2,032 research outputs found

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    Real-valued feature selection for process approximation and prediction

    Get PDF
    The selection of features for classification, clustering and approximation is an important task in pattern recognition, data mining and soft computing. For real-valued features, this contribution shows how feature selection for a high number of features can be implemented using mutual in-formation. Especially, the common problem for mutual information computation of computing joint probabilities for many dimensions using only a few samples is treated by using the Rènyi mutual information of order two as computational base. For this, the Grassberger-Takens corre-lation integral is used which was developed for estimating probability densities in chaos theory. Additionally, an adaptive procedure for computing the hypercube size is introduced and for real world applications, the treatment of missing values is included. The computation procedure is accelerated by exploiting the ranking of the set of real feature values especially for the example of time series. As example, a small blackbox-glassbox example shows how the relevant features and their time lags are determined in the time series even if the input feature time series determine nonlinearly the output. A more realistic example from chemical industry shows that this enables a better ap-proximation of the input-output mapping than the best neural network approach developed for an international contest. By the computationally efficient implementation, mutual information becomes an attractive tool for feature selection even for a high number of real-valued features

    Constructing Two Edge-Disjoint Hamiltonian Cycles in Locally Twisted Cubes

    Full text link
    The nn-dimensional hypercube network QnQ_n is one of the most popular interconnection networks since it has simple structure and is easy to implement. The nn-dimensional locally twisted cube, denoted by LTQnLTQ_n, an important variation of the hypercube, has the same number of nodes and the same number of connections per node as QnQ_n. One advantage of LTQnLTQ_n is that the diameter is only about half of the diameter of QnQ_n. Recently, some interesting properties of LTQnLTQ_n were investigated. In this paper, we construct two edge-disjoint Hamiltonian cycles in the locally twisted cube LTQnLTQ_n, for any integer n4n\geqslant 4. The presence of two edge-disjoint Hamiltonian cycles provides an advantage when implementing algorithms that require a ring structure by allowing message traffic to be spread evenly across the locally twisted cube.Comment: 7 pages, 4 figure

    The Application of System Level Diagnosis Approaches for Fault Detection and its Implementation in Ad-hoc Networks

    Get PDF
    We introduce the application of a distributed system-level fault diagnosis algorithm for detecting and diagnosing faulty processors in Dynamic Positioning System (DPS).In this paper a approach to the diagnosis problem is presented. We illustrate the procedure of diagnosis verification, which adopts a method of fault injection by setting some faults in the system by programming, and provide the basis idea, the detailed execution steps and the corresponding results. This algorithm is then on two models of ad-hoc networks. Two implementation models are presented in the first one network topology doesn’t change during diagnosis and we show that both hard and soft faults can be easily detected based on this, a diagnosis protocol is presented. The evaluation of the protocol indicates that an efficient diagnosis protocol can be designed on our model. In the second model we allow the system topology to change during diagnosis, in this case the ability of diagnosis decreases but it can be rectified too by setting up a fixed area for mobility of nodes

    Comprehensible credit scoring models using rule extraction from support vector machines.

    Get PDF
    In recent years, Support Vector Machines (SVMs) were successfully applied to a wide range of applications. Their good performance is achieved by an implicit non-linear transformation of the original problem to a high-dimensional (possibly infinite) feature space in which a linear decision hyperplane is constructed that yields a nonlinear classifier in the input space. However, since the classifier is described as a complex mathematical function, it is rather incomprehensible for humans. This opacity property prevents them from being used in many real- life applications where both accuracy and comprehensibility are required, such as medical diagnosis and credit risk evaluation. To overcome this limitation, rules can be extracted from the trained SVM that are interpretable by humans and keep as much of the accuracy of the SVM as possible. In this paper, we will provide an overview of the recently proposed rule extraction techniques for SVMs and introduce two others taken from the artificial neural networks domain, being Trepan and G-REX. The described techniques are compared using publicly avail- able datasets, such as Ripley's synthetic dataset and the multi-class iris dataset. We will also look at medical diagnosis and credit scoring where comprehensibility is a key requirement and even a regulatory recommendation. Our experiments show that the SVM rule extraction techniques lose only a small percentage in performance compared to SVMs and therefore rank at the top of comprehensible classification techniques.Credit; Credit scoring; Models; Model; Applications; Performance; Space; Decision; Yield; Real life; Risk; Evaluation; Rules; Neural networks; Networks; Classification; Research;

    A Local Diagnosis Algorithm for Hypercube-like Networks under the BGM Diagnosis Model

    Full text link
    System diagnosis is process of identifying faulty nodes in a system. An efficient diagnosis is crucial for a multiprocessor system. The BGM diagnosis model is a modification of the PMC diagnosis model, which is a test-based diagnosis. In this paper, we present a specific structure and propose an algorithm for diagnosing a node in a system under the BGM model. We also give a polynomial-time algorithm that a node in a hypercube-like network can be diagnosed correctly in three test rounds under the BGM diagnosis model
    corecore