

.

C.2 Proof of Lemma 2

0 1 2 3 4

0

1

2

βhi

αhi

∆1 < 0

|r±i | ≤ 1

|r±i | = 1
∆i = 0

Figure 10: Stability in the complex case, with all constraints plotted.

The discriminant ∆i is strictly negative if and only if
(α+β

2

)2
hi − α < 0. This implies

|α+β2 | <
√
α/hi. The modulus of the eigenvalues is |r±i |2 = 1− βhi. Thus the discriminant

∆i is strictly negative and the algorithm is stable for

α, β ≥ 0

α+ β <
√
α/hi,

as shown in Figure 10.
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For any of those α et β we have:

ηin = [c1 cos(ωin) + c2 sin(ωin)]ρni ,

with ρi =
√

1− βhi, sin(ωi) =
√
−∆i/ρi and cos(ωi) = ri/ρi. Since ηi0 = 0, c1 = 0 and we

have for n = 1, c2 = ηi1/(sin(ωi)ρi). Therefore

ηin = ηi1
sin(ωin)√
−∆i

(1− βhi)n/2,

and

(φin)2hi =
(φi1)

2

n2
sin2(ωin)

sin2(ωi)/hi
(1− βhi)n−1.

C.3 Coalescing eigenvalues

When β = 2
√
α/hi − α, the discriminant ∆i is equal to zero and we have a double real

eigenvalue:
ri = 1−

√
αhi.

Thus the algorithm is stable for α < 4
hi

. For any of those α et β we have:

ηin = (c1 + nc2)r
n.

This gives with ηi0 = 0, c1 = 0 and c2 = ηi1/r. Therefore

ηin = nηi(1−
√
αhi)

n−1,

and:
(φin)2hi = hi(φ

i
1)

2(1−
√
αhi)

2(n−1).

In the presence of coalescing eigenvalues the convergence is linear if 0 < α < 4/hi and
hi > 0, however one might worry about the behavior of ((φin)2hi)n when hi becomes small.
Using the bound x2 exp(−x) ≤ 1 for x ≤ 1, we have for α < 4/hi:

hi(1−
√
αhi)

2n = hi exp(2n log(|1−
√
αhi|))

≤ hi exp(−2nmin{
√
αhi, 2−

√
αhi})

≤ hi

min{
√
αhi, 2−

√
αhi}2

≤ max

{
1

α
,

hi

(2−
√
αhi)2

}
.

Therefore we always have the following bound for α < 4/hi:

(φin)2hi ≤
(φi1)

2

4n2
max

{
1

α
,

hi

(2−
√
αhi)2

}
.

Thus for αhi ≤ 1 we get:

(φin)2hi ≤
(φi1)

2

4n2α
.
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D Proof of Theorem 2

D.1 Sketch of the proof

0 1 2 3 4
0

1

2
βhi

αhi

Lemma 3

Figure 11: Validity of Lemma 3

0 1 2 3 4
0

1

2
βhi

αhi

Lemma 4

Figure 12: Validity of Lemma 4
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1

2
βhi

αhi

Lemma 5

Figure 13: Validity of Lemma 5

0 1 2 3 4
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2
βhi

αhi

Lemma 5
Lemma 4
Lemma 3

Theorem 2

Figure 14: Area of Theorem 2

We divide the domain of validity of Theorem 2 in three subdomains as explained in Figure
14. On the domain described in Figure 11 we have a first bound on the iterate ηin:

Lemma 3. For 0 ≤ α ≤ 1/hi and 1−
√

1− αhi < βhi < 1 +
√

1− αhi, we have:

(ηin)2 ≤ (ηi1)
2

αhi
.

And on the domain described Figure 12 we also have:

Lemma 4. For 0 ≤ α ≤ 1/hi and β ≤ α we have:

(ηin)2 ≤ 2(ηi1)
2

αhi
.

These two lemmas enable us to prove the first bound of Theorem 2 since the domain of
this theorem is included in the intersection of the two domains of these lemmas as shown
in Figure 14.

Then we have the following bound on domain described in Figure 13:
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Lemma 5. For 0 ≤ α ≤ 2/hi and 0 ≤ β ≤ 2/hi − α, we have:

|ηin| ≤ min

{
2
√

2n√
(α+ β)hi

,
4

(α+ β)hi

}
.

Since the domain of definition of Theorem 2 is included in the domain of definition of Lemma
5 (as shown in Figure 14), this lemma proves the last two bounds of the theorem.

D.2 Outline of the proofs of the Lemmas

– We find a Lyapunov function G from R2 to R such that the sequence (G(ηin, η
i
n−1))

decrease along the iterates.

– We also prove that G(ηin, η
i
n−1) dominates c‖ηin‖2 when we want to have a bound on

‖ηin‖2 of the form 1
cG(ηi1, η

i
0) = 1

cG(θi0 − θi∗, 0).

For readability, we remove the index i and take hi = 1 without loss of generality.

D.3 Proof of Lemma 3

We first consider a quadratic Lyapunov function

(
ηn
ηn−1

)>
G1

(
ηn
ηn−1

)
withG1 =

(
1 α− 1

α− 1 1− α

)
.

We note thatG1 is symmetric positive semi-definite for α ≤ 1. We recall Fi =

(
2− (α+ β) β − 1

1 0

)
.

For the result to be true we need for 0 ≤ α ≤ 1 and 1 −
√

1− α < β < 1 +
√

1− α two
properties:

F>i G1Fi 4 G1, (19)

and

α

(
1 0
0 0

)
4 G1. (20)

Proof of Eq. (20). We have:

G1 − α
(

1 0
0 0

)
= (1− α)

(
1 1
1 1

)
< 0 for α ≤ 1.

Proof of Eq. (19). Since β 7→ Fi(β)>G1Fi(β) − G1 is convex in β (G1 is symmetric
positive semi-definite), we only have to show Eq. (19) for the boundaries of the interval in
β. For x ∈ R∗+:(

x2 − x x
1 0

)>(
1 −x2
−x2 x2

)(
x2 − x x

1 0

)
−
(

1 −x2
−x2 x2

)
= −(1− x2)2

(
1 0
0 0

)
4 0.

This especially shows Eq. (19) for the boundaries of the interval with x = ±
√

1− α.
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Bound. Thus, because η0 = 0, we have

αη2n+1 ≤ Θ>nG1Θn ≤ Θ>n−1G1Θn−1 ≤ Θ>0 G1Θ0 ≤ η21.

This shows that for 0 ≤ α ≤ 1/hi and 1−
√

1− αhi < βhi < 1 +
√

1− αhi:

(ηin)2 ≤ (ηi1)
2

αhi
.

D.4 Proof of Lemma 4

We consider now a second Lyapunov function G2(ηn, ηn−1) = (ηn − rηn−1)2 − ∆(ηn−1)
2.

We have:

G2(ηn, ηn−1) = (ηn − rηn−1)2 −∆η2n−1

= (rηn−1 − (1− β)ηn−2)
2 −∆η2n−1

= (r2 −∆)η2n−1 + (1− β)2η2n−2 − 2(1− β)rηn−1ηn−2

= ((1− β)η2n−1 + (1− β)(r2 −∆)η2n−2 − 2(1− β)rηn−1ηn−2

= (1− β)[(ηn−1 − rηn−2)2 −∆(ηn−2)
2].

= (1− β)G2(ηn−1, ηn−2).

Where we have used twice r2 − ∆ = (1 − β) and ηn = 2rηn−1 − (1 − β)ηn−2. Moreover
G2(ηn, ηn−1) can be rewritten as:

G2(ηn, ηn−1) = (1− α+ β

2
)(ηn − ηn−1)2 +

α− β
2

(ηn−1)
2 +

α+ β

2
(ηn)2.

Thus for α+ β ≤ 2 and β ≤ α we have:

α

2
(ηn)2 ≤ G2(ηn, ηn−1) = (1− β)n−1G2(η1, η0) = (1− β)n−1(η1)

2.

Therefore for α+ β ≤ 2/hi and β ≤ α, we have:

(ηin)2 ≤ 2(ηi1)
2

αhi
.

D.5 Proof of Lemma 5

We may write ηn as
ηn = rηn−1 + (r+)n + (r−)n.

Moreover, we have:
|(r+)n + (r−)n| ≤ 2,

therefore for α+ β ≤ 2,

|ηn| ≤ r|ηn−1|+ 2 ≤ 2
1− rn

1− r
≤ 2

1− (1− (α+β2 ))n

(α+β2 )
.
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Thus

|ηn| ≤
2

(α+β2 )h
.

Moreover for all u ∈ [0, 1] and n ≥ 1 we have 1 − (1 − u)n ≤
√
nu, since 1 − (1 − u)n ≤ 1

and 1− (1− u)n = u
∑

(1− u)k ≤ nu. Thus

|ηn| ≤
2
√
n√

(α+β2 )
.

Therefore for 0 ≤ α ≤ 2/hi and α+ β ≤ 2/hi we have:

|ηin| ≤ min

{
2
√

2n√
(α+ β)hi

,
4

(α+ β)hi

}
.

E Lower bound

We have the following lower-bound for the bound shown in Corollary 1, which shows that
depending on which of the two terms dominates, we may always find a sequence of functions
that makes it tight.

Proposition 1. Let L ≥ 0. For all sequences 0 ≤ αn ≤ 1/L and 0 ≤ βn ≤ 2/L− αn, such
that αn +βn = o(nαn) there exists a sequence of one-dimensional quadratic functions (fn)n
with second-derivative less than L such that:

limαnn
2(fn(θn)− fn(θ∗)) =

‖θ0 − θ∗‖2

2
.

For all sequences 0 ≤ αn ≤ 1/L and 0 ≤ βn ≤ 2/L−αn, such that nαn = o(αn + βn), there
exists a sequence of one-dimensional quadratic functions (gn)n with second-derivative less
than L such that:

limn(αn + βn)(gn(θn)− gn(θ∗)) =
(1− exp(−2))2 ‖θ0 − θ∗‖2

4
.

Proof of the first lower-bound. For the first lower bound we consider 0 ≤ αn ≤ 1/L
and 0 ≤ βn ≤ 2/L − α, such that αn + βn = o(nαn). We define fn = π2/(4αnn

2) and we

consider the sequence of quadratic functions fn(θ) = fnθ2

2 . We consider the iterate (ηn)n
defined by our algorithm. We will show that

limαnfn(ηn) =
η21
2
.

We have, from Lemma 2,

fn(ηn) =
η2nfn

2
=

η21 sin2(ωnn)ρ2nn

2αn(1− π2(αn+βn)2

(4αnn)2
)
.
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Moreover,

ρ2nn =

(
1− βnπ

2

4αnn2

)n
= exp

(
n log

(
1− βnπ

2

4αnn2

))
= 1 + o(1),

since βn
αnn

= o(1). Also, 1− π2(αn+βn)2

(4αnn)2
= 1 + o(1), since αn + βn = o(nαn). Moreover

sin(ωn) =

√
−∆n

ρn
=

√
fn

√
αn − (αn+βn)2

4 fn
√

1− βnfn
= π/(2n) + o(1/n),

thus ωn = π/(2n) + o(1/n) and sin(nωn) = 1 + o(1).

Proof of the second lower-bound. We consider now the situation where the second
bound is active. Thus we take sequences (αn) and (βn), such that nαn = o(αn + βn). We
define gn = 2

n(αn+βn)
+ 4αn

(αn+βn)2
and consider the sequence of quadratic functions gn(θ) =

gnθ2

2 . We will show for the iterate (ηn) defined by our algorithm that:

limn(αn + βn)(gn(θn)− gn(θ∗)) =
(1− exp(−2))2 ‖θ0 − θ∗‖2

4
.

We will use Lemma 1. We first have

∆n =

(
αn + βn

2

)2

g2n − αngn = gn

(
αn + βn

2

)
1

n
.

Thus (n∆n)/gn =
(
αn+βn

2

)
and

√
∆n =

√(
1

n

)2

+
2αn

n(αn + βn)

=
1

n

√
1 +

2αnn

αn + βn

=
1

n
+

αn
αn + βn

+ o

(
αn

αn + βn

)
.

Moreover

rn = 1− αn + βn
2

gn = 1− 1

n
− 2αn
αn + βn

.

Thus

r+ = 1− αn
αn+βn

+ o

(
αn

αn + βn

)
,

and

rn+ = exp(n log(r+)) = exp

(
− nαn
αn + βn

)
+ o

(
nαn

αn + βn

)
= 1 + o(1).

Furthermore

r− = 1− 2

n
− 3αn
αn+βn

+ o

(
αn

αn + βn

)
,
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and

rn− = exp(n log(r+)) = exp

(
−2− 3αnn

αn + βn

)
+ o

(
nαn

αn + βn

)
= exp(−2) + o(1).

Thus
(rn+ − rn−)2 = (1− exp(−2))2 + o(1).

Finally, we have:

(αn + βn)n[gn(θn)− gn(θ∗)] =
αn + βn

2n
‖θ0 − θ∗‖2

[rn+ − rn−]2

4∆n/gn

=
‖θ0 − θ∗‖2

4
[rn+ − rn−]2

=
‖θ0 − θ∗‖2

4
(1− exp(−2))2 + o(1).

F Proofs of Section 4

F.1 Proofs of Theorem 3 and Theorem 4

We decompose again vectors in an eigenvector basis of H with ηin = p>i ηn and εin = p>i εn:

ηin+1 = (1− αhi)ηin + (1− βhi)(ηin − ηin−1) + (nα+ β)εin+1.

We denote by ξin+1 =

(
[nα+ β]εin+1

0

)
and we have the reduced equation:

Θi
n+1 = FiΘ

i
n + ξin+1.

Unfortunately Fi is not Hermitian and this formulation will not be convenient for calculus.
Without loss of generality, we assume r−i 6= r+i even if it means having r−i − r

+
i goes to 0 in

the final bound. Let Qi =

(
r−i r+i
1 1

)
be the transfer matrix of Fi, i.e., Fi = QiDiQ

−1
i with

Di =

(
r−i 0
0 r+i

)
and Q−1i = 1

r−i −r
+
i

(
1 −r+i
−1 r−i

)
. We can reparametrize the problem in the

following way:

Q−1i Θi
n+1 = Q−1i FiΘ

i
n +Q−1i ξin+1

= Q−1i FiQiQ
−1
i Θi

n +Q−1i ξin+1

= Di(Q
−1
i Θi

n) +Q−1i ξin+1.

With Θ̃i
n = Q−1i Θi

n and ξ̃in = Q−1i ξin we now have:

Θ̃i
n+1 = DiΘ̃

i
n + ξ̃in+1, (21)

with now Di Hermitian (even diagonal).
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Thus it is easier to tackle using standard techniques for stochastic approximation (see, e.g.,
Polyak and Juditsky, 1992; Bach and Moulines, 2011):

Θ̃i
n = Dn

i Θ̃i
0 +

n∑
k=1

Dn−k
i ξ̃ik.

Let Mi =

(
h
1/2
i h

1/2
i

0 0

)
, we then get using standard martingale square moment inequalities,

since for n 6= m, εin and εim are uncorrelated (i.e., E[εinε
i
m] = 0):

E‖MiΘ̃
i
n‖2 = ‖MiD

n
i Θ̃i

0‖2 + E
n∑
k=1

‖MiD
n−k
i ξ̃ik‖2.

This is a bias-variance decomposition; the left term only depends on the initial condition
and the right term only depends on the noise process.

We have with Mi =

(
h
1/2
i h

1/2
i

0 0

)
, MiQ

−1
i =

(
0 h

1/2
i

0 0

)
, and MiΘ̃

i
n =

(√
hiη

i
n

0

)
. Thus,

we have access to the function values through:

‖MiΘ̃
i
n‖2 = hi(η

i
n)2.

Moreover we have Θi
0 =

(
φi1/(r

−
i − r

+
i )

−φi1/(r
−
i − r

+
i )

)
. Thus

‖MiD
n
i Θ̃i

0‖2 = (φi1)
2hi

(
(r+i )n − (r−i )n

)2
(r+i − r

−
i )2

.

This is the bias term we have studied in Section 3.3 which we bound with Theorem 2. The
variance term is controlled by the next proposition.

Proposition 2. With E[(εin)2] = ci for all n ∈ N, for α ≤ 1/hi and 0 ≤ β ≤ 2/hi − α , we
have

1

n2
E

n∑
k=1

‖MiD
n−k
i ξ̃ik‖2 ≤

min

{
2(αn+ β)2

αβ(4− (α+ 2β)hi)n2
ci
hi
,
16(nα+ β)2

n(α+ β)2
ci
hi
, 2

(αn+ β)2

nα
ci,

8(nα+ β)2

α+ β
ci

}
.

The last two bounds prove Theorem 3.

We note that if we restrict β to β ≤ 3/(2hi) − α/2, then 4 − (α + 2β)hi ≥ 1 and the

first bound of Proposition 2 is simplified to 2(αn+β)2

αβn2
ci
hi

. This allows to conclude to prove
Theorem 4.
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F.2 Proof of Corollary 3

We let ν = ‖θ0−θ∗‖√
L tr(CH−1)

and consider three different regimes depending on ν and L.

If ν < 1/L, we have ν/N < 1/L and thus α = ν/N and β = ν. Therefore

‖θ0 − θ∗‖2

N2α
+

(αN + β)2

αβN2
tr(CH−1) =

‖θ0 − θ∗‖2

νN
+

4 tr(CH−1)

N

≤
√
L tr(CH−1)‖θ0 − θ∗‖

N
+

4 tr(CH−1)

N

≤ 5 tr(CH−1)

N
,

where we have used
√
L‖θ0 − θ∗‖ <

√
tr(CH−1) since ν < 1/L.

If ν > 1/L and ν < N/L, we have α = ν/N and β = 1/L. Therefore

‖θ0 − θ∗‖2

N2α
+

(αN + β)2

αβN2
tr(CH−1) ≤ ‖θ0 − θ∗‖2

νN
+

4 tr(CH−1)

LνN

≤
√
L tr(CH−1)‖θ0 − θ∗‖

N
+

4 tr(CH−1)

N

≤
5
√
L tr(CH−1)‖θ0 − θ∗‖

N
,

where we have used
√
L‖θ0 − θ∗‖ >

√
tr(CH−1) since ν > 1/L.

If ν > N/L, we have α = 1/L and β = 1/L. Therefore

‖θ0 − θ∗‖2

N2α
+

(α(N − 1) + β)2

αβN2
tr(CH−1) =

L‖θ0 − θ∗‖2

N2
+ tr(CH−1)

≤ L‖θ0 − θ∗‖2

N2
+
L‖θ0 − θ∗‖2

N2

≤ 2L‖θ0 − θ∗‖2

N2
,

where we have used that the real bound in Proposition 2 is in fact in (N − 1)α + β, (see

Lemma 6) and that tr(CH−1) < L‖θ0−θ∗‖2
N2 since ν > N/L.

F.3 Proof of Proposition 2

F.3.1 Proof outline

To prove Proposition 2 we will use Lemmas 6, 7 and 8, that are stated and proved in
Section F.3.2.

We want to bound E[
∑n

k=1 ‖MiD
n−k
i ξ̃ik‖2] and according to Lemma 6, we have an explicit

expansion using the roots of the characteristic polynomial:

E‖MiD
k
i ξ̃
i
k‖2 = hi((k − 1)α+ β)2E[(εi)

2
]
[(r−i )n−k − (r+i )n−k]2

(r−i − r
+
i )2

.
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Thus, by bouding (k − 1)α+ β by (n− 1)α+ β, we get

E
n∑
k=1

‖MiD
n−k
i ξ̃ik‖2 ≤ hi((n− 1)α+ β)2E[εi

2
]

n∑
k=1

[(r−i )n−k − (r+i )n−k]2

(r−i − r
+
i )2

. (22)

Then, we have from Lemma 7 the inequality:

n∑
k=1

[(r−i )k − (r+i )k]2

[(r−i )− (r+i )]2
≤ 2− βhi

4αβh2i (1− (14α+ 1
2β)hi)

.

Therefore

E
n∑
k=1

‖M1/2
i Dn−k

i ξ̃ik‖2 ≤
E[εi

2
]

hi

((n− 1)α+ β)2

4αβ

2− βhi
(1− (14α+ 1

2β)hi)
.

This allows to prove the first part of the bound. The other parts are much simpler and are
done in Lemma 8. Thus, adding these bounds gives for α ≤ 1/hi and 0 ≤ β ≤ 2/hi − α:

1

n2
E

n∑
k=1

‖MiD
n−k
i ξ̃ik‖2 ≤

min

{
2(α(n− 1) + β)2

αβn2(4− (α+ 2β)hi)

c

hi
,
16((n− 1)α+ β)2

n(α+ β)2
c

hi
, 2

(α(n− 1) + β)2

nα
ci,

8((n− 1)α+ β)2

α+ β
ci

}
.

F.3.2 Some technical Lemmas

We first compute an explicit expansion of the noise term as a function of the eigenvalues of
the dynamical system.

Lemma 6. For all α ≤ 1/hi and 0 ≤ β ≤ 2/hi − α we have

E‖MiD
k
i ξ̃
i
k‖2 = hi((k − 1)α+ β)2E[(εi)

2
]
[(r−i )n−k − (r+i )n−k]2

(r−i − r
+
i )2

.

Proof. We first turn the Euclidean norm into a trace, using that tr[AB] = tr[BA] for two
matrices A and B and that tr[x] = x for a real x.

E‖MiD
n−k
i ξ̃ik‖2 = TrDn−k

i Mi
>MiD

n−k
i E[ξ̃ik(ξ̃

i
k)
>

], (23)

This enables us to separate the noise term from the rest of the formula. Then we compute
the latter from the definition of ξ̃ik in Eq. (21) :

E[ξ̃ik(ξ̃
i
k)
>

] =
((k − 1)α+ β)2

(r−i − r
+
i )2

E[(εi)
2
]

(
1 −1
−1 1

)
.

And the first part of Eq. (23) is equal to:

Dn−k
i Mi

>MiD
n−k
i = hi

(
(r−i )

2(n−k)
(r−i )(n−k) − (r+i )

(n−k)

(r−i )(n−k) − (r+i )
(n−k)

(r+i )
2(n−k)

)
,
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because Di =

(
r−i 0
0 r+i

)
and Mi =

(
h
1/2
i h

1/2
i

0 0

)
. Therefore:

E‖MiD
n−k
i ξ̃ik‖2 = hi

((k − 1)α+ β)2

(r−i − r
+
i )2

E[εi
2
][(r−i )n−k − (r+i )n−k]2.

In the following leamma, we bound a certain sum of powers of the roots.

Lemma 7. For all α ≤ 1/hi and 0 ≤ β ≤ 2/hi − α we have

n∑
k=1

[
(r−i )k − (r+i )k]2

[(r−i )− (r+i )
]2 ≤ 2− βhi

4αβh2i (1− (14α+ 1
2β)hi)

.

We first note that when the two roots become close, the denominator and the numerator
will go to zero, which prevents from bounding the numerator easily. We also note that this
bound is very tight since the difference between the two terms goes to zero when n goes to
infinity.

Proof. We first expand the square of the difference of the powers of the roots and compute
their sums.

n∑
k=1

[
(r−i )k − (r+i )k

]2
=

n∑
k=1

[
r+i

2k
+ r−i

2k − 2(r+i r
−
i )k
]

=
1− r+i

2n

1− r+i
2 +

1− r−i
2n

1− r−i
2 − 2

1− (r+i r
−
i )n

1− (r+i r
−
i )

=
1

1− r+i
2 +

1

1− r−i
2 −

2

1− (r+i r
−
i )
−
[
r+i

2n

1− r+i
2 +

r−i
2n

1− r−i
2 − 2

(r+i r
−
i )n

1− (r+i r
−
i )

]
=

1

1− r+i
2 +

1

1− r−i
2 −

2

1− (r+i r
−
i )
− In,

with In =

[
r+i

2n

1−r+i
2 +

r−i
2n

1−r−i
2 − 2

(r+i r
−
i )n

1−(r+i r
−
i )

]
.

This sum is therefore equal to the sum of one term we will compute explicitly and one other
term which will go to zero. We have for the first term:

1

1− r+i
2 +

1

1− r−i
2 −

2

1− (r+i r
−
i )

=
(1− r−i

2
)(1− (r+i r

−
i ))− (1− r−i

2
)(1− r+i

2
)

(1− r+i
2
)(1− r−i

2
)(1− (r+i r

−
i ))

+
(1− r+i

2
)(1− (r+i r

−
i ))− (1− r−i

2
)(1− r+i

2
)

(1− r+i
2
)(1− r−i

2
)(1− (r+i r

−
i ))

,
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with

(1− r−i
2
)(1− (r+i r

−
i ))− (1− r−i

2
)(1− r+i

2
) = (1− r−i

2
)[(1− (r+i r

−
i ))− (1− r+i

2
)]

= r+i (1− r−i
2
)(r+i − r

−
i ),

and
(1− r+i

2
)(1− (r+i r

−
i ))− (1− r−i

2
)(1− r+i

2
) = −r−i (1− r−i

2
)(r+i − r

−
i ),

and

r+i (1− r−i
2
)(r+i − r

−
i )− r−i (1− r−i

2
)(r+i − r

−
i ) = (r+i − r

−
i )[r+i (1− r−i

2
)− r−i (1− r−i

2
)]

= (r+i − r
−
i )[r+i − r

−
i + r+i r

−
i (r+i − r

−
i )]

= (r+i − r
−
i )2[1 + r+i r

−
i ].

Therefore the first term is equal to:

1

1− r+i
2 +

1

1− r−i
2 −

2

1− (r+i r
−
i )

=
(r+i − r

−
i )2[1 + r+i r

−
i ]

(1− r+i
2
)(1− r−i

2
)(1− (r+i r

−
i ))

,

and the sum can be expanded as:

n∑
k=1

[(r−i )k − (r+i )k]2

[r−i − r
+
i ]2

=
[1 + r+i r

−
i ]

(1− r+i
2
)(1− r−i

2
)(1− (r+i r

−
i ))
− Jn,

with Jn = In
[(r−i )−(r+i )]2

.

Then we simplify the first term of this sum using the explicit values of the roots. We recall

r±i = ri ±
√

∆i = 1− α+β
2 hi ±

√(
α+β
2

)2
h2i − αhi, therefore

r+i r
−
i = r2i −∆2

i

=

(
1−

(
α+ β

2

)
hi

)2

−
[(

α+ β

2

)
hi

]2
+ αhi

= 1− βhi,

and

(1− r+i
2
)(1− r−i

2
) = [(1− r−i )(1− r+i )][(1 + r+i )(1 + r+i )]

= [(1− ri +
√

∆i)((1− ri −
√

∆i)][(1 + ri +
√

∆i)((1 + ri −
√

∆i)]

= [(1− ri)2 −∆i][(1 + ri)
2 −∆i][(1− ri)2 −∆i]

= 4αhi

(
1−

(
1

4
α+

1

2
β

)
hi

)
.

Thus
n∑
k=1

[(r−i )k − (r+i )k]2

[(r−i )− (r+i )]2
=

2− βhi
4αβh2i (1− (14α+ 1

2β)hi)
− Jn.
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Even if Jn will be asymptotically small, we want a non-asymptotic bound, thus we will
show that Jn is always positive.

In the real case [(r−i )− (r+i )]2 ≥ 0 and using a2 + b2 ≥ 2ab, for all (a, b) ∈ R2, we have

r+i
2n

1− r+i
2 +

r−i
2n

1− r−i
2 ≥ 2

(r+i r
−
i )n√

(1− r+i
2
)(1− r−i

2
)
,

and using r+i
2

+ r−i
2 ≥ 2r−i r

−
i we have√

(1− r+i
2
)(1− r−i

2
) ≤ 1− (r+i r

−
i ),

since

(1− r+i
2
)(1− r−i

2
)− [1− (r+i r

−
i )]2 = 1− r+i

2 − r−i
2

+ (r+i r
−
i )2 − 1 + 2r+i r

−
i − (r+i r

−
i )2

= 2r+i r
−
i − r

+
i
2 − r−i

2

≤ 0.

Thus
r+i

2n

1− r+i
2 +

r−i
2n

1− r−i
2 − 2

(r+i r
−
i )n

1− (r+i r
−
i )
≥ 0.

and Jn ≥ 0 in the real case.

In the complex case, [(r−i )− (r+i )]2 ≤ 0, and using z2 + z̄2 ≤ 2zz̄ for all z ∈ C, we have

r+i
2n

1− r+i
2 +

r−i
2n

1− r−i
2 ≤ 2

(r+i r
−
i )n√

(1− r+i
2
)(1− r−i

2
)
,

and using r+i
2

+ r−i
2 ≤ 2r−i r

−
i we have√

(1− r+i
2
)(1− r−i

2
) ≥ 1− (r+i r

−
i ).

Thus
r+i

2n

1− r+i
2 +

r−i
2n

1− r−i
2 − 2

(r+i r
−
i )n

1− (r+i r
−
i )
≤ 0.

and Jn ≥ 0 in the complexe case.

Therefore we always have:
Jn ≥ 0,

and
n∑
k=1

[(r−i )k − (r+i )k]2

[(r−i )− (r+i )]2
≤ 2− βhi

4αβh2i (1− (14α+ 1
2β)hi)

.
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However we can also bound roughly Eq. (22) using Theorem 2 since we recall we have

ηin =
[(r−i )n−k−(r+i )n−k]2

(r−i −r
+
i )2

. This gives us the following lemma which enables to prove the

second part of Proposition 2.

Lemma 8. For all α ≤ 1/hi and 0 ≤ β ≤ 2/hi − α we have

E
n∑
k=1

‖M1/2
i Dn−k

i ξ̃ik‖2 ≤ E[(εi)
2
]n((n− 1)α+ β)2 min

{
2

α
,

8n

α+ β
,

16

hi(α+ β)2

}
.

Proof. From Lemma 6, we get

E
n∑
k=1

‖M1/2
i Dn−k

i ξ̃ik‖2 = hiE[(εi)
2
]
n∑
k=1

((k − 1)α+ β)2
[(r−i )n−k − (r+i )n−k]2

(r−i − r
+
i )2

≤ hiE[(εi)
2
]((n− 1)α+ β)2nmin

{
2

αhi
,

8n

(α+ β)hi
,

16

(α+ β)2h2i

}
≤ E[(εi)

2
]n((n− 1)α+ β)2 min

{
2

α
,

8n

α+ β
,

16

hi(α+ β)2

}
.

G Comparison with additional other algorithms

G.1 Summary

When the objective function f is quadratic and for correct choices of step-sizes, the AC-SA
algorithm of Lan (2012), the SAGE algorithm of Hu et al. (2009) and the Accelerated RDA
algorithm of Xiao (2010) are all equivalent to:

θn+1 = [I − δn+1Hn+1]θn +
n− 2

n+ 1
[I − δn+1Hn+1](θn − θn−1) + δn+1εn+1,

where we use Hnθ + εn as an unbiased estimate of the gradient and δn as step-size which
values will be specified later.

Lan (2012) and Hu et al. (2009) only consider bounded cases by projecting their iterates
on a bounded space. Xiao (2010) deals with the unbounded case and prove the following
convergence result:

Theorem 5. (Xiao, 2010, Theorem 6). With E[εn⊗ εn] = C, for step-size δn ≤ n−1
n γ with

γ ≤ 1/L, we have

Ef(θn)− f(θ∗) ≤
4‖θ0 − θ∗‖2

n2γ
+
nγσ2 trC

3
.

This result is significantly more general than ours since it is valid for composite optimization
and general noise on the gradients.

We now present the different algorithms and show they all share the same form.
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G.2 AC-SA

Lemma 9. AC-SA algorithm with step size γn and βn and gradient estimate Hn+1θn+εn+1

is equivalent to:

θn+1 = (I − γn
βn
Hn+1)θn +

βn−1 − 1

βn
(I − γn

βn
Hn+1)(θn − θn−1) +

γn
βn
εn+1.

Proof. We recall the general AC-SA algorithm:

• Let the initial points xag1 = x1, and the step-sizes {βn}n≤1 and {γn}n≤1 be given.

Set n = 1

• Step 1. Set xmdn = β−1n xn + (1− β−1n )xagn ,

• Step 2. Call the Oracle for computing G(xmdn , ξn) where E[G(xmdn , ξn)] = f ′(xmdn ).

Set
xn+1 = xn − γnG(xmdn , ξn),

xagn+1 = β−1n xn+1 + (1− β−1n )xagn ,

• Step 3. Set n→ n+ 1 and go to step 1.

When f is quadratic we will have G(xmdn , ξn) = Hn+1x
md
n − εn+1, thus xn+1 = xn −

γnHn+1x
md
n + γnεn+1, and:

xagn+1 = β−1n xn+1 + (1− β−1n )xagn

= β−1n (xn − γnHn+1x
md
n + γnεn+1) + (1− β−1n )xagn

= β−1n (βnx
md
n + (1− βn)xagn − γnHn+1x

md
n + γnεn+1) + (1− β−1n )xagn

= xmdn −
γn
βn
Hn+1x

md
n +

γn
βn
εn+1,

and

xmdn = β−1n xn + (1− β−1n )xagn

= β−1n βn−1x
ag
n + β−1n (1− βn−1)xagn−1 + (1− β−1n )xagn

= xagn +
βn−1 − 1

βn
[xagn − x

ag
n−1].

These give the result for θn = xagn .

G.3 SAGE

Lemma 10. The algorithm SAGE with step-sizes Ln and αn is equivalent to:

θn+1 = (I − 1/Ln+1Hn+1)θn + (1− αn)
αn+1

αn
[I − 1/Ln+1Hn+1](θn − θn−1) + 1/Ln+1εn+1.
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Proof. We recall the general SAGE algorithm:

• Let the initial points x0 = z0 = 0, and the step-sizes {βn}n≤1 and {Ln}n≤1 be given.

Set n = 1

• Step 1. Set xn = (1− αn)yn−1 + αnzn−1,

• Step 2. Call the Oracle for computing G(xn, ξn) where E[G(xn, ξn)] = f ′(xn). Set

yn = xn − 1/LnG(xn, ξn),

zn = zn−1 − α−1n (xn − yn)

• Step 3. Set n→ n+ 1 and go to step 1.

We have
yn = (I − 1/LnHn)xn + γnεn,

and

zn = zn−1 − α−1n (xn − yn)

= zn−1 − α−1n [(1− αn)yn−1 + αnzn−1 − yn]

= α−1n yn − α−1n (1− αn)yn−1.

Thus

xn = (1− αn)yn−1 + αnzn−1

= (1− αn)yn−1 + αn[α−1n−1yn−1 − α
−1
n−1(1− αn−1)yn−2]

= yn−1 + (1− αn−1)
αn
αn−1

[yn−1 − yn−2].

These give the result for θn = yn.

G.4 Accelerated RDA method

Lemma 11. The algorithm AccRDA with step-sizes β and αn is equivalent to:

θn+1 = (I − γn+1Hn+1)θn + (1− αn)
αn+1

αn
[I − γn+1Hn+1](θn − θn−1) + γn+1εn+1,

with γn = αnθn
L+β .

Proof. We recall the general Accelerated RDA method:

• Let the initial points w0 = v0, A0 = 0, g̃0 = 0 and the step-sizes {αn}n≤1 and {βn}n≤1
be given.

Set n = 1
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• Step 1. Set An = An−1 + αn and θn = αn
An

.

• Step 2. Compute the query point un = (1− θn)wn−1 + θnvn−1

• Step 3. Call the Oracle for computing gn = G(un, ξn) where E[G(un, ξn)] = f ′(un),
and update the weighted average g̃n

g̃n = (1− θn)g̃n−1 + θngn.

• Step 4. Set vn = v0 − An
L+βn

g̃n.

• Step 5. Set wn = (1− θn)wn−1 + θnvn.

• Step 6. Set n→ n+ 1 and go to step 1.

First we have

vn = v0 −
An

L+ βn
g̃n

= v0 −
An

L+ βn
[(1− θn)g̃n−1 + θngn]

= v0 −
An

L+ βn
[(1− θn)g̃n−1 + θn(Hn+1un + εn+1)]

= v0 + (1− θn)
An(L+ βn−1)

(L+ βn)An−1
vn−1 −

An
L+ βn

θn(Hn+1un + εn+1)]

= v0 + (1− θn)
An(L+ βn−1)

(L+ βn)An−1
vn−1 −

αn
L+ βn

(Hn+1un + εn+1)].

With βn = β we have vn = vn−1 − αn
L+β (Hn+1un + εn+1)] and

wn = (I − αnθn
L+ β

Hn+1)un +
αnθn
L+ β

εn+1.

Since vn−1 = θ−1n−1wn−1 − θ
−1
n−1(1− θn−1)wn−2, then

un = (1− θn)wn−1 + θn(θ−1n−1wn−1 − θ
−1
n−1(1− θn−1)wn−2),

and

un = wn−1 +
αnAn−2
αn−1An

[wn−1 − wn−2].

H Lower bound for stochastic optimization for least-squares

In this section, we show a lower bound for optimization of quadratic functions with noisy
access to gradients. We follow very closely the framework of Agarwal et al. (2012) and use
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their notations. The only difference with their Theorem 1 in the different choice of two
functions f+i and f−i , which we choose to be:

f±i (x) = ci(xi ±
r

2
)2,

with a non-increasing sequence (ci) to be chosen later. The function gα that is optimized
is thus:

gα(x) =
1

d

d∑
i=1

{
(
1

2
+ αiδ)f

+
i (x) + (

1

2
− αiδ)f−i (x)

}
.

This function is quadratic and its Hessian has eigenvalues equal to 2ci/d. Thus, its largest
eigenvalue is 2c1/d, which we choose equal to L.

Noisy gradients are obtained by sampling d independent Bernoulli random variables bi,
i = 1, . . . , d, with parameters (12 + αiδ) and using the gradient of the random function
1
d

∑d
i=1

{
bif

+
i (x) + (1− bi)f−i (x)

}
. The variance of the random gradient is equal to

V =
d∑
i=1

1

d2
var
(
bi
[
ci(xi + r/2)− ci(xi − r/2)

])
=

1

d2

d∑
i=1

c2i r
2(1/4− δ2).

The function gα is minimized for x = −αδr, and the discrepancy measure between two
functions gα and gβ is greater than

1

d

d∑
i=1

{
inf
x

{
f+i (x)+f−i (x)

}
−inf

x
f+i (x)−inf

x
f−i (x)

}
1αi 6=βi >

1

d

d∑
i=1

3cir
2δ2

4
1αi 6=βi >

1

d

3cdr
2δ2

4
∆(α, β).

Since the vectors α, β ∈ {−1, 1}d are so that their Hamming distance ∆(α, β) > d/4 for

α 6= β, we have a discrepancy measure greater than 3cdr
2δ2

16 . Thus, for a an approxi-

mate optimality of ε = cdr
2δ2

38 , we have, following the proof of Theorem 1 (equation (29))
from Agarwal et al. (2012), for N iterations of any method that accesses a random gradient,
we have:

1/3 > 1− 2
16Ndδ2 + log 2

d log(2/
√
e)

.

Thus, for d large, we get, up to constants, δ2 > 1/N and thus ε > r2cd
N .

For c1 = 2Ld and ci = L
√
d for the remaining ones, we get (up to constants):

ε >
V

L

√
d

N
.

This leads to the desired result for N 6 d.
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