2,243 research outputs found

    A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.Evolutionary algorithms are widely used for solving multiobjective optimization problems but are often criticized because of a large number of function evaluations needed. Approximations, especially function approximations, also referred to as surrogates or metamodels are commonly used in the literature to reduce the computation time. This paper presents a survey of 45 different recent algorithms proposed in the literature between 2008 and 2016 to handle computationally expensive multiobjective optimization problems. Several algorithms are discussed based on what kind of an approximation such as problem, function or fitness approximation they use. Most emphasis is given to function approximation-based algorithms. We also compare these algorithms based on different criteria such as metamodeling technique and evolutionary algorithm used, type and dimensions of the problem solved, handling constraints, training time and the type of evolution control. Furthermore, we identify and discuss some promising elements and major issues among algorithms in the literature related to using an approximation and numerical settings used. In addition, we discuss selecting an algorithm to solve a given computationally expensive multiobjective optimization problem based on the dimensions in both objective and decision spaces and the computation budget available.The research of Tinkle Chugh was funded by the COMAS Doctoral Program (at the University of Jyväskylä) and FiDiPro Project DeCoMo (funded by Tekes, the Finnish Funding Agency for Innovation), and the research of Dr. Karthik Sindhya was funded by SIMPRO project funded by Tekes as well as DeCoMo

    Scalarizing Functions in Bayesian Multiobjective Optimization

    Get PDF
    Scalarizing functions have been widely used to convert a multiobjective optimization problem into a single objective optimization problem. However, their use in solving (computationally) expensive multi- and many-objective optimization problems in Bayesian multiobjective optimization is scarce. Scalarizing functions can play a crucial role on the quality and number of evaluations required when doing the optimization. In this article, we study and review 15 different scalarizing functions in the framework of Bayesian multiobjective optimization and build Gaussian process models (as surrogates, metamodels or emulators) on them. We use expected improvement as infill criterion (or acquisition function) to update the models. In particular, we compare different scalarizing functions and analyze their performance on several benchmark problems with different number of objectives to be optimized. The review and experiments on different functions provide useful insights when using and selecting a scalarizing function when using a Bayesian multiobjective optimization method

    Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)

    Get PDF
    Recently, increasing works have proposed to drive evolutionary algorithms using machine learning models. Usually, the performance of such model based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e. the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales, due to the curse of dimensionality. To address this issue, we propose a multi-objective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on 10 benchmark problems with up to 200 decision variables. Experimental results on these test problems demonstrate the effectiveness of the proposed algorithm

    A Random Forest Assisted Evolutionary Algorithm for Data-Driven Constrained Multi-Objective Combinatorial Optimization of Trauma Systems for publication

    Get PDF
    Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this work, we address a class of expensive datadriven constrained multi-objective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of large amount of data. To solve this class of problems, we propose to use random forests and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multi-objective knapsack benchmark problems and two realworld trauma system design problems. Experimental results demonstrate that the variant using random forest models as the surrogates are effective and efficient in solving data-driven constrained multi-objective combinatorial optimization problems

    Hybridization of multi-objective deterministic particle swarm with derivative-free local searches

    Get PDF
    The paper presents a multi-objective derivative-free and deterministic global/local hybrid algorithm for the efficient and effective solution of simulation-based design optimization (SBDO) problems. The objective is to show how the hybridization of two multi-objective derivative-free global and local algorithms achieves better performance than the separate use of the two algorithms in solving specific SBDO problems for hull-form design. The proposed method belongs to the class of memetic algorithms, where the global exploration capability of multi-objective deterministic particle swarm optimization is enriched by exploiting the local search accuracy of a derivative-free multi-objective line-search method. To the authors best knowledge, studies are still limited on memetic, multi-objective, deterministic, derivative-free, and evolutionary algorithms for an effective and efficient solution of SBDO for hull-form design. The proposed formulation manages global and local searches based on the hypervolume metric. The hybridization scheme uses two parameters to control the local search activation and the number of function calls used by the local algorithm. The most promising values of these parameters were identified using forty analytical tests representative of the SBDO problem of interest. The resulting hybrid algorithm was finally applied to two SBDO problems for hull-form design. For both analytical tests and SBDO problems, the hybrid method achieves better performance than its global and local counterparts

    Designing a Framework for Solving Multiobjective Simulation Optimization Problems

    Full text link
    Multiobjective simulation optimization (MOSO) problems are optimization problems with multiple conflicting objectives, where evaluation of at least one of the objectives depends on a black-box numerical code or real-world experiment, which we refer to as a simulation. This paper describes the design goals driving the development of the parallel MOSO library ParMOO. We derive these goals from the research trends and real-world requirements that arise when designing and deploying solvers for generic MOSO problems. Our specific design goals were to provide a customizable MOSO framework that allows for exploitation of simulation-based problem structures, ease of deployment in scientific workflows, maintainability, and flexibility in our support for many problem types. We explain how we have achieved these goals in the ParMOO library and provide two examples demonstrating how customized ParMOO solvers can be quickly built and deployed in real-world MOSO problems

    An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization

    Get PDF
    Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases
    corecore