2,195 research outputs found

    Suffix Arrays Construction and Their Use in Bioinformatics

    Get PDF
    Práce pojednává o perspektivní datové struktuře, která se nazývá sufixové pole. Tato datová struktura je zde podrobněji popsána a v práci je dále uvedeno rozdělení algoritmů pro konstrukci tohoto pole. Je zde popsáno několik konstrukčních algoritmů a nejpodrobněji se práce zaobírá algoritmem nazývaným qsufsort. Nakonec si ukážeme využití sufixového pole pro vyhledávání přesných (pomocí binárního vyhledávání) a přibližných (metoda QUASAR) vzorů v sekvencích DNA.This work describes perspective data structure called suffix array. This data structure is described in more detail and this paper also contains taxonomy of suffix array construction algorithms. A few algorithms are described more precisely and most space is devoted to algorithm called qsufsort. Finally we will show how can be suffix array used in practice. This work shows usage of suffix array in exact (binary search) and approximate (QUASAR) string matching in DNA sequences.

    An Elegant Algorithm for the Construction of Suffix Arrays

    Get PDF
    The suffix array is a data structure that finds numerous applications in string processing problems for both linguistic texts and biological data. It has been introduced as a memory efficient alternative for suffix trees. The suffix array consists of the sorted suffixes of a string. There are several linear time suffix array construction algorithms (SACAs) known in the literature. However, one of the fastest algorithms in practice has a worst case run time of O(n2)O(n^2). The problem of designing practically and theoretically efficient techniques remains open. In this paper we present an elegant algorithm for suffix array construction which takes linear time with high probability; the probability is on the space of all possible inputs. Our algorithm is one of the simplest of the known SACAs and it opens up a new dimension of suffix array construction that has not been explored until now. Our algorithm is easily parallelizable. We offer parallel implementations on various parallel models of computing. We prove a lemma on the \ell-mers of a random string which might find independent applications. We also present another algorithm that utilizes the above algorithm. This algorithm is called RadixSA and has a worst case run time of O(nlogn)O(n\log{n}). RadixSA introduces an idea that may find independent applications as a speedup technique for other SACAs. An empirical comparison of RadixSA with other algorithms on various datasets reveals that our algorithm is one of the fastest algorithms to date. The C++ source code is freely available at http://www.engr.uconn.edu/~man09004/radixSA.zi

    Algorithms to Compute the Lyndon Array

    Get PDF
    We first describe three algorithms for computing the Lyndon array that have been suggested in the literature, but for which no structured exposition has been given. Two of these algorithms execute in quadratic time in the worst case, the third achieves linear time, but at the expense of prior computation of both the suffix array and the inverse suffix array of x. We then go on to describe two variants of a new algorithm that avoids prior computation of global data structures and executes in worst-case n log n time. Experimental evidence suggests that all but one of these five algorithms require only linear execution time in practice, with the two new algorithms faster by a small factor. We conjecture that there exists a fast and worst-case linear-time algorithm to compute the Lyndon array that is also elementary (making no use of global data structures such as the suffix array)

    Sorting suffixes of a text via its Lyndon Factorization

    Full text link
    The process of sorting the suffixes of a text plays a fundamental role in Text Algorithms. They are used for instance in the constructions of the Burrows-Wheeler transform and the suffix array, widely used in several fields of Computer Science. For this reason, several recent researches have been devoted to finding new strategies to obtain effective methods for such a sorting. In this paper we introduce a new methodology in which an important role is played by the Lyndon factorization, so that the local suffixes inside factors detected by this factorization keep their mutual order when extended to the suffixes of the whole word. This property suggests a versatile technique that easily can be adapted to different implementative scenarios.Comment: Submitted to the Prague Stringology Conference 2013 (PSC 2013
    corecore