3 research outputs found

    Privacy-Preserving and Outsourced Multi-User k-Means Clustering

    Get PDF
    Many techniques for privacy-preserving data mining (PPDM) have been investigated over the past decade. Often, the entities involved in the data mining process are end-users or organizations with limited computing and storage resources. As a result, such entities may want to refrain from participating in the PPDM process. To overcome this issue and to take many other benefits of cloud computing, outsourcing PPDM tasks to the cloud environment has recently gained special attention. We consider the scenario where n entities outsource their databases (in encrypted format) to the cloud and ask the cloud to perform the clustering task on their combined data in a privacy-preserving manner. We term such a process as privacy-preserving and outsourced distributed clustering (PPODC). In this paper, we propose a novel and efficient solution to the PPODC problem based on k-means clustering algorithm. The main novelty of our solution lies in avoiding the secure division operations required in computing cluster centers altogether through an efficient transformation technique. Our solution builds the clusters securely in an iterative fashion and returns the final cluster centers to all entities when a pre-determined termination condition holds. The proposed solution protects data confidentiality of all the participating entities under the standard semi-honest model. To the best of our knowledge, ours is the first work to discuss and propose a comprehensive solution to the PPODC problem that incurs negligible cost on the participating entities. We theoretically estimate both the computation and communication costs of the proposed protocol and also demonstrate its practical value through experiments on a real dataset.Comment: 16 pages, 2 figures, 5 table

    Improving the Knowledge-Based Expert System Lifecycle

    Get PDF
    Knowledge-based expert systems are used to enhance and automate manual processes through the use of a knowledge base and modern computing power. The traditional methodology for creating knowledge-based expert systems has many commonly encountered issues that can prevent successful implementations. Complications during the knowledge acquisition phase can prevent a knowledge-based expert system from functioning properly. Furthermore, the time and resources required to maintain a knowledge-based expert system once implemented can become problematic. There are several concepts that can be integrated into a proposed methodology to improve the knowledge-based expert system lifecycle to create a more efficient process. These methods are commonly used in other disciplines but have not traditionally been incorporated into the knowledge-based expert system lifecycle. A container-loading knowledge-based expert system was created to test the concepts in the proposed methodology. The results from the container-loading knowledge-based expert system test were compared against the historical records of thirteen container ships loaded between 2008 and 2011

    Personalized large scale classification of public tenders on hadoop

    Get PDF
    Ce projet a été réalisé dans le cadre d’un partenariat entre Fujitsu Canada et Université Laval. Les besoins du projets ont été centrés sur une problématique d’affaire définie conjointement avec Fujitsu. Le projet consistait à classifier un corpus d’appels d’offres électroniques avec une approche orienté big data. L’objectif était d’identifier avec un très fort rappel les offres pertinentes au domaine d’affaire de l’entreprise. Après une séries d’expérimentations à petite échelle qui nous ont permise d’illustrer empiriquement (93% de rappel) l’efficacité de notre approche basé sur l’algorithme BNS (Bi-Normal Separation), nous avons implanté un système complet qui exploite l’infrastructure technologique big data Hadoop. Nos expérimentations sur le système complet démontrent qu’il est possible d’obtenir une performance de classification tout aussi efficace à grande échelle (91% de rappel) tout en exploitant les gains de performance rendus possible par l’architecture distribuée de Hadoop.This project was completed as part of an innovation partnership with Fujitsu Canada and Université Laval. The needs and objectives of the project were centered on a business problem defined jointly with Fujitsu. Our project aimed to classify a corpus of electronic public tenders based on state of the art Hadoop big data technology. The objective was to identify with high recall public tenders relevant to the IT services business of Fujitsu Canada. A small scale prototype based on the BNS algorithm (Bi-Normal Separation) was empirically shown to classify with high recall (93%) the public tender corpus. The prototype was then re-implemented on a full scale Hadoop cluster using Apache Pig for the data preparation pipeline and using Apache Mahout for classification. Our experimentation show that the large scale system not only maintains high recall (91%) on the classification task, but can readily take advantage of the massive scalability gains made possible by Hadoop’s distributed architecture
    corecore