8 research outputs found

    A test-driven approach to code search and its application to the reuse of auxiliary functionality

    Get PDF
    Context: Software developers spend considerable effort implementing auxiliary functionality used by the main features of a system (e.g., compressing/decompressing files, encryption/decription of data, scaling/rotating images). With the increasing amount of open source code available on the Internet, time and effort can be saved by reusing these utilities through informal practices of code search and reuse. However, when this type of reuse is performed in an ad hoc manner, it can be tedious and error-prone: code results have to be manually inspected and integrated into the workspace.Objective: in this paper we introduce and evaluate the use of test cases as an interface for automating code search and reuse. We call our approach Test-Driven Code Search (TDCS). Test cases serve two purposes: (1) they define the behavior of the desired functionality to be searched; and (2) they test the matching results for suitability in the local context. We also describe CodeGenie, an Eclipse plugin we have developed that performs TDCS using a code search engine called Sourcerer.Method: Our evaluation consists of two studies: an applicability study with 34 different features that were searched using CodeGenie; and a performance study comparing CodeGenie, Google Code Search, and a manual approach.Results: Both studies present evidence of the applicability and good performance of TDCS in the reuse of auxiliary functionality.Conclusion: This paper presents an approach to source code search and its application to the reuse of auxiliary functionality. Our exploratory evaluation shows promising results, which motivates the use and further investigation of TDCS. (C) 2010 Elsevier B.V. All rights reserved.Universidade Federal de São Paulo, Dept Sci & Technol, Sao Jose Dos Campos, SP, BrazilUSP, ICMC, Comp Syst Dept, BR-13560970 Sao Carlos, SP, BrazilUniv Calif Irvine, Donald Bren Sch Informat & Comp Sci, Irvine, CA USAUniversidade Federal de São Paulo, Dept Sci & Technol, Sao Jose Dos Campos, SP, BrazilWeb of Scienc

    Big Code Search: A Bibliography

    Get PDF
    peer reviewedCode search is an essential task in software development. Developers often search the internet and other code databases for necessary source code snippets to ease the development efforts. Code search techniques also help learn programming as novice programmers or students can quickly retrieve (hopefully good) examples already used in actual software projects. Given the recurrence of the code search activity in software development, there is an increasing interest in the research community. To improve the code search experience, the research community suggests many code search tools and techniques. These tools and techniques leverage several different ideas and claim a better code search performance. However, it is still challenging to illustrate a comprehensive view of the field considering that existing studies generally explore narrow and limited subsets of used components. This study aims to devise a grounded approach to understanding the procedure for code search and build an operational taxonomy capturing the critical facets of code search techniques. Additionally, we investigate evaluation methods, benchmarks, and datasets used in the field of code search

    Supporting Source Code Search with Context-Aware and Semantics-Driven Query Reformulation

    Get PDF
    Software bugs and failures cost trillions of dollars every year, and could even lead to deadly accidents (e.g., Therac-25 accident). During maintenance, software developers fix numerous bugs and implement hundreds of new features by making necessary changes to the existing software code. Once an issue report (e.g., bug report, change request) is assigned to a developer, she chooses a few important keywords from the report as a search query, and then attempts to find out the exact locations in the software code that need to be either repaired or enhanced. As a part of this maintenance, developers also often select ad hoc queries on the fly, and attempt to locate the reusable code from the Internet that could assist them either in bug fixing or in feature implementation. Unfortunately, even the experienced developers often fail to construct the right search queries. Even if the developers come up with a few ad hoc queries, most of them require frequent modifications which cost significant development time and efforts. Thus, construction of an appropriate query for localizing the software bugs, programming concepts or even the reusable code is a major challenge. In this thesis, we overcome this query construction challenge with six studies, and develop a novel, effective code search solution (BugDoctor) that assists the developers in localizing the software code of interest (e.g., bugs, concepts and reusable code) during software maintenance. In particular, we reformulate a given search query (1) by designing novel keyword selection algorithms (e.g., CodeRank) that outperform the traditional alternatives (e.g., TF-IDF), (2) by leveraging the bug report quality paradigm and source document structures which were previously overlooked and (3) by exploiting the crowd knowledge and word semantics derived from Stack Overflow Q&A site, which were previously untapped. Our experiment using 5000+ search queries (bug reports, change requests, and ad hoc queries) suggests that our proposed approach can improve the given queries significantly through automated query reformulations. Comparison with 10+ existing studies on bug localization, concept location and Internet-scale code search suggests that our approach can outperform the state-of-the-art approaches with a significant margin
    corecore