797 research outputs found

    An Overview Of Breath Phase Detection – Techniques & Applications

    Get PDF
    The main aim of this study is to provide an overview on the state of the art techniques (acoustic and non-acoustic approaches) involved in breath phase detection and to highlight applications where breath phase detection is vital. Both acoustic and non-acoustic approaches are summarized in detail. The non-acoustic approach involves placement of sensors or flow measurement devices to estimate the breath phases, whereas the acoustic approach involves the use of sophisticated signal processing methods on respiratory sounds to detect breath phases. This article also briefly discusses the advantages and disadvantages of the acoustic and non-acoustic approaches of breath phase detection. The literature reveals that recent advancements in computing technology open avenues for researchers to apply sophisticated signal processing techniques and artificial intelligence algorithms to detect the breath phases in a non-invasive way. Future works that can be implemented after detecting the breath phases are also highlighted in this article

    An Overview of Breath Phase Detection – Techniques & Applications

    Get PDF
    The main aim of this study is to provide an overview on the state of the art techniques (acoustic and nonacoustic approaches) involved in breath phase detection and to highlight applications where breath phase detection is vital. Both acoustic and non-acoustic approaches are summarized in detail. The non-acoustic approach involves placement of sensors or flow measurement devices to estimate the breath phases, whereas the acoustic approach involves the use of sophisticated signal processing methods on respiratory sounds to detect breath phases. This article also briefly discusses the advantages and disadvantages of the acoustic and non-acoustic approaches of breath phase detection. The literature reveals that recent advancements in computing technology open avenues for researchers to apply sophisticated signal processing techniques and artificial intelligence algorithms to detect the breath phases in a non-invasive way. Future works that can be implemented after detecting the breath phases are also highlighted in this article

    DIGITAL ANALYSIS OF CARDIAC ACOUSTIC SIGNALS IN CHILDREN

    Get PDF
    DIGITAL ANALYSIS OF CARDIAC ACOUSTIC SIGNALS IN CHILDREN Milad El-Segaier, MD Division of Paediatric Cardiology, Department of Paediatrics, Lund University Hospital, Lund, Sweden SUMMARY Despite tremendous development in cardiac imaging, use of the stethoscope and cardiac auscultation remains the primary diagnostic tool in evaluation of cardiac pathology. With the advent of miniaturized and powerful technology for data acquisition, display and digital signal processing, the possibilities for detecting cardiac pathology by signal analysis have increased. The objective of this study was to develop a simple, cost-effective diagnostic tool for analysis of cardiac acoustic signals. Heart sounds and murmurs were recorded in 360 children with a single-channel device and in 15 children with a multiple-channel device. Time intervals between acoustic signals were measured. Short-time Fourier transform (STFT) analysis was used to present the acoustic signals to a digital algorithm for detection of heart sounds, define systole and diastole and analyse the spectrum of a cardiac murmur. A statistical model for distinguishing physiological murmurs from pathological findings was developed using logistic regression analysis. The receiver operating characteristic (ROC) curve was used to evaluate the discriminating ability of the developed model. The sensitivities and specificities of the model were calculated at different cut-off points. Signal deconvolution using blind source separation (BSS) analysis was performed for separation of signals from different sources. The first and second heart sounds (S1 and S2) were detected with high accuracy (100% for the S1 and 97% for the S2) independently of heart rates and presence of a murmur. The systole and diastole were defined, but only systolic murmur was analysed in this work. The developed statistical model showed excellent prediction ability (area under the curve, AUC = 0.995) in distinguishing a physiological murmur from a pathological one with high sensitivity and specificity (98%). In further analyses deconvolution of the signals was successfully performed using blind separation analysis. This yielded two spatially independent sources, heart sounds (S1 and S2) in one component, and a murmur in another. The study supports the view that a cost-effective diagnostic device would be useful in primary health care. It would diminish the need for referring children with cardiac murmur to cardiac specialists and the load on the health care system. Likewise, it would help to minimize the psychological stress experienced by the children and their parents at an early stage of the medical care

    Recommendations Related To Wheeze Sound Data Acquisition

    Get PDF
    In the field of computerized respiratory sounds,a reliable data set with a sufficient number of subjects is required for the development of wheeze detection algorithm or for further analysis.Validated and accurate data is a critical issue in the field of research.In this study,the protocol related to wheeze sound data acquisition is discussed.Previously,most articles focused on wheeze detection or its parametric analysis,but no consideration was given to data acquisition.Second major purpose of this study is to exhibit particulars of our dataset which was attained for future analysis.We compile a database with a sufficient and reliable number of cases with all essential details,in contrast to commercially available wheeze sound data used for research,freely available online data on websites and data used to train medical students for auscultation

    Selected Topics on Computed Tomography

    Get PDF
    This book is a research publication that covers developments within the Diagnostics field of study. The book is a collection of reviewed scholarly contributions written by different authors and edited by an expert with specific expertise. Each scholarly contribution represents a chapter which is complete in itself but related to the major topics and objectives. The target audience comprises scholars and specialists in the field

    Characterization And Classification Of Asthmatic Wheeze Sounds According To Severity Level Using Spectral Integrated Features

    Get PDF
    This study aimed to investigate and classify wheeze sounds of asthmatic patients according to their severity level (mild, moderate and severe) using spectral integrated (SI) features. Method: Segmented and validated wheeze sounds were obtained from auscultation recordings of the trachea and lower lung base of 55 asthmatic patients during tidal breathing manoeuvres. The segments were multi-labelled into 9 groups based on the auscultation location and/or breath phases. Bandwidths were selected based on the physiology, and a corresponding SI feature was computed for each segment. Univariate and multivariate statistical analyses were then performed to investigate the discriminatory behaviour of the features with respect to the severity levels in the various groups. The asthmatic severity levels in the groups were then classified using the ensemble (ENS), support vector machine (SVM) and k-nearest neighbour (KNN) methods. Results and conclusion: All statistical comparisons exhibited a significant difference (p < 0.05) among the severity levels with few exceptions. In the classification experiments, the ensemble classifier exhibited better performance in terms of sensitivity, specificity and positive predictive value (PPV). The trachea inspiratory group showed the highest classification performance compared with all the other groups. Overall, the best PPV for the mild, moderate and severe samples were 95% (ENS), 88% (ENS) and 90% (SVM), respectively. With respect to location, the tracheal related wheeze sounds were most sensitive and specific predictors of asthma severity levels. In addition, the classification performances of the inspiratory and expiratory related groups were comparable, suggesting that the samples from these locations are equally informativ

    3D heart reconstruction

    Get PDF
    The purpose of this thesis was to achieve a 3D reconstruction of the four heart chambers using 2D echocardiographic images. A level set algorithm based on the phase symmetry approach and on a new logarithmic based stopping function was used to extract simultaneously the four heart cavities from these images in a fully automatic way. However to proceed to the 3D reconstruction using the segmented images, it was first necessary to satisfy clinical practise requirements. This means that the algorithm had to be validated to access the performance of the segmentation. Regarding this, the framework of this thesis was divided in two parts: validation of the segmentation algorithm and 3D reconstruction. The contours obtained in the segmentation were compared with the ones obtained by four physicians to evaluate the performance, reliability and confidence for eventual clinical practice. That algorithm evaluation versus clinicians‟ performance was made using eleven figures of merit: Mean/Max/Larger than 5 pixels Distance, Pratt Function, Hausdorff Distance, Similarity Angle, Similarity Region, Accuracy, Overlap, Sensitivity and Specificity; and two statistical tools: Box-plots and Dendrograms. The results indicate a reliable performance of the level set method for all chambers. The evaluation was based on echocardiography images of children. The 3D reconstruction was achieved using a heart phantom. This phantom was mainly composed by four balloons attached together and submerged in a water environment. A robotic arm with an ultrasound probe attached was used to take a large number of frames from the heart phantom. Several attempts were made using two types of acquisition: in Rotation and in Translation. Offline reconstructions of two rotations and one translation were presented and analyzed. The results of the rotations were far better than the translation. It was possible to infer the shape and volume of the balloons. These results present one more step in the way for a real-time 3D reconstruction using a tele-echographic syste

    Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    Get PDF
    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry

    Wrist-based Phonocardiogram Diagnosis Leveraging Machine Learning

    Get PDF
    With the tremendous growth of technology and the fast pace of life, the need for instant information has become an everyday necessity, more so in emergency cases when every minute counts towards saving lives. mHealth has been the adopted approach for quick diagnosis using mobile devices. However, it has been challenging due to the required high quality of data, high computation load, and high-power consumption. The aim of this research is to diagnose the heart condition based on phonocardiogram (PCG) analysis using Machine Learning techniques assuming limited processing power, in order to be encapsulated later in a mobile device. The diagnosis of PCG is performed using two techniques; 1. parametric estimation with multivariate classification, particularly discriminant function. Which will be explored at length using different number of descriptive features. The feature extraction will be performed using Wavelet Transform (Filter Bank). 2. Artificial Neural Networks, and specifically Pattern Recognition. This will also use decomposed version of PCG using Wavelet Transform (Filter Bank). The results showed 97.33% successful diagnosis using the first technique using PCG with a 19 dB Signal-to-Noise-Ratio. When the signal was decomposed into four sub-bands using a Filter Bank of the second order. Each sub-band was described using two features; the signal’s mean and covariance. Additionally, different Filter Bank orders and number of features are explored and compared. Using the second technique the diagnosis resulted in a 100% successful classification with 83.3% trust level. The results are assessed, and new improvements are recommended and discussed as part of future work.Teknologian valtavan kehittymisen ja nopean elämänrytmin myötä välittömästi saatu tieto on noussut jokapäiväiseksi välttämättömyydeksi, erityisesti hätätapauksissa, joissa jokainen säästetty minuutti on tärkeää ihmishenkien pelastamiseksi. Mobiiliterveys, eli mHealth, on yleisesti valjastettu käyttöön nopeaksi diagnoosimenetelmäksi mobiililaitteiden avulla. Käyttö on kuitenkin ollut haastavaa korkean datan laatuvaatimuksen ja suurten tiedonkäsittelyvaatimuksien, nopean laskentatehon ja sekä suuren virrankulutuksen vuoksi. Tämän tutkimuksen tavoitteena oli diagnosoida sydänsairauksia fonokardiogrammianalyysin (PCG) perusteella käyttämällä koneoppimistekniikoita niin, että käytettävä laskentateho rajoitetaan vastaamaan mobiililaitteiden kapasiteettia. PCG-diagnoosi tehtiin käyttäen kahta tekniikkaa 1. Parametrinen estimointi käyttäen moniulotteista luokitusta, erityisesti signaalien erotteluanalyysin avulla. Tätä asiaa tutkittiin syvällisesti käyttäen erilaisia tilastotieteellisesti kuvailevia piirteitä. Piirteiden irrotus suoritettiin käyttäen Wavelet-muunnosta ja suodatinpankkia. 2. Keinotekoisia neuroverkkoja ja erityisesti hahmontunnistusta. Tässä menetelmässä käytetään myös PCG-signaalin hajoitusta ja Wavelet-muunnos -suodatinpankkia. Tulokset osoittivat, että PCG 19dB:n signaali-kohina-suhteella voi johtaa 97,33% onnistuneeseen diagnoosiin käytettäessä ensimmäistä tekniikkaa. Signaalin hajottaminen neljään alikaistaan suoritettiin käyttämällä toisen asteen suodatinpankkia. Jokainen alikaista kuvattiin käyttäen kahta piirrettä: signaalin keskiarvoa ja kovarianssia, näin saatiin yhteensä kahdeksan ominaisuutta kuvaamaan noin yhden minuutin näytettä PCG-signaalista. Lisäksi tutkittiin ja verrattiin eriasteisia suodattimia ja piirteitä. Toista tekniikkaa käyttäen diagnoosi johti 100% onnistuneeseen luokitteluun 83,3% luotettavuustasolla. Tuloksia käsitellään ja pohditaan, sekä tehdään niistä johtopäätöksiä. Lopuksi ehdotetaan ja suositellaan käytettyihin menetelmiin uusia parannuksia jatkotutkimuskohteiksi.fi=vertaisarvioitu|en=peerReviewed

    The electronic stethoscope

    Get PDF
    corecore