6,898 research outputs found

    A preliminary safety evaluation of route guidance comparing different MMI concepts

    Get PDF

    Unmanned Aerial Systems: Research, Development, Education & Training at Embry-Riddle Aeronautical University

    Get PDF
    With technological breakthroughs in miniaturized aircraft-related components, including but not limited to communications, computer systems and sensors, state-of-the-art unmanned aerial systems (UAS) have become a reality. This fast-growing industry is anticipating and responding to a myriad of societal applications that will provide new and more cost-effective solutions that previous technologies could not, or will replace activities that involved humans in flight with associated risks. Embry-Riddle Aeronautical University has a long history of aviation-related research and education, and is heavily engaged in UAS activities. This document provides a summary of these activities, and is divided into two parts. The first part provides a brief summary of each of the various activities, while the second part lists the faculty associated with those activities. Within the first part of this document we have separated UAS activities into two broad areas: Engineering and Applications. Each of these broad areas is then further broken down into six sub-areas, which are listed in the Table of Contents. The second part lists the faculty, sorted by campus (Daytona Beach-D, Prescott-P and Worldwide-W) associated with the UAS activities. The UAS activities and the corresponding faculty are cross-referenced. We have chosen to provide very short summaries of the UAS activities rather than lengthy descriptions. If more information is desired, please contact me directly, or visit our research website (https://erau.edu/research), or contact the appropriate faculty member using their e-mail address provided at the end of this document

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    An investigation into the energy and control implications of adaptive comfort in a modern office building

    Get PDF
    PhD ThesisAn investigation into the potentials of adaptive comfort in an office building is carried out using fine grained primary data and computer modelling. A comprehensive literature review and background study into energy and comfort aspects of building management provides the backdrop against which a target building is subjected to energy and comfort audit, virtual simulation and impact assessment of adaptive comfort standard (BS EN 15251: 2007). Building fabric design is also brought into focus by examining 2006 and 2010 Approved Document part L potentials against Passive House design. This is to reflect the general direction of regulatory development which tends toward zero carbon design by the end of this decade. In finishing a study of modern controls in buildings is carried out to assess the strongest contenders that next generation heating, ventilation and air-conditioning technologies will come to rely on in future buildings. An actual target building constitutes the vehicle for the work described above. A virtual model of this building was calibrated against an extensive set of actual data using version control method. The results were improved to surpass ASHRAE Guide 14. A set of different scenarios were constructed to account for improved fabric design as well as historical weather files and future weather predictions. These scenarios enabled a comparative study to investigate the effect of BS EN 15251:2007 when compared to conventional space controls. The main finding is that modern commercial buildings built to the latest UK statutory regulations can achieve considerable carbon savings through adaptive comfort standard. However these savings are only modestly improved if fabric design is enhanced to passive house levels. Adaptive comfort can also be readily deployed using current web-enabled control applications. However an actual field study is necessary to provide invaluable insight into occupants’ acceptance of this standard since winter-time space temperature results derived from BS EN 15251:2007 constitute a notable departure from CIBSE environmental guidelines

    Coordinated Machine Learning and Decision Support for Situation Awareness

    Get PDF
    For applications such as force protection, an effective decision maker needs to maintain an unambiguous grasp of the environment. Opportunities exist to leverage computational mechanisms for the adaptive fusion of diverse information sources. The current research employs neural networks and Markov chains to process information from sources including sensors, weather data, and law enforcement. Furthermore, the system operator\u27s input is used as a point of reference for the machine learning algorithms. More detailed features of the approach are provided, along with an example force protection scenario

    Data communication network at the ASRM facility

    Get PDF
    The main objective of the report is to present the overall communication network structure for the Advanced Solid Rocket Motor (ASRM) facility being built at Yellow Creek near Iuka, Mississippi. This report is compiled using information received from NASA/MSFC, LMSC, AAD, and RUST Inc. As per the information gathered, the overall network structure will have one logical FDDI ring acting as a backbone for the whole complex. The buildings will be grouped into two categories viz. manufacturing critical and manufacturing non-critical. The manufacturing critical buildings will be connected via FDDI to the Operational Information System (OIS) in the main computing center in B 1000. The manufacturing non-critical buildings will be connected by 10BASE-FL to the Business Information System (BIS) in the main computing center. The workcells will be connected to the Area Supervisory Computers (ASCs) through the nearest manufacturing critical hub and one of the OIS hubs. The network structure described in this report will be the basis for simulations to be carried out next year. The Comdisco's Block Oriented Network Simulator (BONeS) will be used for the network simulation. The main aim of the simulations will be to evaluate the loading of the OIS, the BIS, the ASCs, and the network links by the traffic generated by the workstations and workcells throughout the site
    corecore