32,849 research outputs found

    STA: Spatial-Temporal Attention for Large-Scale Video-based Person Re-Identification

    Full text link
    In this work, we propose a novel Spatial-Temporal Attention (STA) approach to tackle the large-scale person re-identification task in videos. Different from the most existing methods, which simply compute representations of video clips using frame-level aggregation (e.g. average pooling), the proposed STA adopts a more effective way for producing robust clip-level feature representation. Concretely, our STA fully exploits those discriminative parts of one target person in both spatial and temporal dimensions, which results in a 2-D attention score matrix via inter-frame regularization to measure the importances of spatial parts across different frames. Thus, a more robust clip-level feature representation can be generated according to a weighted sum operation guided by the mined 2-D attention score matrix. In this way, the challenging cases for video-based person re-identification such as pose variation and partial occlusion can be well tackled by the STA. We conduct extensive experiments on two large-scale benchmarks, i.e. MARS and DukeMTMC-VideoReID. In particular, the mAP reaches 87.7% on MARS, which significantly outperforms the state-of-the-arts with a large margin of more than 11.6%.Comment: Accepted as a conference paper at AAAI 201

    Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

    Get PDF
    For person re-identification, existing deep networks often focus on representation learning. However, without transfer learning, the learned model is fixed as is, which is not adaptable for handling various unseen scenarios. In this paper, beyond representation learning, we consider how to formulate person image matching directly in deep feature maps. We treat image matching as finding local correspondences in feature maps, and construct query-adaptive convolution kernels on the fly to achieve local matching. In this way, the matching process and results are interpretable, and this explicit matching is more generalizable than representation features to unseen scenarios, such as unknown misalignments, pose or viewpoint changes. To facilitate end-to-end training of this architecture, we further build a class memory module to cache feature maps of the most recent samples of each class, so as to compute image matching losses for metric learning. Through direct cross-dataset evaluation, the proposed Query-Adaptive Convolution (QAConv) method gains large improvements over popular learning methods (about 10%+ mAP), and achieves comparable results to many transfer learning methods. Besides, a model-free temporal cooccurrence based score weighting method called TLift is proposed, which improves the performance to a further extent, achieving state-of-the-art results in cross-dataset person re-identification. Code is available at https://github.com/ShengcaiLiao/QAConv.Comment: This is the ECCV 2020 version, including the appendi

    Audio-visual foreground extraction for event characterization

    Get PDF
    This paper presents a new method able to integrate audio and visual information for scene analysis in a typical surveillance scenario, using only one camera and one monaural microphone. Visual information is analyzed by a standard visual background/foreground (BG/FG) modelling module, enhanced with a novelty detection stage, and coupled with an audio BG/FG modelling scheme. The audiovisual association is performed on-line, by exploiting the concept of synchrony. Experimental tests carrying out classification and clustering of events show all the potentialities of the proposed approach, also in comparison with the results obtained by using the single modalities

    DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks

    Full text link
    3D scene understanding is important for robots to interact with the 3D world in a meaningful way. Most previous works on 3D scene understanding focus on recognizing geometrical or semantic properties of the scene independently. In this work, we introduce Data Associated Recurrent Neural Networks (DA-RNNs), a novel framework for joint 3D scene mapping and semantic labeling. DA-RNNs use a new recurrent neural network architecture for semantic labeling on RGB-D videos. The output of the network is integrated with mapping techniques such as KinectFusion in order to inject semantic information into the reconstructed 3D scene. Experiments conducted on a real world dataset and a synthetic dataset with RGB-D videos demonstrate the ability of our method in semantic 3D scene mapping.Comment: Published in RSS 201

    Spatial and Temporal Mutual Promotion for Video-based Person Re-identification

    Full text link
    Video-based person re-identification is a crucial task of matching video sequences of a person across multiple camera views. Generally, features directly extracted from a single frame suffer from occlusion, blur, illumination and posture changes. This leads to false activation or missing activation in some regions, which corrupts the appearance and motion representation. How to explore the abundant spatial-temporal information in video sequences is the key to solve this problem. To this end, we propose a Refining Recurrent Unit (RRU) that recovers the missing parts and suppresses noisy parts of the current frame's features by referring historical frames. With RRU, the quality of each frame's appearance representation is improved. Then we use the Spatial-Temporal clues Integration Module (STIM) to mine the spatial-temporal information from those upgraded features. Meanwhile, the multi-level training objective is used to enhance the capability of RRU and STIM. Through the cooperation of those modules, the spatial and temporal features mutually promote each other and the final spatial-temporal feature representation is more discriminative and robust. Extensive experiments are conducted on three challenging datasets, i.e., iLIDS-VID, PRID-2011 and MARS. The experimental results demonstrate that our approach outperforms existing state-of-the-art methods of video-based person re-identification on iLIDS-VID and MARS and achieves favorable results on PRID-2011.Comment: Accepted by AAAI19 as spotligh
    • …
    corecore