1,268 research outputs found

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    Firefly Algorithm: Recent Advances and Applications

    Full text link
    Nature-inspired metaheuristic algorithms, especially those based on swarm intelligence, have attracted much attention in the last ten years. Firefly algorithm appeared in about five years ago, its literature has expanded dramatically with diverse applications. In this paper, we will briefly review the fundamentals of firefly algorithm together with a selection of recent publications. Then, we discuss the optimality associated with balancing exploration and exploitation, which is essential for all metaheuristic algorithms. By comparing with intermittent search strategy, we conclude that metaheuristics such as firefly algorithm are better than the optimal intermittent search strategy. We also analyse algorithms and their implications for higher-dimensional optimization problems.Comment: 15 page

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Fast and Powerful Hashing using Tabulation

    Get PDF
    Randomized algorithms are often enjoyed for their simplicity, but the hash functions employed to yield the desired probabilistic guarantees are often too complicated to be practical. Here we survey recent results on how simple hashing schemes based on tabulation provide unexpectedly strong guarantees. Simple tabulation hashing dates back to Zobrist [1970]. Keys are viewed as consisting of cc characters and we have precomputed character tables h1,...,hch_1,...,h_c mapping characters to random hash values. A key x=(x1,...,xc)x=(x_1,...,x_c) is hashed to h1[x1]h2[x2].....hc[xc]h_1[x_1] \oplus h_2[x_2].....\oplus h_c[x_c]. This schemes is very fast with character tables in cache. While simple tabulation is not even 4-independent, it does provide many of the guarantees that are normally obtained via higher independence, e.g., linear probing and Cuckoo hashing. Next we consider twisted tabulation where one input character is "twisted" in a simple way. The resulting hash function has powerful distributional properties: Chernoff-Hoeffding type tail bounds and a very small bias for min-wise hashing. This also yields an extremely fast pseudo-random number generator that is provably good for many classic randomized algorithms and data-structures. Finally, we consider double tabulation where we compose two simple tabulation functions, applying one to the output of the other, and show that this yields very high independence in the classic framework of Carter and Wegman [1977]. In fact, w.h.p., for a given set of size proportional to that of the space consumed, double tabulation gives fully-random hashing. We also mention some more elaborate tabulation schemes getting near-optimal independence for given time and space. While these tabulation schemes are all easy to implement and use, their analysis is not

    Development of a Dynamic Cuckoo Search Algorithm

    Get PDF
    This research is aimed at the developing a modified cuckoo search algorithm called dynamic cuckoo search algorithm (dCSA). The standard cuckoo search algorithm is a metaheuristics search algorithm that mimic the behavior of brood parasitism of some cuckoo species and Levy flight behavior of some fruit flies and birds. It, however uses fixed value for control parameters (control probability and step size) and this method have drawbacks with respect to quality of the solutions and number of iterations to obtain optimal solution. Therefore, the dCSA is developed to address these problems in the CSA by introducing random inertia weight strategy to the control parameters so as to make the control parameters dynamic with respect to the proximity of a cuckoo to the optimal solution. The developed dCSA was compared with CSA using ten benchmark test functions. The results obtained indicated the superiority of dCSA over CSA by generating a near global optimal result for 9 out of the ten benchmark test functions

    Social Algorithms

    Full text link
    This article concerns the review of a special class of swarm intelligence based algorithms for solving optimization problems and these algorithms can be referred to as social algorithms. Social algorithms use multiple agents and the social interactions to design rules for algorithms so as to mimic certain successful characteristics of the social/biological systems such as ants, bees, bats, birds and animals.Comment: Encyclopedia of Complexity and Systems Science, 201

    c-trie++: A Dynamic Trie Tailored for Fast Prefix Searches

    Full text link
    Given a dynamic set KK of kk strings of total length nn whose characters are drawn from an alphabet of size σ\sigma, a keyword dictionary is a data structure built on KK that provides locate, prefix search, and update operations on KK. Under the assumption that α=w/lgσ\alpha = w / \lg \sigma characters fit into a single machine word ww, we propose a keyword dictionary that represents KK in nlgσ+Θ(klgn)n \lg \sigma + \Theta(k \lg n) bits of space, supporting all operations in O(m/α+lgα)O(m / \alpha + \lg \alpha) expected time on an input string of length mm in the word RAM model. This data structure is underlined with an exhaustive practical evaluation, highlighting the practical usefulness of the proposed data structure, especially for prefix searches - one of the most elementary keyword dictionary operations
    corecore