3,383 research outputs found

    Supplementing an AD-HOC Wireless Network Routing Protocol with Radio Frequency Identification (RFID) Tags

    Get PDF
    Wireless sensor networks (WSNs) have a broad and varied range of applications, yet all of these are limited by the resources available to the sensor nodes that make up the WSN. The most significant resource is energy. A WSN may be deployed to an inhospitable or unreachable area, leaving it with a non-replenishable power source. This research examines a way of reducing energy consumption by augmenting the nodes with radio frequency identification (RFID) tags that contain routing information. It was expected that RFID tags would reduce the network throughput, the ad hoc on-demand distance vector (AODV) routing traffic sent, and the amount of energy consumed. However, the results show that RFID tags have little effect on the network throughput or the AODV routing traffic sent. They also increase ETE delays in sparse networks as well as the amount of energy consumed in both sparse and dense networks. Furthermore, there was no statistical difference in the amount of user data throughput received. The density of the network is shown to have an effect on the variation of the data but the trends are the same for both sparse and dense networks. This counter-intuitive result is explained, and conditions for such a scheme to be effective are discussed

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Performance analysis of self-organized Ad-Hoc sensor networks

    Get PDF
    This project deals with a Distributed Sensor Network (DSN). The main focus of this thesis is to deliver an OPNET simulation model for working DSN model. After building a model, various performance analysis techniques in terms of different parameters were used to verify the working model. Query Dominant Sets (QDS) are the main idea behind this thesis. The QDS node is in charge of the nodes for a specific region and its job is to assign the query tasks that it gets to the nodes in that region to help maximize the life of the network. If no user queries are being sent, the QDS nodes themselves go to sleep to conserve energy and just listen for special incoming control signals. QDS management (including the selection of QDS and the interaction of QDS nodes and other common nodes) is a challenging issue in DSN platforms. Our algorithm for QDS management attempts to limit the dead spots in the network that tend to disrupt the communication of the whole network. It has two phases and the first phase is the election phase. The second stage is the previously elected QDS nodes distribute the tasks to the other nodes. This algorithm turns out to be distributed which is good for sensor networks. There is no use of any global communication or long-range, high energy data communication, but just local communications. This also helps to save power and energy for long life of the sensors. This algorithm is also very scalable and fault tolerant. We have done significant simulations to verify our QDS concepts. There are some metrics that are used to evaluate our schemes such as the average energy values of all the nodes in the network, minimum energy of all the nodes in the network, total energy consumed in the awake, transmit, and receive states, maximum time spent by any node in electing a new QDS, number of elected QDSs, and so on. Our simulations have shown satisfactory energy-efficiency of our algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore