19 research outputs found

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    META: discourses from dancers inside action machines

    Full text link
    meta: discourses from dancers inside action machines constructed a series of applied studio-based dance practices that sought to construct different bodies in dance. The action machines aimed to develop external frameworks that direct dancers’ attention and elicit new/novel movement responses. This research demonstrates the potential application of systems such as action machines in the training of dancers and the ongoing practice of dance to direct dancers movement enquiries beyond codified traditions of dance, develop new aesthetics, and ways of thinking and moving in dance

    Gesture Interaction at a Distance

    Get PDF
    The aim of this work is to explore, from a perspective of human behavior, which\ud gestures are suited to control large display surfaces from a short distance away; why that is so; and, equally important, how such an interface can be made a reality. A well-known example of the type of interface that is the focus in this thesis is portrayed in the science fiction movie ā€˜Minority Reportā€™. The lead character of this movie uses hand gestures such as pointing, picking-up and throwing-away to interact with a wall-sized display in a believable way. Believable, because the gestures are familiar from everyday life and because the interface responds predictably. Although only fictional in this movie, such gesture-based interfaces can, when realized, be applied in any environment that is equipped with large display surfaces. For example, in a laboratory for analyzing and interpreting large data sets; in interactive shopping windows to casually browse a product list; and in the operating room to easily access a patientā€™s MRI scans. The common denominator is that the user cannot or may not touch the display: the interaction occurs at arms-length and larger distances

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF

    Sonic interactions in virtual environments

    Get PDF
    This book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    A tabletop instrument for manipulation of sound morphologies with hands, fingertips and upper-body

    No full text
    International audienceWe present a musical instrument, named the Embodied Musical Instrument (EMI) which allows musicians to perform free gestures with the upperā€“body including hands and fingers thanks to 3D vision sensors, arranged around the tabletop. 3D interactive spaces delimit the boundaries in which the player performs metaphorical gestures in order to play with sound synthesis engines. A physical-based sound synthesis engine and a sampler have been integrated in the system in order to manipulate sound morphologies in the context of electro-acoustic and electronic composition

    Dynamic physicality as a dimension of the design process

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2009.Includes bibliographical references (p. 161-167).At its core, the concept of Tangible Interfaces leverages the idea of using the movement of the body as an inherent part of the human side of a human-computer interaction, assuming that bodily engagement and tactile manipulation can facilitate deeper understanding and more intuitive experiences. However, as an interaction principle in our era of digital design, motion construction and control has been underutilized and little examined as a design tool, leaving open the possibilities of motion's natural ability to draw our attention, provide physical feedback, and convey information through physical change. This dissertation postulates that the ability to experiment, prototype, and model with programmable kinetic forms is becoming increasingly important as digital technology becomes more readily embedded in our objects and environments and need for tools and systems with which to create, manipulate and finesse motion in response to computational and material input remains an under-developed design area. This thesis aims to establish principles of kinetic design through the exploration of two approaches to motion construction and manipulation: motion prototyping as a methodology for design thinking, learning and communication and physically dynamic state memory as a methodology for organic form finding and transformation in the design process.(cont.) To demonstrate these aims, I present three interface systems: Topobo, a system for motion construction and dynamics physics education with children; Kinetic Sketchup, a system for motion construction and prototyping in architecture and product design; and Bosu, an augmented textile interface offering an experimental approach to digitally augmented organic form finding in fashion and product design.Amanda Jane Parkes.Ph.D
    corecore