10 research outputs found

    Getting ahead of the arms race: hothousing the coevolution of VirusTotal with a Packer

    Get PDF
    Malware detection is in a coevolutionary arms race where the attackers and defenders are constantly seeking advantage. This arms race is asymmetric: detection is harder and more expensive than evasion. White hats must be conservative to avoid false positives when searching for malicious behaviour. We seek to redress this imbalance. Most of the time, black hats need only make incremental changes to evade them. On occasion, white hats make a disruptive move and find a new technique that forces black hats to work harder. Examples include system calls, signatures and machine learning. We present a method, called Hothouse, that combines simulation and search to accelerate the white hat’s ability to counter the black hat’s incremental moves, thereby forcing black hats to perform disruptive moves more often. To realise Hothouse, we evolve EEE, an entropy-based polymorphic packer for Windows executables. Playing the role of a black hat, EEE uses evolutionary computation to disrupt the creation of malware signatures. We enter EEE into the detection arms race with VirusTotal, the most prominent cloud service for running anti-virus tools on software. During our 6 month study, we continually improved EEE in response to VirusTotal, eventually learning a packer that produces packed malware whose evasiveness goes from an initial 51.8% median to 19.6%. We report both how well VirusTotal learns to detect EEE-packed binaries and how well VirusTotal forgets in order to reduce false positives. VirusTotal’s tools learn and forget fast, actually in about 3 days. We also show where VirusTotal focuses its detection efforts, by analysing EEE’s variants

    Modeling Realistic Adversarial Attacks against Network Intrusion Detection Systems

    Get PDF
    The incremental diffusion of machine learning algorithms in supporting cybersecurity is creating novel defensive opportunities but also new types of risks. Multiple researches have shown that machine learning methods are vulnerable to adversarial attacks that create tiny perturbations aimed at decreasing the effectiveness of detecting threats. We observe that existing literature assumes threat models that are inappropriate for realistic cybersecurity scenarios because they consider opponents with complete knowledge about the cyber detector or that can freely interact with the target systems. By focusing on Network Intrusion Detection Systems based on machine learning, we identify and model the real capabilities and circumstances required by attackers to carry out feasible and successful adversarial attacks. We then apply our model to several adversarial attacks proposed in literature and highlight the limits and merits that can result in actual adversarial attacks. The contributions of this paper can help hardening defensive systems by letting cyber defenders address the most critical and real issues, and can benefit researchers by allowing them to devise novel forms of adversarial attacks based on realistic threat models

    Getting ahead of the arms race: hothousing the coevolution of VirusTotal with a Packer

    Get PDF
    Malware detection is in a coevolutionary arms race where the attackers and defenders are constantly seeking advantage. This arms race is asymmetric: detection is harder and more expensive than evasion. White hats must be conservative to avoid false positives when searching for malicious behaviour. We seek to redress this imbalance. Most of the time, black hats need only make incremental changes to evade them. On occasion, white hats make a disruptive move and find a new technique that forces black hats to work harder. Examples include system calls, signatures and machine learning. We present a method, called Hothouse, that combines simulation and search to accelerate the white hat’s ability to counter the black hat’s incremental moves, thereby forcing black hats to perform disruptive moves more often. To realise Hothouse, we evolve EEE, an entropy-based polymorphic packer for Windows executables. Playing the role of a black hat, EEE uses evolutionary computation to disrupt the creation of malware signatures. We enter EEE into the detection arms race with VirusTotal, the most prominent cloud service for running anti-virus tools on software. During our 6 month study, we continually improved EEE in response to VirusTotal, eventually learning a packer that produces packed malware whose evasiveness goes from an initial 51.8% median to 19.6%. We report both how well VirusTotal learns to detect EEE-packed binaries and how well VirusTotal forgets in order to reduce false positives. VirusTotal’s tools learn and forget fast, actually in about 3 days. We also show where VirusTotal focuses its detection efforts, by analysing EEE’s variants

    Functionality-preserving adversarial machine learning for robust classification in cybersecurity and intrusion detection domains: A survey

    Get PDF
    Machine learning has become widely adopted as a strategy for dealing with a variety of cybersecurity issues, ranging from insider threat detection to intrusion and malware detection. However, by their very nature, machine learning systems can introduce vulnerabilities to a security defence whereby a learnt model is unaware of so-called adversarial examples that may intentionally result in mis-classification and therefore bypass a system. Adversarial machine learning has been a research topic for over a decade and is now an accepted but open problem. Much of the early research on adversarial examples has addressed issues related to computer vision, yet as machine learning continues to be adopted in other domains, then likewise it is important to assess the potential vulnerabilities that may occur. A key part of transferring to new domains relates to functionality-preservation, such that any crafted attack can still execute the original intended functionality when inspected by a human and/or a machine. In this literature survey, our main objective is to address the domain of adversarial machine learning attacks and examine the robustness of machine learning models in the cybersecurity and intrusion detection domains. We identify the key trends in current work observed in the literature, and explore how these relate to the research challenges that remain open for future works. Inclusion criteria were: articles related to functionality-preservation in adversarial machine learning for cybersecurity or intrusion detection with insight into robust classification. Generally, we excluded works that are not yet peer-reviewed; however, we included some significant papers that make a clear contribution to the domain. There is a risk of subjective bias in the selection of non-peer reviewed articles; however, this was mitigated by co-author review. We selected the following databases with a sizeable computer science element to search and retrieve literature: IEEE Xplore, ACM Digital Library, ScienceDirect, Scopus, SpringerLink, and Google Scholar. The literature search was conducted up to January 2022. We have striven to ensure a comprehensive coverage of the domain to the best of our knowledge. We have performed systematic searches of the literature, noting our search terms and results, and following up on all materials that appear relevant and fit within the topic domains of this review. This research was funded by the Partnership PhD scheme at the University of the West of England in collaboration with Techmodal Ltd
    corecore