7,973 research outputs found

    Existence and Uniqueness of Perturbation Solutions to DSGE Models

    Get PDF
    We prove that standard regularity and saddle stability assumptions for linear approximations are sufficient to guarantee the existence of a unique solution for all undetermined coefficients of nonlinear perturbations of arbitrary order to discrete time DSGE models. We derive the perturbation using a matrix calculus that preserves linear algebraic structures to arbitrary orders of derivatives, enabling the direct application of theorems from matrix analysis to prove our main result. As a consequence, we provide insight into several invertibility assumptions from linear solution methods, prove that the local solution is independent of terms first order in the perturbation parameter, and relax the assumptions needed for the local existence theorem of perturbation solutions.Perturbation, matrix calculus, DSGE, solution methods, BĆ©zout theorem; Sylvester equations

    Certification of Real Inequalities -- Templates and Sums of Squares

    Full text link
    We consider the problem of certifying lower bounds for real-valued multivariate transcendental functions. The functions we are dealing with are nonlinear and involve semialgebraic operations as well as some transcendental functions like cosā”\cos, arctanā”\arctan, expā”\exp, etc. Our general framework is to use different approximation methods to relax the original problem into polynomial optimization problems, which we solve by sparse sums of squares relaxations. In particular, we combine the ideas of the maxplus estimators (originally introduced in optimal control) and of the linear templates (originally introduced in static analysis by abstract interpretation). The nonlinear templates control the complexity of the semialgebraic relaxations at the price of coarsening the maxplus approximations. In that way, we arrive at a new - template based - certified global optimization method, which exploits both the precision of sums of squares relaxations and the scalability of abstraction methods. We analyze the performance of the method on problems from the global optimization literature, as well as medium-size inequalities issued from the Flyspeck project.Comment: 27 pages, 3 figures, 4 table

    Approximation of the critical buckling factor for composite panels

    Get PDF
    This article is concerned with the approximation of the critical buckling factor for thin composite plates. A new method to improve the approximation of this critical factor is applied based on its behavior with respect to lamination parameters and loading conditions. This method allows accurate approximation of the critical buckling factor for non-orthotropic laminates under complex combined loadings (including shear loading). The influence of the stacking sequence and loading conditions is extensively studied as well as properties of the critical buckling factor behavior (e.g concavity over tensor D or out-of-plane lamination parameters). Moreover, the critical buckling factor is numerically shown to be piecewise linear for orthotropic laminates under combined loading whenever shear remains low and it is also shown to be piecewise continuous in the general case. Based on the numerically observed behavior, a new scheme for the approximation is applied that separates each buckling mode and builds linear, polynomial or rational regressions for each mode. Results of this approach and applications to structural optimization are presented

    A multigrid continuation method for elliptic problems with folds

    Get PDF
    We introduce a new multigrid continuation method for computing solutions of nonlinear elliptic eigenvalue problems which contain limit points (also called turning points or folds). Our method combines the frozen tau technique of Brandt with pseudo-arc length continuation and correction of the parameter on the coarsest grid. This produces considerable storage savings over direct continuation methods,as well as better initial coarse grid approximations, and avoids complicated algorithms for determining the parameter on finer grids. We provide numerical results for second, fourth and sixth order approximations to the two-parameter, two-dimensional stationary reaction-diffusion problem: Ī”u+Ī» exp(u/(1+au)) = 0. For the higher order interpolations we use bicubic and biquintic splines. The convergence rate is observed to be independent of the occurrence of limit points
    • ā€¦
    corecore