4,239 research outputs found

    A Tensor Approach to Learning Mixed Membership Community Models

    Get PDF
    Community detection is the task of detecting hidden communities from observed interactions. Guaranteed community detection has so far been mostly limited to models with non-overlapping communities such as the stochastic block model. In this paper, we remove this restriction, and provide guaranteed community detection for a family of probabilistic network models with overlapping communities, termed as the mixed membership Dirichlet model, first introduced by Airoldi et al. This model allows for nodes to have fractional memberships in multiple communities and assumes that the community memberships are drawn from a Dirichlet distribution. Moreover, it contains the stochastic block model as a special case. We propose a unified approach to learning these models via a tensor spectral decomposition method. Our estimator is based on low-order moment tensor of the observed network, consisting of 3-star counts. Our learning method is fast and is based on simple linear algebraic operations, e.g. singular value decomposition and tensor power iterations. We provide guaranteed recovery of community memberships and model parameters and present a careful finite sample analysis of our learning method. As an important special case, our results match the best known scaling requirements for the (homogeneous) stochastic block model

    Online Tensor Methods for Learning Latent Variable Models

    Get PDF
    We introduce an online tensor decomposition based approach for two latent variable modeling problems namely, (1) community detection, in which we learn the latent communities that the social actors in social networks belong to, and (2) topic modeling, in which we infer hidden topics of text articles. We consider decomposition of moment tensors using stochastic gradient descent. We conduct optimization of multilinear operations in SGD and avoid directly forming the tensors, to save computational and storage costs. We present optimized algorithm in two platforms. Our GPU-based implementation exploits the parallelism of SIMD architectures to allow for maximum speed-up by a careful optimization of storage and data transfer, whereas our CPU-based implementation uses efficient sparse matrix computations and is suitable for large sparse datasets. For the community detection problem, we demonstrate accuracy and computational efficiency on Facebook, Yelp and DBLP datasets, and for the topic modeling problem, we also demonstrate good performance on the New York Times dataset. We compare our results to the state-of-the-art algorithms such as the variational method, and report a gain of accuracy and a gain of several orders of magnitude in the execution time.Comment: JMLR 201

    Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach

    Full text link
    The increasing availability of temporal network data is calling for more research on extracting and characterizing mesoscopic structures in temporal networks and on relating such structure to specific functions or properties of the system. An outstanding challenge is the extension of the results achieved for static networks to time-varying networks, where the topological structure of the system and the temporal activity patterns of its components are intertwined. Here we investigate the use of a latent factor decomposition technique, non-negative tensor factorization, to extract the community-activity structure of temporal networks. The method is intrinsically temporal and allows to simultaneously identify communities and to track their activity over time. We represent the time-varying adjacency matrix of a temporal network as a three-way tensor and approximate this tensor as a sum of terms that can be interpreted as communities of nodes with an associated activity time series. We summarize known computational techniques for tensor decomposition and discuss some quality metrics that can be used to tune the complexity of the factorized representation. We subsequently apply tensor factorization to a temporal network for which a ground truth is available for both the community structure and the temporal activity patterns. The data we use describe the social interactions of students in a school, the associations between students and school classes, and the spatio-temporal trajectories of students over time. We show that non-negative tensor factorization is capable of recovering the class structure with high accuracy. In particular, the extracted tensor components can be validated either as known school classes, or in terms of correlated activity patterns, i.e., of spatial and temporal coincidences that are determined by the known school activity schedule

    Consistent Estimation of Mixed Memberships with Successive Projections

    Full text link
    This paper considers the parameter estimation problem in Mixed Membership Stochastic Block Model (MMSB), which is a quite general instance of random graph model allowing for overlapping community structure. We present the new algorithm successive projection overlapping clustering (SPOC) which combines the ideas of spectral clustering and geometric approach for separable non-negative matrix factorization. The proposed algorithm is provably consistent under MMSB with general conditions on the parameters of the model. SPOC is also shown to perform well experimentally in comparison to other algorithms

    Consistency of adjacency spectral embedding for the mixed membership stochastic blockmodel

    Full text link
    The mixed membership stochastic blockmodel is a statistical model for a graph, which extends the stochastic blockmodel by allowing every node to randomly choose a different community each time a decision of whether to form an edge is made. Whereas spectral analysis for the stochastic blockmodel is increasingly well established, theory for the mixed membership case is considerably less developed. Here we show that adjacency spectral embedding into Rk\mathbb{R}^k, followed by fitting the minimum volume enclosing convex kk-polytope to the k−1k-1 principal components, leads to a consistent estimate of a kk-community mixed membership stochastic blockmodel. The key is to identify a direct correspondence between the mixed membership stochastic blockmodel and the random dot product graph, which greatly facilitates theoretical analysis. Specifically, a 2→∞2 \rightarrow \infty norm and central limit theorem for the random dot product graph are exploited to respectively show consistency and partially correct the bias of the procedure.Comment: 12 pages, 6 figure
    • …
    corecore