177,820 research outputs found

    Advancing Strategy: How to Lead Change in Corporate Societal Engagement

    Get PDF
    Implementing a strategy may be even harder than developing it. This learning brief is intended for corporate foundation and CSR leaders who have completed an initial strategy refresh process and who seek effecitve practices and tools to advance this strategy. In our experience advising more than 100 multinational companie, effective leaders facilitate structured, data-informed decisions and enable important organizational improvements to achieve their strategic objectives. Specifically, advancing strategy in corporate societal engagement typically requires leading change in two major areas of the overall portfolio: designing a signative initiative and transforming local giving

    Online korean skincare decision support system

    Get PDF
    Despite the explosive growth of electronic commerce and the rapidly increasing number of consumers who use interactive media for pre-purchase information search and online shopping, very little is known about how consumers make purchase decisions in such settings. One desirable form of interactivity from a consumer perspective is the implementation of sophisticated tools to assist shoppers in their purchase decisions by customizing the electronic shopping environment to their individual preferences

    Motorcycle rider safety project: summary report

    Get PDF
    Motorcycle trauma is a serious issue in Queensland and throughout Australia; the fatality rate per 100 million kilometres travelled for motorcycle riders in Australia is nearly 30 times the rate for drivers of other vehicles (Australian Transport Safety Bureau, 2002). In 2009, the then Queensland Transport (later the Department of Transport and Main Roads or TMR) appointed CARRS-Q to provide a three-year program of Road Safety Research Services for Motorcycle Rider Safety. Funding for this research originated from the Motor Accident Insurance Commission. This program of research was undertaken to produce knowledge to assist TMR to improve motorcycle safety by further strengthening the licensing and training system to make learner riders safer by developing a pre-learner package (Deliverable 1), and by evaluating the Q-Ride CAP program to ensure that it is maximally effective and contributes to the best possible training for new riders (Deliverable 2), and identifying potential new licensing components that will reduce the incidence of risky riding and improve higher-order cognitive skills in new riders (Deliverable 3)

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    Management of Road Infrastructure Safety

    Get PDF
    Road Infrastructure Safety Management (RISM) refers to a set of procedures that support a road authority in decision making related to the improvement of safety on a road network. Some of these procedures can be applied to existing infrastructure, thus enabling a reactive approach; and other procedures are used in early stages of a project's life-cycle allowing a proactive approach. The objective of this paper is to provide an overview of the most well-known procedures and present a series of recommendations for successful road infrastructure safety management. The work described in the paper was completed by the IRTAD sub-working group on Road Infrastructure Safety Management and presented in detail in the respective Report. The methodology followed on this purpose included the description of the most consolidated RISM procedures, the analysis of the use of RISM procedures worldwide and the identification of possible weaknesses and barriers to their implementation, the provision of good practice examples and the contribution to the scientific assessment of procedures. Specifically, the following RISM procedures were considered: Road Safety Impact Assessment (RIA), Efficiency Assessment Tools (EAT), Road Safety Audit (RSA), Network Operation (NO), Road Infrastructure Safety Performance Indicators (SPI), Network Safety Ranking (NSR), Road Assessment Programs (RAP), Road Safety Inspection (RSI), High Risk Sites (HRS) and In-depth Investigation. Each procedure was described along with tools and data needed for its implementation as well as relevant common practices worldwide. A synthesis summarizing the key information for each procedure was also drafted. Based on a survey on 23 IRTAD member countries from worldwide, the lack of resources or tools is the most commonly stated reason for not applying a RISM procedure. This has been frequently found mainly in European countries. Another common reason is the absence of recommendations/guidelines, especially for SPI, RAP, RSI and RSA. This highlights the importance of the presence of some legislation regulating the application of the procedures. Lack of data was found important mainly for SPI, HRS and EAT. Good practices of road infrastructure safety management have been explored in order to find solutions to the issues highlighted by the survey and provide examples about how these issues have been overcome in some countries. Specifically, issues related to data, legal framework, funding, knowledge, tools and dealing with more RISM procedures were addressed. Finally, nine key messages and six recommendations for better Road Infrastructure Safety Management were developed based on the conclusions made

    Motorcycle safety research project: Interim summary report 3: training and licensing interventions for risk taking and hazard perception for motorcyclists

    Get PDF
    Motorcycle trauma is a serious road safety issue in Queensland and throughout Australia. In 2009, Queensland Transport (later Transport and Main Roads or TMR) appointed CARRS-Q to provide a three-year program of Road Safety Research Services for Motorcycle Rider Safety. Funding for this research originated from the Motor Accident Insurance Commission. This program of research was undertaken to produce knowledge to assist TMR to improve motorcycle safety by further strengthening the licensing and training system to make learner riders safer by developing a pre-learner package (Deliverable 1), and by evaluating the QRide CAP program to ensure that it is maximally effective and contributes to the best possible training for new riders (Deliverable 2). The focus of this report is Deliverable 3 of the overall program of research. It identifies potential new licensing components that will reduce the incidence of risky riding and improve higher-order cognitive skills in new riders

    Making in-class skills training more effective: the scope for interactive videos to complement the delivery of practical pedestrian training

    No full text
    Skills and awareness of young pedestrians can be improved with on-street practical pedestrian training, often delivered in schools in the United Kingdom by local authorities with the intention of improving road safety. This training is often supplemented by in-class paper based worksheet activities which are seen to be less effective than practical training in that they focus on knowledge acquisition rather than directly improving the correct application of safe pedestrian skills at the roadside. Previous research indicates that interactive video tools have the potential to develop procedural skills whilst offering an engaging road safety educational experience, which could positively impact on road crossing behaviour.In this paper, the design and development of a hazard-identification interactive road safety training video targeting child road crossing skills is presented. The interactive video was shown to be an engaging training resource for 6-7 year old children. The tool’s scope for improving pedestrians’ roadside skills is considered along with the wider implications for interactive video to aid safety training in other areas

    The toll of the automobile

    Get PDF
    Animal-vehicle collisions are a common phenomenon worldwide, causing injury or death to millions of animals and hundreds of human passengers each year. Collision numbers can be significant to species conservation, wildlife management, traffic safety, as well as from an economic and political point of view, and should thus be evaluated from these different perspectives. In this thesis, I assess, evaluate, analyse and predict animal-vehicle collisions with respect to their extent, their effect on populations, and their broad and fine scale distribution. A questionnaire with Swedish drivers indicated that nationwide road traffic in 1992 may caused an annual loss in harvest of common game species of 7% to 97% and of 1% to 12% of estimated populations. Road mortality did not appear as an existential threat to most species, although in badgers (Meles meles), traffic probably is the largest single cause of death. A slow population growth rate coupled with a high proportion of adult badger road-kills is responsible for their sensitivity to road mortality. Provided that road mortality is additive, we predicted that losses due to nationwide traffic might already exceed birth rates and limit badger population growth. In roe deer (Capreolus capreolus) and moose (Alces alces), road mortality is of minor importance to the population. Broad-scale trends and patterns in collision numbers correlate with harvest and traffic volumes, thus providing a simple means to monitor the toll of road traffic. To predict local collision risks with these species, information on animal abundance and landscape composition, on road traffic parameters, and on the spatial coincidence of roads and landscape elements is needed. However, vehicle speed appeared as one of the most important factors determining collision risks with moose, underlining the influence of human factors on collision risks. Successful counteraction therefore requires an interdisciplinary approach that addresses both the animal and the driver in their shared environment
    • …
    corecore