845 research outputs found

    A Model for Using Physiological Conditions for Proactive Tourist Recommendations

    Full text link
    Mobile proactive tourist recommender systems can support tourists by recommending the best choice depending on different contexts related to herself and the environment. In this paper, we propose to utilize wearable sensors to gather health information about a tourist and use them for recommending tourist activities. We discuss a range of wearable devices, sensors to infer physiological conditions of the users, and exemplify the feasibility using a popular self-quantification mobile app. Our main contribution then comprises a data model to derive relations between the parameters measured by the wearable sensors, such as heart rate, body temperature, blood pressure, and use them to infer the physiological condition of a user. This model can then be used to derive classes of tourist activities that determine which items should be recommended

    Prescription Based Recommender System for Diabetic Patients Using Efficient Map Reduce

    Get PDF
    Healthcare sector has been deprived of leveraging knowledge gained through data insights, due to manual processes and legacy record-keeping methods. Outdated methods for maintaining healthcare records have not been proven sufficient for treating chronic diseases like diabetes. Data analysis methods such as Recommendation System (RS) can serve as a boon for treating diabetes. RS leverages predictive analysis and provides clinicians with information needed to determine the treatments to patients. Prescription-based Health Recommender System (HRS) is proposed in this paper which aids in recommending treatments by learning from the treatments prescribed to other patients diagnosed with diabetes. An Advanced Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering is also proposed to cluster the data for deriving recommendations by using winnowing algorithm as a similarity measure. A parallel processing of data is applied using map-reduce to increase the efficiency & scalability of clustering process for effective treatment of diabetes. This paper provides a good picture of how the Map Reduce can benefit in increasing the efficiency and scalability of the HRS using clustering

    Evolutionary Approach for Building, Exploring and Recommending Complex Items With Application in Nutritional Interventions

    Get PDF
    Over the last few years, the ability of recommender systems to help us in different environments has been increasing. Several systems try to offer solutions in highly complex environments such as nutrition, housing, or traveling. In this paper, we present a recommendation system capable of using different input sources (data and knowledge-based) and producing a complex structured output. We have used an evolutionary approach to combine several unitary items within a flexible structure and have built an initial set of complex configurable items. Then, a content-based approach refines (in terms of preferences) these candidates to offer a final recommendation.We conclude with the application of this approach to the healthy diet recommendation problem, addressing its strengths in this domain.Over the last few years, the ability of recommender systems to help us in different environments has been increasing. Several systems try to offer solutions in highly complex environments such as nutrition, housing, or traveling. In this paper, we present a recommendation system capable of using different input sources (data and knowledge-based) and producing a complex structured output. We have used an evolutionary approach to combine several unitary items within a flexible structure and have built an initial set of complex configurable items. Then, a content-based approach refines (in terms of preferences) these candidates to offer a final recommendation.We conclude with the application of this approach to the healthy diet recommendation problem, addressing its strengths in this domainEuropean Union (Stance4Health) under Grant 816303Ministerio de Ciencia e Innovación under Grant PID2021-123960OB-I00MCIN (Ministerio de Ciencia e Innovación)/AEI (Agencia estatal de Investigacion)/10.13039/501100011033ERDF (European Regional Development Fund)A way of making Europe. And in part under Grant TED2021-129402B-C21 funded by MCIN (Ministerio de Ciencia e Innovación)/AEI (Agencia estatal de Investigacion)/10.13039/501100011033European Union NextGenerationEU/PRTR (Plan de Recuperación, Transformación y Resiliencia)‘Program of Information and Communication technologies’’ at the University of Granad

    Explainable Active Learning for Preference Elicitation

    Full text link
    Gaining insights into the preferences of new users and subsequently personalizing recommendations necessitate managing user interactions intelligently, namely, posing pertinent questions to elicit valuable information effectively. In this study, our focus is on a specific scenario of the cold-start problem, where the recommendation system lacks adequate user presence or access to other users' data is restricted, obstructing employing user profiling methods utilizing existing data in the system. We employ Active Learning (AL) to solve the addressed problem with the objective of maximizing information acquisition with minimal user effort. AL operates for selecting informative data from a large unlabeled set to inquire an oracle to label them and eventually updating a machine learning (ML) model. We operate AL in an integrated process of unsupervised, semi-supervised, and supervised ML within an explanatory preference elicitation process. It harvests user feedback (given for the system's explanations on the presented items) over informative samples to update an underlying ML model estimating user preferences. The designed user interaction facilitates personalizing the system by incorporating user feedback into the ML model and also enhances user trust by refining the system's explanations on recommendations. We implement the proposed preference elicitation methodology for food recommendation. We conducted human experiments to assess its efficacy in the short term and also experimented with several AL strategies over synthetic user profiles that we created for two food datasets, aiming for long-term performance analysis. The experimental results demonstrate the efficiency of the proposed preference elicitation with limited user-labeled data while also enhancing user trust through accurate explanations.Comment: Preprin

    Realizing an Efficient IoMT-Assisted Patient Diet Recommendation System Through Machine Learning Model

    Get PDF
    Recent studies have shown that robust diets recommended to patients by Dietician or an Artificial Intelligent automated medical diet based cloud system can increase longevity, protect against further disease, and improve the overall quality of life. However, medical personnel are yet to fully understand patient-dietician’s rationale of recommender system. This paper proposes a deep learning solution for health base medical dataset that automatically detects which food should be given to which patient base on the disease and other features like age, gender, weight, calories, protein, fat, sodium, fiber, cholesterol. This research framework is focused on implementing both machine and deep learning algorithms like, logistic regression, naive bayes, Recurrent Neural Network (RNN), Multilayer Perceptron (MLP), Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM). The medical dataset collected through the internet and hospitals consists of 30 patient’s data with 13 features of different diseases and 1000 products. Product section has 8 features set. The features of these IoMT data were analyzed and further encoded before applying deep and machine and learning-based protocols. The performance of various machine learning and deep learning techniques was carried and the result proves that LSTM technique performs better than other scheme with respect to forecasting accuracy, recall, precision, and F1F1 -measures. We achieved 97.74% accuracy using LSTM deep learning model. Similarly 98% precision, 99% recall and 99% F199\%~F1 -measure for allowed class is achieved, and for not-allowed class precision is 89%, recall score is 73% and F1F1 Measure score is 80%
    corecore