5,187 research outputs found

    Review of Digital Image Forgery Detection

    Get PDF
    Forgery in digital images can be done by manipulating the digital image to conceal some meaningful or useful information of the image. It can be much difficult to identify the edited region from the original image in various cases. In order to maintain the integrity and authenticity of the image, the detection of forgery in the image is necessary. Adaption of modern lifestyle and advanced photography equipment has made tempering of digital image easy with the help of image editing soft wares. It is thus important to detect such image tempering operations. Different methods exist in literature that divide the suspicious image into overlapped blocks and extract some features from the images to detect the type of forgery that exist in the image. The image forgery detection can be done based on object removal, object addition, unusual color modifications in the image. Many existing techniques are available to overcome this problem but most of these techniques have many limitations. Images are one of the powerful media for communication. In this paper a survey of different types of forgery and digital image forgery detection has been focused

    Review on passive approaches for detecting image tampering

    Get PDF
    This paper defines the presently used methods and approaches in the domain of digital image forgery detection. A survey of a recent study is explored including an examination of the current techniques and passive approaches in detecting image tampering. This area of research is relatively new and only a few sources exist that directly relate to the detection of image forgeries. Passive, or blind, approaches for detecting image tampering are regarded as a new direction of research. In recent years, there has been significant work performed in this highly active area of research. Passive approaches do not depend on hidden data to detect image forgeries, but only utilize the statistics and/or content of the image in question to verify its genuineness. The specific types of forgery detection techniques are discussed below

    AHP validated literature review of forgery type dependent passive image forgery detection with explainable AI

    Get PDF
    Nowadays, a lot of significance is given to what we read today: newspapers, magazines, news channels, and internet media, such as leading social networking sites like Facebook, Instagram, and Twitter. These are the primary wellsprings of phony news and are frequently utilized in malignant manners, for example, for horde incitement. In the recent decade, a tremendous increase in image information generation is happening due to the massive use of social networking services. Various image editing software like Skylum Luminar, Corel PaintShop Pro, Adobe Photoshop, and many others are used to create, modify the images and videos, are significant concerns. A lot of earlier work of forgery detection was focused on traditional methods to solve the forgery detection. Recently, Deep learning algorithms have accomplished high-performance accuracies in the image processing domain, such as image classification and face recognition. Experts have applied deep learning techniques to detect a forgery in the image too. However, there is a real need to explain why the image is categorized under forged to understand the algorithm’s validity; this explanation helps in mission-critical applications like forensic. Explainable AI (XAI) algorithms have been used to interpret a black box’s decision in various cases. This paper contributes a survey on image forgery detection with deep learning approaches. It also focuses on the survey of explainable AI for images

    A Survey of Partition-Based Techniques for Copy-Move Forgery Detection

    Get PDF
    A copy-move forged image results from a specific type of image tampering procedure carried out by copying a part of an image and pasting it on one or more parts of the same image generally to maliciously hide unwanted objects/regions or clone an object. Therefore, detecting such forgeries mainly consists in devising ways of exposing identical or relatively similar areas in images. This survey attempts to cover existing partition-based copy-move forgery detection techniques

    Evaluation of Deep Learning and Conventional Approaches for Image Recaptured Detection in Multimedia Forensics

    Get PDF
    Image recaptured from a high-resolution LED screen or a good quality printer is difficult to distinguish from its original counterpart. The forensic community paid less attention to this type of forgery than to other image alterations such as splicing, copy-move, removal, or image retouching. It is significant to develop secure and automatic techniques to distinguish real and recaptured images without prior knowledge. Image manipulation traces can be hidden using recaptured images. For this reason, being able to detect recapture images becomes a hot research topic for a forensic analyst. The attacker can recapture the manipulated images to fool image forensic system. As far as we know, there is no prior research that has examined the pros and cons of up-to-date image recaptured techniques. The main objective of this survey was to succinctly review the recent outcomes in the field of image recaptured detection and investigated the limitations in existing approaches and datasets. The outcome of this study provides several promising directions for further significant research on image recaptured detection. Finally, some of the challenges in the existing datasets and numerous promising directions on recaptured image detection are proposed to demonstrate how these difficulties might be carried into promising directions for future research. We also discussed the existing image recaptured datasets, their limitations, and dataset collection challenges.publishedVersio
    corecore