188 research outputs found

    Space-Time Trellis and Space-Time Block Coding Versus Adaptive Modulation and Coding Aided OFDM for Wideband Channels

    No full text
    Abstract—The achievable performance of channel coded spacetime trellis (STT) codes and space-time block (STB) codes transmitted over wideband channels is studied in the context of schemes having an effective throughput of 2 bits/symbol (BPS) and 3 BPS. At high implementational complexities, the best performance was typically provided by Alamouti’s unity-rate G2 code in both the 2-BPS and 3-BPS scenarios. However, if a low complexity implementation is sought, the 3-BPS 8PSK space-time trellis code outperfoms the G2 code. The G2 space-time block code is also combined with symbol-by-symbol adaptive orthogonal frequency division multiplex (AOFDM) modems and turbo convolutional channel codecs for enhancing the system’s performance. It was concluded that upon exploiting the diversity effect of the G2 space-time block code, the channel-induced fading effects are mitigated, and therefore, the benefits of adaptive modulation erode. In other words, once the time- and frequency-domain fades of the wideband channel have been counteracted by the diversity-aided G2 code, the benefits of adaptive modulation erode, and hence, it is sufficient to employ fixed-mode modems. Therefore, the low-complexity approach of mitigating the effects of fading can be viewed as employing a single-transmitter, single-receiver-based AOFDM modem. By contrast, it is sufficient to employ fixed-mode OFDM modems when the added complexity of a two-transmitter G2 scheme is affordable

    Fractionally sampled decorrelating detectors for time-varying rayleigh fading CDMA channels

    Get PDF
    In this dissertation, we propose novel decorrelating multiuser detectors in DSCDMA time-varying frequency-nonselective and frequency-selective fading channels and analyze their performance. We address the common shortcomings of existing multiuser detectors in a mobile environment, such as detector complexity and the error floor. An analytical approach is employed almost exclusively and Monte Carlo simulation is used to confirm the theoretical results. Practical channel models, such as Jakes\u27 and Markovian, are adopted in the numerical examples. The proposed detectors are of the decorrelating type and utilize fractional sampling to simultaneously achieve two goals: (1) the novel realization of a decorrelator with lower computational complexity and shorter processing latency; and (2) the significant reduction of the probability of error floor associated with time-varying fading. The analysis of the impact of imperfect power control on IS-95 multiple access interference is carried out first and the ineffectiveness of IS-95 power control in a mobile radio environment is demonstrated. Fractionally-spaced bit-by-bit decorrelator structures for the frequency-nonselective and frequency-selective channels are then proposed. The matrix singularity problem associated with decorrelation is also addressed, and its solution is suggested. A decorrelating receiver employing differentially coherent detection for an asynchronous CDMA, frequency-nonselective time-varying Rayleigh fading channel is proposed. A maximum likelihood detection principle is applied at the fractionally spaced decorrelator output, resulting in a significantly reduced error floor. For coherent detection, a novel single-stage and two-stage decision feedback (DF) maximum a posteriori (MAP) channel estimator is proposed. These estimators are applicable to a channel with an arbitrary spaced-time correlation function. The fractionally-spaced decorrelating detector is then modified and extended to a frequency-selective time-varying fading channel, and is shown to be capable of simultaneously eliminating MAI, ISI, and path cross-correlation interference. The implicit equivalent frequency diversity is exploited through multipath combining, and the effective time diversity is achieved by fractional sampling for significant performance improvement. The significance of the outcome of this research is in the design of new lower complexity multiuser detectors that do not exhibit the usual deficiencies and limitations associated with a time-varying fading and multipath CDMA mobile environment

    A simple importance sampling technique for orthogonal space-time block codes on Nakagami fading channels

    Get PDF
    In this contribution, we present a simple importance sampling technique to considerably speed up Monte Carlo simulations for bit error rate estimation of orthogonal space-time block coded systems on spatially correlated Nakagami fading channels

    Efficient BER simulation of orthogonal space-time block codes in Nakagami-m fading

    Get PDF
    In this contribution, we present a simple but efficient importance sampling technique to speed up Monte Carlo simulations for bit error rate estimation of orthogonal space-time block codes on spatially correlated Nakagami-m fading channels. While maintaining the actual distributions for the channel noise and the data symbols, we derive a convenient biased distribution for the fading channel that is shown to result in impressive efficiency gains up to multiple orders of magnitude

    Analysis and design of LDPC codes for time-selective complex-fading channels

    Full text link

    Efficient Channel Modeling Methods for Mobile Communication Systems

    Get PDF
    Siirretty Doriast

    A Data-Bearing Approach for Pilot-Embedding Frameworks in Space-Time Coded MIMO Systems

    Full text link

    Performance evaluation of communication systems with transmit diversity

    Get PDF
    Transmit diversity is a key technique to combat fading with multiple transmit antennae for next-generation wireless communication systems. Space-time block code (STBC) is a main component of this technique. This dissertation consists of four parts: the first three discuss performance evaluation of STBCs in various circumstances, the fourth outlines a novel differential scheme with full transmit diversity. In the first part, closed-form expressions for the bit error rate (BER) are derived for STBC based on Alamouti\u27s scheme and utilizing M-ary phase shift keying (MPSK) modulation. The analysis is carried out for a slow, flat Rayleigh fading channel with coherent detection and with non-coherent differential encoding/decoding. The BER expression for coherent detection is exact. But for differential detection it is an approximation appropriate for a high signal-to-noise ratio. Numerical results are provided for analysis and simulations for BPSK and QPSK modulations. A signal-to-noise ratio loss of approximately 3 dB always occurs with conventional differential detection for STBC compared to coherent detection. In the second part of this dissertation, a multiple-symbol differential detection (MSDD) technique is proposed for MPSK STBCs, which greatly reduces this performance loss by extending the observation interval for decoding. The technique uses maximum likelihood block sequence detection instead of traditional block-by-block detection and is carried out on the slow, flat Rayleigh fading channel. A generalized decision metric for an observation interval of N blocks is derived. It is shown that for a moderate number of blocks, MSDD provides more than 1.0 dB performance improvement corresponding to conventional differential detection. In addition, a closed-form pairwise error probability for differential BPSI( STBC is derived for an observation interval of N blocks, and an approximate BER is obtained to evaluate the performance. In the third part, the BER performance of STBC over a spatio-temporal correlated channel with coherent and noncoherent detection is illustrated, where a general space-time correlation model is utilized. The simulation results demonstrate that spatial correlation negatively effects the performance of the STBC scheme with differential detection but temporal correlation positively impacts it. However, with coherent detection, spatial correlation still has negative effect on the performance but temporal correlation has no impact on it. In the final part of this dissertation, a differential detection scheme for DS/CDMA MIMO link is presented. The transmission provides for full transmit and receive diversity gain using a simple detection scheme, which is a natural extension of differential detection combined with an orthogonal transmit diversity (OTD) approach. A capacity analysis for this scheme is illustrated

    On the performance of multicarrier CDMA (MC-CDMA) systems with transmit diveristy

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore