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Abstract—In this contribution, we present a simple but efficient
importance sampling technique to speed up Monte Carlo simula-
tions for bit error rate estimation of orthogonal space-time block
codes on spatially correlated Nakagami-m fading channels. While
maintaining the actual distributions for the channel noise and the
data symbols, we derive a convenient biased distribution for the
fading channel that is shown to result in impressive efficiency
gains up to multiple orders of magnitude.

I. INTRODUCTION

The bit error rate (BER) is a fundamental measure to evalu-

ate the performance of digital communication systems. When

analytical BER calculation is not feasible due to complexity,

Monte-Carlo (MC) simulations can be applied to estimate the

BER. However, the computation time associated with these

simulations may be prohibitively long, especially when low

BERs are targeted and many bits must be sent to generate

a sufficient number of bit errors. A substantial reduction of

the simulation time can be achieved by employing the well-

known technique of importance sampling (IS) [1], which aims

to reduce the variance of the BER estimator by using a

biased distribution for the input variables that increases the bit

error probability during simulation. By weighting the results

with the ratios of the actual to the biased probability density

functions, an unbiased BER estimate with lower variance can

be obtained.

Although the application of IS is well documented, the

search for a convenient biased distribution remains a major

issue in many papers, e.g., [2]–[5]. In order to speed up the

simulation of orthogonal space-time block codes (OSTBCs) on

i.i.d. Rayleigh-faded multiple-input multiple-output (MIMO)

channels, Nguyen et al. show in [6] that scaling the channel

distribution is more efficient than scaling the noise distribution.

However, an optimal biased channel distribution was not de-

rived. In line with the conclusions of Nguyen et al., we propose

in this work an IS technique for the simulation of OSTBCs

where we keep the distributions for the channel noise and the

data symbols unchanged and use a biased channel distribution.

However, we assume a general MIMO Nakagami-m fading

channel, which includes Rayleigh fading as a special case,

and allow spatial correlation between the different channel

coefficients. Moreover, we do propose a convenient importance

sampling distribution. To the best of our knowledge, such

practical biased distribution for simulation over non-Rayleigh

fading channels is not yet available from the literature. Al-

though perfect channel knowledge (PCK) is assumed for the

derivation of the biased distribution, it allows accurate BER

estimation in a wide range of scenarios, such as pilot-based [7]

or blind channel estimation, and in the presence of residual fre-

quency offset, IQ imbalance, and phase noise. In addition, the

technique also applies to single-input multiple-output (SIMO)

systems with maximal-ratio combining (MRC) and can easily

be extended to the case of multicarrier communication on

dispersive MIMO channels, using for instance OSTBCs or

orthogonal space-frequency block codes. Numerical results

illustrate that impressive efficiency gains up to multiple orders

of magnitude can be obtained using the proposed IS technique.

II. SYSTEM MODEL

We assume a MIMO communication system using Lt

transmit antennas and Lr receive antennas. The L = LtLr

complex-valued coefficients describing the frequency-flat fad-

ing channels between the transmit and receive antennas are

comprised in a Lr × Lt channel matrix H. In the case of

orthogonal space-time block coding [8], a symbol vector s

consisting of Ns information symbols si, with i = 1, . . . , Ns,

is transformed into a Lt × Kc code matrix C(s), which is

transmitted over the MIMO channel. The code matrix C(s)
satisfies the orthogonality condition

C(s)CH(s) = λ‖s‖2 ILt
, (1)

with scaling factor λ , Kc/Ns, such that Es , E[|si|
2
]

denotes the average transmitted energy per symbol interval

per antenna. The corresponding received Lr×Kc matrix R is

given by

R = HC(s) +W, (2)

where the AWGN matrix W consists of independent and

identically distributed (i.i.d.) zero mean circularly symmetric

complex Gaussian (ZMCSCG) random variables (RVs).

III. IMPORTANCE SAMPLING

Defining h = vec(H) and w = vec(W), and collecting the

input vectors s, w, and h into a single vector x = [s,w,h],
the average BER can be written as

Pb = E [F (x)] , (3)

where F (x) is the fraction of bit errors corresponding to given

x, and E[.] denotes expectation over the PDF p(x) of the



vector x. With Nb denoting the number of bits contained in

the symbol vector s, the fraction F (x) is given by

F (x) =
1

Nb

Nb
∑

n=1

In(x), (4)

where In(x) equals 1 when the decision about the nth bit is

wrong, and zero otherwise.

When analytical averaging over x is too complex, a closed-

form BER expression cannot be obtained and MC simulations

are required to estimate the BER. In particular, by indepen-

dently generating a set of N realizations {xi} of the input

vector x according to the PDF p(x), and simulating for each

realization the system operations that yield the bit decisions

at the receiver, the average BER is estimated as the ratio of

the number of counted bit errors to the total number of bits

transmitted

P̂b ,
1

N

N
∑

i=1

F (xi). (5)

Taking into account that E[P̂b] = Pb and that the vectors xi

in (5) are independently generated, the variance of the BER

estimator P̂b is given by

E

[

(

P̂b − Pb

)2
]

=
1

N

(

E
[

F 2(x)
]

− P 2
b

)

, (6)

which can be reduced by increasing the number of simulation

runs N . However, when differences in the vectors {xi} have a

great impact on F (xi), a sufficient estimation accuracy might

require a prohibitively large number of simulation runs N ,

especially when the bit error rate Pb is small.

In order to reduce the required number of simulation runs,

IS can be used. In this way, N∗ vectors {xi} are generated

independently according to a biased distribution q(x), and the

BER estimate is computed as

P̂ ∗
b ,

1

N∗

N∗

∑

i=1

F (xi)
p(xi)

q(xi)
, (7)

where the correction factors p(xi)/q(xi) guarantee an unbi-

ased BER estimate. As the biased distribution q(x) yields an

additional degree of freedom, it permits to reduce the variance

σ∗2 of the BER estimate, which is given by

σ∗2 =
1

N∗

(

E
∗

[

(

F (x)p(x)

q(x)

)2
]

− P 2
b

)

, (8)

where E
∗[·] denotes expectation over the biased distribution

q(x). Selecting a proper biased distribution allows to substan-

tially reduce the simulation time to estimate the BER with a

given precision as compared to conventional MC simulation,

i.e., N∗ ≪ N . Obviously, the variance σ∗2 is minimized when

the expectation in (8) is minimized. It is readily verified that

σ∗2 = 0 when

q(x) =
F (x)p(x)

Pb
. (9)

However, the biased distribution resulting from (9) is imprac-

tical, as it depends on the unknown bit error rate Pb that is

to be estimated by simulation. Nonetheless, (9) indicates that

an efficient biased distribution should be proportional to an

approximation of F (x)p(x).

In this contribution, we propose an IS approach where we

keep the actual PDFs for the data symbols s and the additive

channel noise w unchanged, and search for a convenient

biased distribution q(h) for the channel h. Hence, we have

p(x) = p(s,w,h) = p(s,w|h)p(h), (10)

q(x) = q(s,w,h) = p(s,w|h)q(h). (11)

From (10) and (11), it follows that (8) reduces to

σ∗2 =
1

N∗

(

E
∗

[

(

F̃ (h)
p(h)

q(h)

)2
]

− P 2
b

)

, (12)

where E
∗[·] reduces to averaging over the biased channel

distribution q(h) and F̃ (h) is defined as

F̃ (h) =
√

Es,w|h [F 2(s,w,h)], (13)

with Es,w|h[·] denoting expectation over the conditional PDF

p(s,w|h). Taking the similarity of (8) and (12) into account,

it follows that σ∗2 from (12) is minimum for

q(h) ∝ F̃ (h)p(h) (14)

where ∝ denotes proportionality. Since a closed-form expres-

sion for F̃ (h) from (13) is usually not available or too complex

to yield a practical biased distribution, we rearrange (7) as

P̂ ∗
b =

1

Nb

Nb
∑

n=1

P̂ ∗
b,n, (15)

where

P̂ ∗
b,n =

1

N∗

N∗

∑

i=1

In(xi)
p(xi)

q(xi)
(16)

is the IS estimate of the probability that a detection error

for the nth bit occurs. In order to find a convenient biased

distribution, we look for the distribution qn(h) that minimizes

the variance of the individual terms P̂ ∗
b,n rather than the

variance of P̂ ∗
b . Using the same reasoning that lead to (14),

this biased distribution is

qn(h) ∝
√

Pb,n(h)p(h), (17)

where Pb,n(h) = Es,w|h

[

I2n(s,w,h)
]

= Es,w|h [In(s,w,h)]
is the error probability of the nth bit, conditioned on the chan-

nel h. Note that, in general, the obtained biased distribution

depends on the considered bit index n. The exact expression

of the conditional error probability Pb,n(h) depends on the

observation model and the type of receiver considered, and is

often unknown. Hence, a suitable approximation of Pb,n(h)
is usually needed to obtain a biased distribtion qn(h) that

adequately reduces the variance of the estimate P̂ ∗
b,n .



IV. APPLICATION TO NAKAGAMI-m FADING CHANNELS

In this section, we derive a convenient biased channel distri-

bution qn(h) for OSTBCs transmitted on spatially correlated

Nakagami-m fading channels. Pb,n(h) in (17) is computed as

the conditional bit error probability P
(ML)
b,n (h) of a maximum-

likelihood (ML) receiver with PCK, which is well approxi-

mated by [9]

P
(ML)
b,n (h) ∝ Q

(

√

β
Es

N0
‖h‖2

)

, (18)

where Q(·) is the Gaussian Q-function, β = 2λ in case of

BPSK, and β = 3λ
M−1 in case of M -QAM transmission with

Gray mapping. Furthermore, we replace Q(x) in (18) by the

Chernoff upper bound (1/2) exp(−x2/2) [9], such that the

biased distribution resulting from (17) is given by

qn(h) ∝ exp

(

−
β

4

Es

N0
‖h‖2

)

p(h). (19)

Since (19) is independent of the bit index n, the bit index

can be dropped and the same biased distribution can be used

to reduce the variance of the individual bit error probability

estimates P̂ ∗
b,n for n = 1, · · · , Nb. Moreover, it is expected

to efficiently reduce the variance of the BER estimate P̂ ∗
b as

well.

Assuming a MIMO channel vector h = [h1, . . . , hL]
containing L complex-valued coefficients hℓ, the magnitudes

αℓ = |hℓ| of the channel coefficients are assumed to be

distributed according to the Nakagami-m distribution [10].

This versatile statistical distribution is able to accurately model

a variety of fading environments by selecting a proper value for

the fading parameter m ≥ 1/2 [9] and includes the Rayleigh

(m = 1) and the one-sided Gaussian (m = 1/2) distributions

as special cases; for m → ∞, a Nakagami-m fading channel

converges to an AWGN channel. The correlation between

the channel coefficients is represented by the L × L power

correlation matrix Σ, the entries of which are defined as [9,

Eq. (9.195)]

(Σ)i,n ,
cov(α2

i , α
2
n)

√

var(α2
i ) var(α

2
n)

, (20)

where i, n = 1, . . . , L. Using the Kronecker model proposed

in [11], (20) can be decomposed as

Σ = Σt ⊗Σr, (21)

where Σt and Σr are the Lt×Lt transmit and Lr×Lr receive

power correlation matrices, respectively.

In the case of integer and identical fading parameters,

i.e., mℓ = m, ∀ℓ, L correlated Nakagami-m RVs αℓ can

easily be obtained from 2m i.i.d. random vectors yk =
[yk,1, yk,2, . . . , yk,L]

T, with k = 1, . . . , 2m, as

α2
ℓ ,

2m
∑

k=1

y2k,ℓ, (22)

where yk,ℓ, with ℓ = 1, . . . , L, are correlated real-valued zero-

mean (ZM) Gaussian RVs. According to [12], αℓ’s from (22)

are correlated Nakagami-m RVs with E[α2
ℓ ] = Ωℓ and power

correlation matrix Σ, if the covariance matrix Q = E[yk y
T
k ]

of the column vectors yk is given by

Q =
1

2m
Ω◦ 1

2 ΣG Ω◦ 1

2 , (23)

where Ω = diag {Ω1,Ω2, . . . ,ΩL} is a L×L diagonal matrix

and ΣG = Σ◦ 1

2 , with X◦ 1

2 denoting the element-wise square

root of a matrix X.

Since the channel coefficients are obtained from auxiliary

RVs yk,ℓ, we derive the biased distribution of the auxiliary

RVs rather than of the channel coefficients. By introducing the

vector y = [yT
1 ,y

T
2 , . . . ,y

T
2m]T, we have ||h||2 = ||y||2 =

∑2m
k=1 y

T
k yk. Moreover, as the vectors {yk} are i.i.d., the

distribution p(y) of the auxiliary RVs is given by p(y) =
∏2m

k=1 p0(yk). In this way, it follows from (19) that the biased

distribution q(y) reduces to q(y) =
∏2m

k=1 q0(yk), where

q0(yk) ∝ exp

(

−
β

4

Es

N0
yT
k yk

)

p0(yk). (24)

Since the auxiliary RVs yk,ℓ, with ℓ = 1, . . . , L, are ZM

Gaussian RVs with covariance matrix Q, the PDF p0(yk) of

the random vector yk is given by

p0(yk) =
1

(2π)
L

2

√

det(Q)
exp

(

−
1

2
yT
kQ

−1yk

)

. (25)

From (24) and (25), it follows that q(yk) is the joint PDF of

L correlated ZM Gaussian RVs with a covariance matrix Q′

given by

Q′ =

(

Q−1 +
β

2

Es

N0
IL

)−1

. (26)

The distribution p(y) of the auxiliary RVs and the biased

distribution q(y) can be easily obtained from (25) and (26),

respectively. Taking (10) and (11) into account, the correction

factor p(x)/q(x) in (7) depends on y only and is given by

p(x)

q(x)
=

p(s,w,y)

q(s,w,y)
=

p(y)

q(y)

=
exp

[

− 1
2

∑2m
k=1 y

T
k

(

Q−1 −Q′−1
)

yk

]

[ det(Q) det(Q′−1)]
m

=
exp

(

β

4
Es

N0

‖y‖2
)

[

det
(

IL + β

2
Es

N0

Q
)]m . (27)

Although (18) is obtained under the assumption of PCK, it is

important to understand that the resulting biased distribution is

convenient also in case of imperfect channel estimation (ICE),

which we demonstrate in section V, or in the presence of

impairments, such as residual frequency offset, IQ imbalance,

and phase noise, in which case P
(ML)
b,n (h) in (18) serves as an

approximation of the actual Pb,n(h). The proposed IS tech-

nique also applies to SIMO systems with MRC. In addition,

it can be extended to the case of multicarrier communication

on dispersive MIMO channels, using for instance OSTBCs

or orthogonal space-frequency block codes. In multicarrier

systems, the relevant channel distribution is the joint distri-

bution of the channel transfer function values at the subcarrier



frequencies, which is to be derived from the joint distribution

of the channel impulse response samples. In the important

case of jointly Gaussian channel impulse response samples

(i.e., Rayleigh or Rice fading), the channel transfer function

values are also jointly Gaussian.

V. NUMERICAL RESULTS

In this section, we illustrate the efficiency gain achieved by

the biased sampling distribution proposed in section IV. By

requiring that the ratio of the variance of the simulated BER to

the square of its expectation does not exceed a prescribed value

ǫ2, a certain accuracy can be guaranteed for the simulated BER

results:
var[P̂b]

(

E[P̂b]
)2 ≤ ǫ2, (28)

where P̂b is given by (5) or (7). Note that the N realizations

{xi} of the vector x are independently generated, such that

var[P̂b] =
1
N
var[F (x)]. Hence, for a given accuracy ǫ2, the

number of simulation runs N needs to satisfy

N ≥
var[F (x)]

ǫ2P 2
b

. (29)

In the following, we compute the lower bound (29) from the

simulations by substituting Pb and var[F (x)] by the sample

mean and variance resulting from {F (xi)}, respectively.

First we consider Alamouti’s code [8] transmitted on a

2 × 2 Nakagami-m fading channel with fading parameter

m = 2. The channel coefficients, which are assumed to remain

constant during one frame, have a power correlation matrix

Σ = Σt ⊗Σr, with Σr = I2 and

Σt =

[

1 0.64
0.64 1

]

. (30)

The receiver performs pilot-based linear minimum mean-

square error (LMMSE) channel estimation, followed by mis-

matched ML detection [13]. To this end, the transmission

is organized in frames containing 100 coded data symbols

and 14 pilot symbols. Assuming that each vector x contains

exactly one data frame, a fixed number of N = 104 data

frames is used in the simulations. Fig. 1 displays the BER

from MC simulations with and without IS, for 4-QAM and

16-QAM transmission. With IS, accurate BER results down

to 10−10 are obtained using N = 104 frames. In particular,

for Eb/N0 = 20dB and 4-QAM, an accuracy of ǫ2 = 0.025
is obtained. When no IS is used, a substantial deterioration

of the accuracy can be observed for BER values below 10−4;

for BER values below 10−6, the results are totally unreliable.

In Fig. 2, we show the number of frames required to obtain

an accuracy of ǫ2 = 0.025 with and without using IS. It

can be observed that substantial run-time savings can be

achieved using the proposed IS technique. In addition, 16-

QAM requires fewer frames than 4-QAM to achieve a given

estimation accuracy, since the former constellation gives rise

to a larger BER than 4-QAM.

We can specify the run-time savings attained by IS by

defining the efficiency gain γIS as the ratio of the number

of frames required to achieve a certain accuracy ǫ2 by using
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Fig. 2. Number of transmitted frames required to ensure ǫ
2
= 0.025 using

Alamouti’s code on 2× 2 Nakagami channel with ICE.

straightforward MC simulations to the number of frames

required to achieve the same accuracy when using IS. It

follows from (29) that

γIS =
var[F (x)]|MC

var[F (x)]|IS
, (31)

where the variances var[F (x)]|IS and var[F (x)]|MC for MC

simulations with and without IS, respectively, are obtained

from the MC simulation results {F (xi)} conducted with

and without using IS. In order to investigate the impact of

spatial correlation and the number of receive antennas on the

efficiency gain, we consider Alamouti’s code transmitted on

a Nakagami-m fading channel with m = 2 and captured

by an ML receiver equipped with 1, 2, or 3 antennas. The

power correlation matrix of the MIMO channel is given by

Σ = Σt⊗Σr, where the diagonal elements of Σt and Σr are

assumed to be given by 1 and the non-diagonal elements are

given by ρ. Furthermore, the data frames consist of 100 coded

data symbols belonging to a 4-QAM constellation and 14 pilot

symbols per transmit antenna used for LMMSE channel esti-
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mation. Fig. 3 displays the simulated BER for a fixed number

of N = 106 data frames transmitted. Whereas employing IS

enables accurate BER results down to 10−17, straightforward

MC simulation manages to obtain reliable BER values down to

about 10−7 only. In addition, spatial correlation with ρ = 0.85
results in a substantial BER degradation as compared to the

uncorrelated MIMO channel (ρ = 0). In Fig. 4, the efficiency

gain γIS is shown for the BER curves from Fig. 3. For SNR

values below 10 dB, efficiency gains between 2 and 50 are

achieved. For high SNR, however, rapidly increasing efficiency

gains up to 5 ∗ 103 can be appreciated. Even higher efficiency

gains are to be expected for the receiver with 3 antennas and,

in case of uncorrelated channels, the dual-antenna receiver. In

general, it is observed for high SNR that the efficiency gain

grows when the BER decreases, i.e., for decreasing level of

spatial correlation and increasing number of receive antennas.

Hence, even when very low BERs are targeted, the proposed

IS sampling distribution enables practical BER simulation for

OSTBC systems on spatially correlated Nakagami channels.

VI. CONCLUSIONS

In this contribution, we presented a simple IS technique that

allows to increase by orders of magnitude the efficiency of

BER simulations for OSTBC systems on spatially correlated

Nakagami-m fading channels. While keeping the distributions

for the channel noise and the data symbols unchanged, we

proposed a convenient biased distribution for the fading chan-

nel.
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