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Abstract

We prove that standard regularity and saddle stability assumptions for linear approximations are suf-

ficient to guarantee the existence of a unique solution for all undetermined coefficients of nonlinear

perturbations of arbitrary order to discrete time DSGE models. We derive the perturbation using a

matrix calculus that preserves linear algebraic structures to arbitrary orders of derivatives, enabling

the direct application of theorems from matrix analysis to prove our main result. As a consequence,

we provide insight into several invertibility assumptionsfrom linear solution methods, prove that

the local solution is independent of terms first order in the perturbation parameter, and relax the

assumptions needed for the local existence theorem of perturbation solutions.
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1 Introduction

Macroeconomists are increasingly using nonlinear methodsto analyze dynamic stochastic general

equilibrium (DSGE) models. One such method, the perturbation method initiated in macro DSGE

modeling by Gaspar and Judd (1997), Judd and Guu (1997), and Judd (1998, ch. 13), has been

successfully applied to a variety of applications with a fewrecent examples including the effects of

time varying interest rates in the small open economy in Fernández-Villaverde, Guerrón-Quintana,

Rubio-Ramı́rez, and Uribe (2011), to multi country real business cycle models in Kollmann, Kim,

and Kim (2011), to the yield curve with recursive preferences and long run risks in Rudebusch

and Swanson (2012). Intuitively, perturbation rests on theidea that successive differentiation of

the equilibrium conditions will generate a set of equationsthat are sufficient to uniquely recover

the coefficeints of the Taylor expansion of the policy function. As emphasized by Judd (1998) and

Jin and Judd (2002), this unique recovery rests on solvability conditions that enable the implicit

function theorem to guarantee the existence of a unique solution for the undetermined coefficients

of higher order terms. Current perturbation analyses proceed under the tenuous assumption that

these solvability conditions hold generically, as no general set of conditions has been proven. We fill

this gap and provide conditions that guarantee the existence and uniqueness of solutions for DSGE

perturbations of an arbitrarily high order. Specifically, our main result shows that assumptions on the

linear approximation that are standard in the literature are already sufficient to ensure this existence

and uniqueness.

We derive our main result by demonstrating that the set of linear equations in the undetermined

coefficients to be solved for each order of approximation canbe expressed as a generalized Sylvester

equation.1 Under the assumption of a unique saddle stable solution withrespect to the closed unit

circle for the homogenous component of the first order perturbation (i.e., (log-)linearization), a fac-

1Juillard and Kamenik (2004) and Kamenik (2005) provide a Sylvester representation for many of the unknown
coefficients in their perturbation. We formulate the state space, see below, to extend this approach to all coefficients.
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torization provided by a corollary of the generalized Bézout theorem relates the set of remaining

unstable eigenvalues to a generalized eigenvalue problem with the saddle stable solution as an ar-

gument. With this factorization in hand, we relate the spectra of the matrix pencils associated with

the leading and trailing coefficients in the generalized Sylvester equation at an arbitrary order to the

spectrum of the stable solution and the remaining set of unstable eigenvalues. Due to the separation

induced by the unique stable solution, the spectra of the pencils in the generalized Sylvester equation

necessarily form a disjoint set (akin to a nonzero determinant in a standard linear equation system),

ensuring the existence and uniqueness of solutions to the entire sequence of Sylvester equations.

Our result relies crucially on our ability to provide a closed form representation for the homoge-

nous components of the Sylvester equations. The current standard approach to higher dimensional

differentiation resorts to tensor notation,2 with which Jin and Judd (2002), Schmitt-Grohé and Uribe

(2004), and others have shown that the equations to be solvedat each order of approximation are lin-

ear. Unfortunately, the solvability conditions (that is, invertibility of these linear maps or coefficient

matrices) change as the order of approximation changes leading Jin and Judd (2002) to conclude that

this invertibility remains an open issue. Our results demonstrate that the choice of tensor notation

can obfuscate underlying algebraic relationships:3 the change in the coefficient matrices leading

to the change in the solvability conditions as the analysis proceeds to higher orders of approxima-

tion is trivial. We uncover the pattern of the linear map at each order of approximation using the

linear-algebraic preserving multidimensional calculus developed in Lan and Meyer-Gohde (2011),

enabling the direct application of results from linear algebra described above. At each order, the

lone trailing matrix in the Sylvester equation is a Kronecker power of the linear transition matrix of

the state space. As the order increases, so too does the Kronecker power; but if the linear transition

2See Schmitt-Grohé and Uribe (2004) or Kim, Kim, Schaumburg, and Sims (2008). Gomme and Klein (2011) and
Lombardo and Sutherland (2007) provide two exceptions, explicitly avoiding tensor notation in second order calcula-
tions. See Lan and Meyer-Gohde (2011) for further discussion.

3Gomme and Klein (2011) have argued that deriving perturbation solutions with standard linear algebra increases the
transparency of the technique, we extend this idea using ourmultidimensional mechanical system of differentiation for
arbitrarily high orders of approximation and demonstrate that maintaining standard linear algebraic structures enables
the derivation of additional analytic results.
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matrix is stable with respect to the closed unit circle, so too is an arbitrary Kronecker power of the

matrix stable with respect to the closed unit circle. With all other coefficients in the homogenous

part of the linear map remaining unchanged at each order, thetask of deriving general solvability

conditions is greatly reduced.

We construct the Taylor series approximation of the policy function with these uniquely solvable

coefficients, proving that the commonly used numerical procedure of successive differentiating the

equilibrium conditions of a smooth model uniquely recoversa Taylor approximation. Jin and Judd

(2002) provide a local existence theorem for solutions to stochastic nonlinear DSGE models—and

hence such Taylor approximations—using an implicit function theorem for Banach spaces, our fac-

torization result of the matrix quadratic equation allows us to eliminate their solvability assumption.4

Anderson, Levin, and Swanson (2006) show that under the assumption of analyticity of the true pol-

icy function, ann’th order perturbation is a global solution in a rigorous sense (inside the Taylor

series’s domain of convergence). Under their assumption ofanalyticity, which ensures that the true

nonlinear policy function can be uniquely represented by its associated Talyor series within its do-

main of convergence, our result proves that successive differentiation of the equilibrium conditions

is sufficient (in the limit) to recover the policy function.

We proceed to apply our results to several issues in linear and nonlinear perturbations. In numer-

ous studies of linear approximations—from McCallum (1983), to Binder and Pesaran (1997), to Uh-

lig (1999), to Cho and Moreno (2011), the analyses proceed under the proviso that certain matrices

are invertible to deliver a unique solution for the mapping from exogenous to endogenous variables.

From our main result, the existence and uniqueness of solutions for these mappings is guaranteed

as the existence and uniqueness of a saddle point stable solution for the homogenous component in

the endogenous variables is assumed. We show how the factorization provided by the generalized

Bézout theorem can be directly applied in their analyses toprove the missing invertibility conditions.

4Kim, Kim, Schaumburg, and Sims (2008) show that their assumption of bounded support for exogenous shocks is
unnecessary if accuracy in probability instead of an absolute accuracy is sought.
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King and Watson (1998) and Klein (2000) exploit the triangularity of their factorizations to prove

the existence and uniqueness of their mapping from exogenous to endogenous variables line by line

and we relate this scalar approach to the matrix approach with our factorization that allows us to

accomplish this task in one step instead of recursively. Nonlinearly, several analyses have pointed

out that the first derivative of the policy function with respect to the perturbation parameter ought

to be zero. Jin and Judd (2002) and Schmitt-Grohé and Uribe (2004) notably present this result in

the context of the first derivative of the policy function with respect to the standard deviation of the

shock. Both of these analyses assume the invertibility of the mappings they show to be homogenous,

thus enabling our main result to complete their proofs by ensuring this necessary invertibility.

The rest of the paper is organized as follows. In section2, we lay out a general nonlinear multi-

variate DSGE model and develop then’th order approximation to its associated policy function by

mechanical application of the differentiation rules provided by the linear-algebraic preserving multi-

dimensional calculus and associated Taylor’s Theorem. We begin in section3 with the derivations of

the terms associated with the endogenous state space in the first order perturbation, leading to a ma-

trix quadratic problem familiar from the analysis of linearDSGE models. Here we relate the matrix

quadratic problem to a generalized eigenvalue problem and introduce the factorization enabled by

the generalized Bézout theorem allowing us to place two pencils on different sides of the unit circle.

In section4, we derive the remaining coefficients of the perturbation with a sequence of generalized

Sylvester equations and derive our result on the existence and uniqueness of the solutions to these

equations, using properties of the solutions to Sylvester equations and our separation of two matrix

pencils from the previous section. The existence and uniqueness of these solutions is then linked

to the local existence and approximation of the policy function. We apply our results in section5

to some remaining invertibility assumptions in linear models and address the first order role of the

perturbation parameter in nonlinear settings. Finally, section6 concludes.
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2 DSGE Problem Statement and Policy Function

In this section, we introduce the class of models we analyze and the policy function we examine

as a solution. Our class of models is a standard system of (nonlinear) second order expectational

difference equations compatible with Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and

Villemot’s (2011) Dynare or Anderson, Levin, and Swanson’s(2006) PerturbationAIM. We will

first present the model class followed by the solution form and then conclude with the Taylor ap-

proximation of the solution and the matrix calculus necessary to follow the derivations in subsequent

sections.

2.1 Model Class

We analyze a family of discrete-time rational expectationsmodels given by

0= Et [ f (yt+1,yt ,yt−1,εt)](1)

the vector-valued functionf : Rny×Rny×Rny×Rne→ Rny is assumedCn, wheren is the order of

approximation to be introduced subsequently, with respectto all its arguments;yt ∈ Rny the vector

of endogenous variables; andεt ∈ R
ne the vector of exogenous shocks. Note that we assume there

are as many equations as endogenous variables.

Additionally, εt is assumed independently and identically distributed suchthat E [εt ] = 0 and

E
[

εt
⊗[n]

]

exists and is finite for alln up to and including the order of approximation to be introduced

subsequently.5

5The notationεt
⊗[n] represents Kronecker powers,εt

⊗[n] is the n’th fold Kronecker product ofεt with itself:
εt ⊗ εt · · ·⊗ εt
︸ ︷︷ ︸

n times

. For simulations and the like, of course, more specific decisions regarding the distribution of the ex-

ogenous processes will have to be made. Kim, Kim, Schaumburg, and Sims (2008, p. 3402) emphasize that distri-
butional assumptions like these are not entirely local assumptions. Dynare (Adjemian, Bastani, Juillard, Mihoubi,
Perendia, Ratto, and Villemot 2011) assumes normality of the underlying shocks. PerturbationAIM (Anderson, Levin,
and Swanson 2006) assumes mutual independence of the elements of εt .
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2.2 Solution Form

Let the policy function be time invariant and ergodic, ruling out explosive and nonfundamental

solutions, following Anderson, Levin, and Swanson (2006, p. 3) and let it take

zt =

[
yt−1

εt

]

∈ R
nz×1(2)

as its state vector, wherenz= ny+ne.

As is usual in perturbation methods, we introduce an auxiliary parameterσ ∈ [0, 1] to scale the

uncertainty in the model. The “true” stochastic model understudy corresponds toσ = 1 andσ = 0

represents the deterministic version of the model. Hence, the model has solutions indexed byσ

yt = y(σ,zt), y : R+×R
nz→R

ny(3)

Time invariance and scaling uncertainty give

yt+1 = y+(σ,zt+1), zt+1 =

[
yt

σεt+1

]

∈ R
nz×1, y+ : R+×R

nz→ R
ny(4)

The notation,y andy+, is adopted so that we can keep track of the source (throughyt andyt+1

respectively) of any given partial derivative of the policyfunction. The necessity of which can be

seen by the fact thatσ scales theεt+1 in thezt+1 argument ofy+, but not that ofεt in thezt argument

of y, and the thezt+1 argument ofy+ is itself a function ofy through its dependance onyt .

2.3 Taylor Series Approximation

We seek a Taylor approximation of the solution, (3), expanded around a nonstochastic steady state

Definition 2.1. Nonstochastic Steady State

Let y∈ R
ny be a vector such that

0= f (y,y,y,0)(5)

that is, the function f in (1) with all shocks, set to zero, and the policy function evaluated at the

nonstochastic steady state

y= y(0,z)(6)
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wherez=
[
y′ 0′

]′
, and all uncertainty regarding the future eliminated(σ = 0).

Note that the nonstochastic steady state need not necessarily be unique as we will admit models

that possess unit root solution in the first order approximation.

Following general practice in the perturbation literature, we attempt to pin down the approxima-

tion of the unknown policy function (3) by successively differentiating (1) and solving the resulting

systems for the unknown coefficients. Notice that, sincef is a vector valued function, successive dif-

ferentiation off with respect to its vector arguments will generate a hypercube of partial derivatives.

We use the method of Lan and Meyer-Gohde (2011) that adapts the structure of matrix derivatives

defined in Vetter (1973) to differentiate conformably to theKronecker product, by deriving partial

derivatives from successive differentiation off as two dimensional matrices. This allows us to avoid

tensor notation—mitigating to some extent what Jin and Judd(2002) called a “nontrivial notational

challenge”—and use standard linear algebra, operationalizing Gomme and Klein’s (2011) goal of

two dimensional derivatives to arbitrary orders of differentiation.

Definition 2.2. Matrix Derivatives

Let A(B) :Rs×1 →Rp×q be a matrix-valued function that maps an s×1 vector B into an p×q matrix

A(B), the derivative structure of A(B) with respect to B is defined as

AB ≡ DBT{A} ≡
[

∂
∂b1

. . . ∂
∂bs

]

⊗A(7)

where bi denotes i’th row of vector B,T indicates transposition.6 Structures of n’th derivatives are

thereby uniquely defined

ABn ≡ D(BT)n{A} ≡

([
∂

∂b1
. . . ∂

∂bs

]⊗[n]
)

⊗A(8)

This structure will make the presentation of the solution method more transparent—successive

differentiation of f to the desired order of approximation is a mechanical application of the associ-

ating calculus

6Outside of the derivative structures, we use the apostropheto indicate transposition.
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Theorem 2.3.A Multidimensional Calculus

Given the vector B∈ Rs×1 and the matrix-valued functions F: B→ Rp×q, G : B→ Rq×u, H : B→

Ru×v and given the vector-valued function C: B → Ru×1, J : C → Rp×1 and the matrix-valued

function A: C→ Rp×q, the following rules of calculus hold

1. Matrix Product Rule:DBT {FG}= FB(Is⊗G)+FGB, where Is is an s×s identity matrix

2. Matrix Chain Rule:DBT {A(C)}= AC
(
CB⊗ Iq

)
, where Iq is an q×q identity matrix

3. Matrix Kronecker Product Rule:DBT {F ⊗H} = FB⊗H +(F ⊗HB)Kq,vs
(
Is⊗Kv,q

)
, where

Kq,vs and Kv,q are qvs×qvs and qv×qv commutation matrices (Magnus and Neudecker 1979).

4. Vector Chain Rule:DBT {J(C)}= ACCB

Proof. See Lan and Meyer-Gohde (2011).

By adapting the notation from Definition2.2and writingyzmσn as the partial derivative, evaluated

at the nonstochastic steady state, ofy with respect toσ n times and with respect tozt m times, we

can then write theM-th order Taylor approximation of the policy function (3) using the following

Corollary 2.4. An M-th order Taylor Approximation of (3) is written as

yt =
M

∑
m=0

1
m!

[
M−m

∑
n=0

1
n!

yzmσnσn

]

(zt −z)⊗[m](9)

Proof. See Appendix.

Here
[

∑M−m
n=0

1
n! yzmσnσn

]
collects all the coefficients associated with them’th fold Kronecker

product of the state vector,zt. For a givenm, the sum overn gathers coefficients in powers of the

perturbation parameterσ that correct the coefficients associated with them’th fold Kronecker prod-

uct of the state vector,zt, for uncertainty up to then-th order. This enables the useful classification

of the contributions of uncertainty to the model as corrections to the Taylor series coefficients for

uncertainty. That is, moving to a higher order of approximation, M, in (9) comprises two changes:

8



(i) adding a higher order partial derivative with respect tothe state vectorzt and (ii) opening up all

existing partial derivatives of current order to a higher order correction for uncertainty.7 The change

in moving from anM−1’th to M’th order approximation is
M

∑
m=0

1
M!

∞

∑
i1=0

∞

∑
i2=0

· · ·
∞

∑
im=0

[
1

(M−m)!
yzmσM−mσM−m

]

(zt −z)⊗[m](10)

Change (i) adds anM’th order partial derivative with a zeroth order correctionfor uncertainty (for

m= M above,yzmσM−mσM−m = yzmσ0σ0 = yzm) and from (ii) comes then additionally a first order

uncertainty correction forM −1’th order partial derivatives with respect tozt , a second order un-

certainty correction for theM−2’th partial derivatives with respect tozt and so on up to theM’th

order correction for uncertainty in the constant. The uncertainty correction at a given order directly

depends on the moments of future shocks at each order and so (ii) can be interpreted as successively

opening each partial derivatives of current order up to higher moments in the distribution of future

shocks, while (i) maintains the deterministic Taylor notion of moving to a higher order polynomial.

2.4 Systems of Equations for the Unknown Coefficients

The procedure can be outlined as follows.8 Inserting the policy functions foryt andyt+1—equations,

(3) and (4) respectively—into the model (1) yields

0= Et

[

f

(

y+
(

σ,
[
y(σ,zt)
σεt+1

])

,y(σ,zt),zt

)]

(11)

a function with argumentsσ and zt . At each order of approximation, we take the collection of

derivatives off from the previous order (for the first-order, we start with the function f itself) and

1. differentiate each of the derivatives off from the previous order with respect to each of its

arguments (i.e.,σ andzt)

2. evaluate the partial derivatives off and ofy at the nonstochastic steady state

3. apply the expectations operator and evaluate using the given moments

7We are grateful to Michael Burda for suggesting this interpretation.
8See Anderson, Levin, and Swanson (2006) for a similar outline.
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4. set the resulting expression to zero and solve for the unknown partial derivatives ofy.

The partial derivatives ofy, obtained in step (4) at each order, constitute the missing partial deriva-

tives for the Taylor approximation.

3 Solving and Factoring the Matrix Quadratic Equation

In this section, we deal with the only nonlinear equation that needs to be solved, a matrix quadratic

equation. The existence and uniqueness of a saddle stable solution—stable with respect to the closed

unit circle—for linear approximations is given by the existence and uniqueness of a stable solution

the matrix quadratic solution.9 This is well known, but we will need to make the standard assump-

tions that guarantee this solution. It has, however, not been appreciated in the DSGE literature that

this stable solution can be used to deflate the matrix quadratic equation into a second generalized

eigenvalue problem containing the unstable manifold. Thisfactorization, a corollary of the general-

ized Bézout theorem that relates lambda-matrices, solvents and right division of matrix polynomials,

splits the matrix quadratic problem into two disjoint (stable and unstable) components that will be

crucial in later sections for ensuring the existence and uniqueness of solutions out to arbitrary orders

of approximation.

3.1 Matrix Quadratic Equation

Following Corollary2.4, the first order Taylor expansion of the policy function (3) around the non-

stochastic steady state takes the form

yt = y+yσσ+yz(zt −z)(12)

The unknown coefficients are the partial derivativesyσ andyz.

Following the method outlined above, we differentiatef in (11) with respect tozt to generate the

9E.g., Uhlig (1999).
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equation that determinesyz,

DzT
t
{ f}= fy+y+z zyyz+ fyyz+ fz(13)

Evaluating this at the nonstochastic steady state and setting its expectation to zero yield

Et

[

DzT
t
{ f}

]∣
∣
∣
z
= fy+yzzyyz+ fyyz+ fz = 0(14)

Postmultiplying the foregoing withzy yields

fy+(yzzy)
2+ fyyzzy+ fzzy = 0(15)

This is a matrix quadratic equation inyzzy. Both Binder and Pesaran (1997) and Uhlig (1999) re-

late their solutions of linear models explicitly to such quadratic equations, other approaches, such as

Blanchard and Kahn (1980) or Klein (2000), work instead directly with model equations by applying

matrix factorizations to the model’s coefficients. Uhlig (1999) constructs a class of diagonalizable

solutions using generalized eigenvalue decomposition. While we dispense with the diagonalizabilty

requirements and use a generalized Schur form following Klein (2000), making his assumptions10

to solve (15), the generalized eigenvalue decomposition will be central for deflation of the quadratic

problem given a unique stable solution. We will link our problem in (15), to which we will require

a unique stable solution, to the general application of QZ tofind the entire set of solutions (or ‘sol-

vents’) to matrix quadratic problems in Higham and Kim (2000), who note that direct eigenvalue

methods may fail to identify solutions to matrix quadratic equations even when they exist.

3.2 The Saddle Stable Solution

We will now construct the stable solution to our matrix quadratic problem (15) using the general-

ized Schur decomposition. The existence and uniqueness of the stable solution will be guaranteed

by three assumptions standard in the literature. The first assumption is a regularity assumption that

requires all the equations to be linearly independent, the second is the Blanchard and Kahn (1980)

eigenvalue condition in our context requiring exactly as many stable eigenvalues as variables, and,

10Though we relax his stability assumption from the open to theclosed unit circle, permitting unit-root solutions.
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third, a singular version of the Blanchard and Kahn (1980) rank condition—Klein’s (2000) trans-

latability assumption—necessary to be able to construct a solution to (15) from the unique set of

stable eigenvalues.

In order to construct its solution (or solvent), we need to formalize the definition of our problem

as a matrix quadratic equation. Our analysis will proceed initially in the complex plane, but we

show—with assumption3.7—that the results carry over when we restrict solutions to bereal valued,

see also Klein (2000). We will begin by formalizing the notion of a matrix quadratic problem

Definition 3.1. Matrix Quadratic Problem

For fy+ , fy, and fzzy ∈ Rny×ny, a matrix quadratic M(X) : Cny×ny →Cny×ny in matrix X∈Cny×ny is

defined as

M(X) = fy+X2+ fyX+ fzzy(16)

A solution to the matrix quadratic (16) is called a solvent and is defined as

Definition 3.2. Solvent of Matrix Quadratic

A matrix X∈ C
ny×ny is a solvent of the matrix quadratic (16) if and only if M(X) = 0

A solvent of the matrix quadratic can be characterized alternatively via the deflating subspace

of the associated block companion formulation or linearized pencil of (16), following Higham and

Kim (2000)

Lemma 3.3. Solvent Characterization via Linearization

A matrix X∈ Cny×ny is a solvent of the matrix quadratic (16)—i.e., M(X) = 0— if and only if

D

[
Iny

X

]

X = E

[
Iny

X

]

, D =

[
0ny×ny Iny

fy+ 0ny×ny

]

, E =

[
Iny 0ny×ny

− fy − fzzy

]

(17)

where Iny is an ny×ny identity matrix and0ny×ny is an ny×ny matrix with all its entries being zero

Proof. See Higham and Kim (2000).

We will construct solvents of (16) with the generalized Schur decomposition of the matrix pencil

PDE(z) = Dz−E, where we define a pencil and its spectrum via

12



Definition 3.4. Matrix Pencil and Spectrum

Let P : C → Cn×n be a matrix-valued function of a complex variable; a matrix pencil. Its set of

generalized eigenvalues or spectrumρ(P) is defined viaρ(P) = {z∈ C : detP(z) = 0}.

Now we can apply Theorem 3 of Higham and Kim (2000) to recover the complete set of solvents

of (16).

Theorem 3.5.The Generalized Schur Decomposition and Solvents

All solvents of M(X) are given by X= Z21Z
−1
11 = Q11T11S

−1
11 Q−1

11 , where11

Q∗EZ= T, Q∗DZ = S(18)

is a generalized Schur decomposition with unitary Q and Z andupper triangular S and T, and where

Q, Z, S, and T are partitioned as block2×2 matrices with ny×ny blocks.

Proof. See Higham and Kim (2000).

Our interest lies in the unique stable solvent and we will nowproceed to the standard assumptions

following Klein (2000) and their consequences for the set ofsolvents. King and Watson’s (1998)

solvability condition, adapted also as Klein’s (2000, p. 1413) Assumption 4.3, requires the matrix

pencilPDE(z) = Dz−E to be regular

Assumption 3.6.Regularity Assumption

There exists a z∈C such that det(Dz−E) 6= 0: the matrix pencil PDE(z) = Dz−E is called regular

This assumption rules out a mundane source of singularity which leads to a general nonunique-

ness of solvents of the matrix quadratic, (16), merely because the problem is ill specified—e.g., two

equations are linearly dependent in the first-order approximation. If this condition were not to hold,

the spectrumρ(PDE) would be the entire complex plane—see Golub and Loan (1996, p. 377).

11∗ denotes conjugate transposition.
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With this assumption and any generalized Schur decomposition of PDE(z), the spectrum of the

pencilPDE(z) is a finite set given by

ρ(PDE) =

{

tii/sii , sii 6= 0

∞, otherwise
: i = 1, . . . ,2ny

}

(19)

wheresii andtii denote thei’th row andi’th column ofSandT respectively. With the continuation

to infinite generalized eigenvalues,12 the set of generalized eigenvalues or spectrum has exactly 2ny

elements.13

We will require the solvent to be stable with respect to the closed unit circle. From theorem3.5,

the eigenvalues of a solvent will be equal to the firstny pairstii/sii (suitably extended to infinity as

above). Thus, if there exists a unique solvent of the matrix quadratic (16), the Blanchard and Kahn

(1980) eigenvalue condition must hold

Assumption 3.7.Eigenvalue Count

Of the2ny generalized eigenvalues of the matrix pencil PDE(z) = Dz−E, there are exactly ny inside

or on the unit circle, called stable. Consequently, there are exactly ny outside the unit circle, called

unstable.

As the pairs(sii , tii) can be arranged in any order, they can be arranged such thatny pairs with

|tii | 6 |sii |, or stable eigenvalues, come first. The remainingny pairs with |tii | > |sii |, or unstable

eigenvalues, follow. As Klein (2000) also notes, with real valued matricesD andE in (17), com-

plex eigenvalues will come in pairs and thus the 2× 2 blocks on the diagonals ofT andS in the

real generalized Schur decomposition14 would not change the method. Essentially, the possibility

of a complex valued solution despite real valued coefficients is ruled out by the separation of the

eigenvalues, which come in pairs with equal modulus when complex and are thus both either on one

side or the other with an associated real valued solution, see also Uhlig’s (1999) discussion. From

assumption3.7, the partitioning of each the four matrices,Q, Z, S andT as (2× 2) blocks with

12See also Klein (2000, p. 1410).
13See J. E. Dennis, Traub, and Weber (1976, p. 835) or Golub and Loan (1996, p. 377), where the regularity in

assumption3.6rules out the possibility thatsii = tii = 0 for somei.
14See Golub and Loan’s (1996) Theorem 7.7.2.
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(ny×ny) blocks is conformable with the dimension of the two sets, stable and unstable, generalized

eigenvalues. From theorem3.5, the solvent associated with any generalized Schur decomposition

for the matrix quadratic problem is given byX = Z21Z
−1
11 and thus for us to be able to construct a

solvent from the combination of stable eigenvalues, we impose following Klein’s (2000, p. 1413)

Assumption 4.5

Assumption 3.8.Solvent Constructibility

The upper right block Z11 is nonsingular

As the maximal number of solvents given our regularity assumption is given by the number

of different possible combinations of eigenvalues respecting algebraic multiplicities,15 if a solvent

exists for a uniquenydimensional set of eigenvalues stable with respect to the closed unit circle then

it is the only solvent whose eigenvalues satisfy the stability requirement.

Thus, under assumptions3.6–3.8, there exists a unique stable solution to (16), which we sum-

marize in the following

Theorem 3.9.Existence of a Unique Stable Solvent

There exists a unique solution of (15) with all its eigenvalues inside the closed unit circle (which we

will call yzzy), if the associated linearized pencil is regular (assumption 3.6), has exactly ny stable

eigenvalues—inside or on the unit circle (assumption3.7), and if a generalized Schur decomposition

with the ny stable eigenvalues order first admits a solvent (assumption3.8).

Proof. By construction.

We will reserveyzzy for this unique stable solvent of (15).

15See J. E. Dennis, Traub, and Weber (1976), Higham and Kim (2000), or Higham and Kim (2001).
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3.3 Factoring the Unstable Solutions

In the previous section, we made three standard16 assumptions to deliver a unique stable solvent or

solution to the matrix quadratic problem at the first order. This solvent is constructed using half

(ny out of 2ny) of the eigenvalues associated with the quadratic problem.We will now apply the

generalized Bézout theorem to show that with a solvent (again, in our case the unique stableyzzy) in

hand, the original matrix quadratic problem can be deflated to a generalized eigenvalue problem with

all eigenvalues outside the unit circle (i.e., the remaining ny eigenvalues not used in the construc-

tion of yzzy). The generalized eigenvalue problem combines the coefficient matrices of the original

quadratic problem with our unique stableyzzy into a pencil with unstable eigenvalues, providing us

with a means to factor the remaining eigenvalues as pencils involving our stable solution.

From, e.g., J. E. Dennis, Traub, and Weber (1976, p. 835) or Gantmacher’s (1959a, p. 228)

Theorem 4, the set of eigenvalues of all solvents of (16) are latent roots of the associated lambda-

matrix

Definition 3.10. Lambda-Matrix

The lambda-matrix M(λ) : C→ C
n×n (of degree two) associated with (16) is given by

M(λ)≡ M(λIn) = fy+λ2+ fyλ+ fzzy(20)

Its latent roots are values ofλ such thatdetM(λ) = 0.

The set of latent roots in (20) is identical to the set of eigenvalues of the generalized eigenvalue

problem associated with the pencil formed by the matrices inthe linearized version (17) of the

quadratic problem

Lemma 3.11.The matrix pencil PDE(z)=Dz−E is a linearization of the lambda-matrix (20), hence

the latent roots of (20) coincides with the elements of the spectrumρ(PDE)

16See Klein (2000).
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Proof. See, e.g., Davis (1981), Gohberg, Lancaster, and Rodman (1982, Ch. 7), or Tisseur and

Meerbergen (2001).

Thus, the set of eigenvalues of the pencilPDE(z), ρ(PDE), is identical to the set ofλ’s such that

detM(λ) = 0.

We are now prepared to link lambda matrices and solvents through the generalized Bézout theo-

rem, repeated in the Appendix, which states that a lambda matrix divided on the right by a binomial

in a matrix has as a remainder the matrix polynomial associated with the lambda matrix evaluated

at the matrix of the binomial. As noted by Gantmacher (1959a,Ch. 4) and repeated in Lancaster

(1966), Davis (1981), Higham and Kim (2000), and Higham and Kim (2001), if this matrix in the

binomial is a solvent of the matrix polynomial, the divisionis without remainder, yielding a fac-

torization of the matrix polynomial. Our matrix polynomialis a matrix quadratic and can thus be

factored as follows

Corollary 3.12. As yzzy is a solvent of (16), then (20) has the following factorization

M(λ) = (λ fy+ + fy+yzzy+ fy)(Inyλ−yzzy)(21)

Proof. Apply theoremA.1 in the Appendix to (16), setA= yzzy, and note thatM(yzzy) = 0 asyzzy

is a solvent ofM(X).

Note that the eigenvalues of the pencilPDE(z), ρ(PDE), are given byλ’s such that

det(λ fy+ + fy+yzzy+ fy)det(Inyλ−yzzy) = 0(22)

The latter determinant gives the eigenvalues associated with the solventyzzy and the former determi-

nant gives a generalized eigenvalue problem in the coefficients ofM(X) and the solventyzzy. We can

now use assumption3.7, the Blanchard and Kahn (1980) condition, on the number of eigenvalues to

restrict the eigenvalues of the generalized eigenvalue problem det(z fy+ + fy+yzzy+ fy) = 0.

Proposition 3.13. The eigenvalues of the matrix pencil PU(z) ≡ z fy+ + fy+yzzy+ fy are contained

entirely outside the closed unit circle.
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Proof. From assumption3.7, there are exactlyny eigenvalues of the pencilPDE(z) inside or on the

unit circle and exactlyny outside the unit circle. From lemma3.11, then, there are exactlyny latent

roots ofM(λ) inside or on the unit circle and exactlyny outside the unit circle. Theny eigenvalues

of the pencilPS(z) ≡ Inyz− yzzy are all inside or on the unit circle by theorem3.9. Hence, theny

eigenvalues ofPU (z) are theny remaining latent roots ofM(λ), which must be outside the unit

circle.

So the latent roots ofM(λ) comprise the elements ofρ(PS)—all inside or on the unit circle—and

the elements ofρ(PU)—all outside the unit circle. These two spectra are hence disjoint, having no

element in common.

Furthermore, the regularity ofPDE(z) in assumption3.6 immediate transfers to bothPU(z) and

PS(z)

Lemma 3.14.The matrix pencils PU(z)= z fy++ fy+yzzy+ fy and PS(z)= Inyz−yzzy are both regular.

Proof. See Appendix.

Both the regularity and disjointness of these spectra will be central to the solvability of the un-

determined coefficients of perturbations of arbitrary order, to which we will turn in the next section.

Before we proceed, we can now complete the deterministic component of the first order solution.

Given our unique stableyzzy, yz solves

( fy+ fy+yzzy)yz=− fz(23)

and the existence of its unique solution is summarized in thefollowing

Proposition 3.15.Under the assumptions of theorem3.9, yz uniquely solves (23).

Proof. We need to prove the nonsingularity of the matrixfy + fy+yzzy. This matrix is singular,

det
(

fy+ fy+yzzy
)
= 0, if and only if zero is an eigenvalue of the regular pencilPU (z) = z fy+ +

fy+yzzy+ fy. From proposition3.13, the eigenvalues ofPU(z) are outside the unit circle and cannot

be zero.
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The factorization provided by the generalized Bézout theorem ensures the nonsingularity of the

leading coefficient matrix in (23). Thus, the deterministic component of the first order solution

exists and is unique necessarily from the assumptions leading to a unique stable solution to the

matrix quadratic equation. We will now extend this result toall the undetermined coefficients of

perturbations of arbitrary order.

4 Existence and Uniqueness in Higher Order Perturbations

In this section, we solve for the unknown coefficients of a perturbation with an arbitrarily high order

of approximation. A standard result in the literature, noted by Judd (1998, ch. 13), Jin and Judd

(2002), Schmitt-Grohé and Uribe (2004) and others, is thatthe higher order terms of the Taylor ex-

pansion are solutions to linear problems taking the coefficients from lower orders as given. Jin and

Judd (2002), however, have emphasized that the solvabilityof these linear systems is not a given

and furthermore that the conditions that need to be fulfilledfor solvability change with the order of

approximation. While they conjecture the generic solvability at all orders, they conclude that this

remains an open issue. We will provide conditions for the solvability of perturbation coefficients

at all orders using the theorem of Chu (1987) on the existenceof unique solutions to generalized

Sylvester equations. Surprisingly, we show that the assumptions made in section3 to guarantee the

existence of unique stable transition matrix in the linear approximation are already sufficient to guar-

antee solvability. As a consequence, it follows that the unknown coefficients of a Taylor expansion

of arbitrary order can be uniquely recovered through successive differentiation of the equilibrium

conditions if there is a unique stable solvent to the matrix quadratic at first order. Additionally, our

solvability results eliminate a key assumption in the localexistence proof of Jin and Judd (2002) for

stochastic perturbations, leaving only their bounded support assumption as potentially nonstandard.
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4.1 Generalized Sylvester Equations

We generate the linear systems in the unknown coefficients ofa perturbation as Sylvester equations

for all coefficients at all orders. We construct the linear equations following the method outlined

in section2.4 by mechanical application of the multi-dimensional calculus developed in Lan and

Meyer-Gohde (2011) to the equilibrium conditions. The linear algebraic structure reveals a gener-

alized Sylvester equations with leading coefficients containing the unstable and trailing coefficients

the stable components of the factorized matrix quadratic equation of the previous section.

The Sylvester form in the higher order perturbation literature is not an innovation, having been

identified in previous studies. Aside from the identification of Sylvester equations in a second order

context by, e.g., Kim, Kim, Schaumburg, and Sims (2008) or Gomme and Klein (2011), Juillard

and Kamenik (2004) and Kamenik (2005) show explicitly that some of the unknown coefficients

can be cast as Sylvester equations. To our knowledge, however, this is the first representation that

takes this pattern to the limit, showing that all equations of an arbitrary order perturbation can be

cast into Sylvester form. While our form is appear wasteful from the numerical perspective of most

higher order perturbation analyses, it is precisely this form that enables our proof of the existence

and uniqueness of solutions for these equations that numerical studies have taken for granted. Thus,

this form is only need for the proof of the validity of the methods and with our results in hand,

numerical studies can confidently ignore our form and operate on more efficient compositions.

The first order Taylor expansion that we began in the previoussection is incomplete, we still need

to determine the stochastic perturbation or first order uncertainty correction,yσ. We differentiatef

in (11) with respect toσ

Dσ{ f}= fy+y+z zyyσ + fy+y+z zεεt+1+ fy+y+σ + fyyσ(24)

Evaluating the foregoing at the nonstochastic steady state, z, and setting its expectation to zero yields

Et [Dσ{ f}]
∣
∣
∣
z
= fy+yσ +( fy+ fy+yzzy)yσ + fy+yzzεEt [εt+1] = 0(25)

A generalized Sylvester equation, taking the unique stablesolutionyzzy as given from the previous
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section.

For the unknown coefficients of second and higher orders, we successively differentiate (11) with

respect to the state vectorzt and the perturbation parameterσ, evaluate the resulting expressions

at the nonstochastic steady state and set their expectations equal to zero. This generates a set of

generalized Sylvester equations similar to (25). We summarize this in the following

Lemma 4.1. For all j , i ∈ N0 such that j+ i > 1 except the case j= 1 and i= 0, the undetermined

coefficients yzj σi solve the following generalized Sylvester equation

fy+yzjσi (zyyz)
⊗[ j ]+

(
fy+ fy+yzzy

)
yzjσi +A( j, i) = 0(26)

where A( j, i) is a function of known terms: coefficients from lower orders of approximation and

given moments E
[

εt
⊗[k]

]

, k≤ i.

Proof. See the Appendix.

This representation provides an explicit formulation of the homogenous structure of the equa-

tions that the unknown coefficients of each order of approximation must fulfill,17 which will facil-

itate the analysis of solvability using linear algebra. At each order, the leading matrix coefficients,

fy+ and fy+ fy+yzzy, remain unchanged and are formed by the coefficients of unstable factorization

PU of the matrix quadratic as detailed in proposition3.13. The trailing matrix coefficient,(zyyz)
⊗[ j ],

is a Kronecker power of the linear transition matrix of the state space and changes with the order of

approximation.

That the trailing matrix changes withj is the source for the problematic dependence of the

solvability conditions on the order of approximation identified by Jin and Judd (2002). Specifically,

Jin and Judd (2002) first develop a deterministic perturbation, inzt only, and perturb stochastically,

with respect toσ. They point out that the change in the solvability conditions occurs only in a

change in the order of approximation in the deterministic perturbation. This is reflected in our

17For example, when( j = 0, i = 1), (26) reduces to (25). In the Appendix, we provide the detailed derivations for
the second order Taylor expansion, which yields the three generalized Sylvester equations of (26) with ( j = 2, i = 0),
( j = 1, i = 1) and( j = 0, i = 2) for the unknown coefficientsyz2, yzσ andyσ2 respectively.
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Sylvester equations in that the only change occurs withj, the order of the state vectorzt , and that

the coefficients are independent ofi,18 the order of the (stochastic) perturbation parameter.

We now proceed to establish conditions under which the solution to (26) exist and are unique.

This is crucial for relating assumptions3.6–3.8 to the characterization of the general solvability

condition for the generalized Sylvester equations that follows in the next section.

4.2 Existence and Uniqueness

In this section, we will appeal to Chu’s (1987) necessary andsufficient conditions for the existence

and uniqueness of solutions to generalized Sylvester equations and prove that they are fulfilled for

all our equations in lemma4.1as a direct consequence of the existence of the unique stablesolution

to the matrix quadratic equation (15). Thus, the three standard assumptions—our assumptions3.6–

3.8—from linear analyses to this end are already sufficient to ensure the existence of unique solutions

for all unknown coefficients of perturbations of arbitrary order.

The necessary and sufficient conditions proposed by Theorem1 of Chu (1987) requires the two

matrix pencils formed by the leading and trailing matrix coefficients of a generalized Sylvester equa-

tion to be regular and have disjoint spectra. We adapt his theorem, adopting his notation temporarily,

to our purposes in the following

Proposition 4.2. There exists a unique solution for X∈ Rm×n in the generalized Sylvester equation

AXB+CXD+E = 0

if and only if

1. PAC(λ)≡ Aλ+C and PDB(λ)≡ Dλ−B are regular matrix pencils, and

2. ρ(PAC)∩ρ(PDB) = /0

where A,C∈ Rm×m and D,B∈ Rn×n.

18A( j, i) is of course dependent oni, reflecting the fact that we can generically expect the valueof the solutions
associated with differenti’s to differ. For the solvability conditions to remain unchanged at differenti’s requires the
coefficients of the homogenous portion to remain unchanged.
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Proof. See Chu (1987). Notice the rearrangement and redefinition ofterms.

As we have already established the Sylvester form—see lemma4.1, the existence and unique-

ness of solutions for all the coefficients of a perturbation of arbitrarily high order will follow from

proposition4.2if we can establish the regularity of the following matrix pencils and the disjointness

of their spectra

Definition 4.3. For all j ∈ N0, the leading and trailing matrix pencils, respectively, ofthe general-

ized Sylvester equation (26) in lemma4.1are

1. PU(z)≡ z fy+ + fy+yzzy+ fy ( the PU(z) in corollary 3.12)

2. PIS(z)≡ zInzj − (zyyz)
⊗[ j ]

Before we examine the regularity and spectral disjointnessin the general case, we will highlight

the intuition behind proposition4.2in the special scalar version of (26), when fy+ , fy,yzzy andzyyz∈

R andA( j, i) is a scalar function of known terms.19 In this case, (26) can be arranged as
[

fy+ (zyyz)
j +

(
fy+ fy+yzzy

)]

yzj σi +A( j, i) = 0(27)

From, e.g., Strang (2009), the foregoing has a unique solution if and only if the leading coefficient

is not zero, i.e.,
[

fy+ (zyyz)
j +

(
fy+ fy+yzzy

)]

6= 0. As otherwise there is either no solution (when

A( j, i) 6= 0) or there exists infinitely many solutions (whenA( j, i) = 0). The two conditions in

proposition4.2translate directly into the two ways this leading coefficient can be equal to zero.

The regularity condition in the scalar case translates to both coefficients in either of the pencils

being simultaneously equal to zero: eitherfy+ = fy+ fy+yzzy = 0 or 1= (zyyz)
j = 0. Obviously,

both coefficients in the trailing pencil cannot be zero and this general regularity holds in the matrix

case as well. The second condition, disjoint spectra, rulesout the remaining possibility that the sum

of all the coefficients is zero, which can be rearranged as
fy+ fy+yzzy

fy+
6= (zyyz)

j . Recognize that the

19This special case, of course, is not useful practically. Either all shocks or the presence ofyt−1 has to be shut down,
but the mechanisms behind the matrix case are usefully illustrated in this case.
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two terms correspond to the eigenvalues of the scalar regular pencilsPU(z) andPIS(z), hence their

set of eigenvalues (or spectra) must not contain any identical elements (be disjoint).

Returning to the general matrix case, we will now first establish the regularity of the pencils

PU(z) andPIS(z) and then proceed to prove the disjointness of their spectra.The leading pencil

PU(z) is one of the two pencils in corollary3.12, its regularity was established in lemma3.14and all

its eigenvalues were placed outside the closed unit circle in proposition3.13. The regularity of the

trailing pencil is guaranteed by the presence of the identity matrix and we will show that its spectrum

is contained inside the closed unit circle by virtue of theorem3.9.

The regularity of both the pencils is summarized in the following20

Lemma 4.4. For all j ∈ N0, the leading and trailing matrix pencils, see definition4.3, are regular

Proof. ForPU(z), see lemma3.14. ForPIS(z), this follows from its leading matrix being the identity

matrix, see Gantmacher (1959b, pp. 25–27).

The spectral disjointness follows nearly directly from thefactorization of the matrix quadratic in

corollary3.12, with the spectrum of the leading pencilPU(z) being outside and that of the trailing

pencilPIS(z) being inside the closed unit circle. In corollary3.12, it was the pencilPS(z)= Inyz−yzzy

that was the stable pencil, but noting thatzy andzε are two constant matrices with all their entries

being either unit or zero

zy ≡ DyT
t−1

{zt}= DyT
t
{zt+1}=

[
Iny

0ne×ny

]

, zε ≡ DεT
t
{zt}= DσεT

t+1
{zt+1}=

[
0ny×ne

Ine

]

(28)

the matrixzyyz in PIS(z) is

zyyz =

[
yzzy yzzε

0ne×ny 0ne×ne

]

(29)

and it follows directly that the the eigenvalues ofPIS(z) are all stable with respect to the closed unit

circle, and thus those of an arbitrary Kronecker power too, if those ofyzzy are. We summarize the

disjointness in the following

20The regularity ofPIS(z) can also be verified by generalized Schur decomposition. Since the identity matrix is
diagonal, it is also upper-triangular, and therefore allsii ’s of S= Q∗IZ are unity. Hence,sii = tii = 0 is ruled out for alli
andPIS(z) is regular.
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Lemma 4.5. For all j ∈ N
0, the leading and the trailing matrix pencils of definition4.3 have no

eigenvalues in common—their spectra form a disjoint set.

Proof. See Appendix.

From lemmata4.4and4.5, proposition4.2applies and the existence and uniqueness of solutions

to the generalized Sylvester equations (26) in lemma4.1follows immediately. In sum,

Proposition 4.6. Let the assumptions of theorem3.9 be fulfilled—there exists a unique solution,

yzzy, of the matrix quadratic equation (15) stable with respect to the closed unit circle, then for all

j, i ∈ N0 such that j+ i > 1 except the case j= 1 and i= 0, there exist unique yzj σi that solve

fy+yzjσi (zyyz)
⊗[ j ]+

(
fy+ fy+yzzy

)
yzjσi +A( j, i) = 0

the generalized Sylvester equations (26) in lemma4.1.

Proof. From lemmata4.4and4.5, the two conditions of proposition4.2are fulfilled and the result

is immediate.

Thus, given the unique stable solution of the matrix quadratic equation (15), all coefficients of

in a perturbation of arbitrary order exist and are unique. Wewill now proceed to examine the conse-

quences of this result for the policy function or exact solution y(σ,zt) and its Taylor approximation.

4.3 Discussion and Consequences for Nonlinear Perturbation Methods

In this section, we will examine the conditions for the localexistence of a solution to our model (1)

and then construct a Taylor approximation using the solutions to the generalized Sylvester equations

(26) along with the first order termyz from the previous section. We then highlight the insight

of Anderson, Levin, and Swanson (2006) that this local solution can take on global facets as the

order of approximation is increased. As we have shown that the solutions for the coefficients that

we will use to construct our Taylor approximation exist and are unique, our analysis proves that
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the method of successively differentiating the equilibrium conditions of a smooth model as used by

many numerical algorithms necessarily leads to a unique recovery of this Taylor series.

Jin and Judd (2002) provide a local existence theorem for thesolution to stochastic models and

note the importance of checking whether a particular model fulfills these necessary conditions. We

eliminate their solvability assumption, as their assumption of a unique locally asymptotically stable

solution implies our theorem3.9holds, enabling us to apply our factorization from the generalized

Bézout theorem of section3 and confirm that their solvability assumption is necessarily fulfilled,

analogously to our proposition4.6.

Theorem 4.7.Simplified Local Existence Theorem of Jin and Judd (2002)

If (i) the function f in (1) exists and is analytic for allεt in some neighborhood ofz defined in (5), (ii)

there exists a unique deterministic solution y(0,zt) locally analytic in zt and locally asymptotically

stable, (iii) E[εt ] =0, and (iv)εt has bounded support, then there is an r>0such that for all(zt ,σ) in

a ball with radius r centered at(0,z) there exists a unique solution y(σ,zt) to (11). Furthermore, all

derivatives of y(σ,zt) exist in a neighborhood of(0,z) and can be solved by implicit differentiation.

Proof. See Jin and Judd’s (2002) Theorem 6, where we have adapted notation to our exposition.

Note that their assumption (iii) has been eliminated. See the Appendix.

This simplification is potentially important, as it eliminates the only prohibitive assumption that

has not been addressed elsewhere for the extension of local existence from a deterministic to a

stochastic setting. Kim, Kim, Schaumburg, and Sims (2008) have discussed the assumption of

bounded support and argue that if an accuracy in probabilityperspective is taken, then this assump-

tion is not needed for finite time simulations and estimations. All told, what is needed for the local

existence of a solution to a stochastic problem is sufficientdifferentiability of the equilibrium con-

ditions, the existence of a solution to the deterministic variant of the model and restrictions on the

moments of the stochastic processes that ensure the model remains well defined.
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Taking now the existence, at least locally, of a solution forgranted, we will gather the solutions to

the generalized Sylvester equations (26) along with the first order termyz as the unknown coefficients

in a Taylor approximation of the policy function. Recallingthe assumed differentiability of the

equilibrium conditions and the existence of the nonstochastic steady state, we apply our results thus

far and conclude that successive differentiation of the equilibrium conditions (11) is sufficient to

uniquely recover a Taylor approximation of arbitrary order

Theorem 4.8. Let the assumptions of theorem3.9be fulfilled—there exists a unique solution, yzzy,

of the matrix quadratic equation (15) stable with respect to the closed unit circle, a Taylor series

approximation at a nonstochastic steady state of the policyfunction yt = y(σ,zt)

yt =
M

∑
m=0

1
m!

[
M−m

∑
n=0

1
n!

yzmσnσn

]

(zt −z)⊗[m]

exists and is unique for all M and can be uniquely recovered bysuccessive (implicit) differentiation

of the equilibrium conditions (11).

Proof. The existence and uniqueness of the coefficients in the Taylor approximation follows from

proposition3.15 for yz and from proposition4.6 for all remaining coefficients. Recalling the as-

sumed differentiability of (1), successive differentiation of (11) is then well defined.

This result ensures that a Taylor approximation of the policy function can be unambiguously

recovered by the obvious method of successive differentiation of the equilibrium conditions and

solving the resulting linear system of equations for the unknown coefficients. This method is, of

course, the basis of the numerous numerical algorithms for calculating perturbation solutions to

DSGE models and this result proves that their users can be assured that perturbation applied to

sufficiently smooth problems at a nonstochastic steady state must deliver a solution and that it must

be unique under standard saddle stability conditions on thelinear approximation.

Perturbation methods generate local approximations of thepolicy function—the Taylor expan-

sion around the nonstochastic steady state at which the solution of the model is (assumed) known.
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As Jin and Judd (2002) state, these methods do well for small but nontrivial neighborhoods of the

point around which we approximate and, as Anderson, Levin, and Swanson (2006) point out, this

nontrivial neighborhood is potentially very large if the policy function along with the function of the

equilibrium conditions are analytic. As a consequence, thevalidity of perturbation methods can be

extended past the local level to the entire domain of convergence of the Taylor expansion of the true

policy function. If we assume that the policy function is analytic, the Taylor expansion converges

to the policy function as the order of approximation becomesinfinite. As corollary4.8ensures that

perturbation methods can uniquely recover a Taylor expansion that satisfies the model’s equilibrium

conditions out to the order of approximation, then this uniquely recovered Taylor expansion must be

a valid solution everywhere within its domain of convergence. We formalize this in the following

Corollary 4.9. Under the assumptions that the policy function y in yt = y(σ,zt) is analytic and

asymptotically stable at the point(0,z), the function f in the model statement (1) in analytic at the

point (y,y,y,0) and the Taylor series (9) of the policy function expanded around the point(0,z)

converges in any (compact) subset of the domain of the policyfunction,R+×Rnz, successive differ-

entiation of the equilibrium conditions (11) is sufficient to recover the policy function in this subset.

Proof. If the policy function is analytic at the point around which we expand the Taylor series,

then the Taylor expansion converges to the policy function as the order of approximation becomes

infinite. Theorem4.6ensures the unique recovery of such an asymptotic expansion.

Our Sylvester characterization of the equations to be solved at each order of approximation along

with the factorization provided by the generalized Bézouttheorem leads to a linear algebraic charac-

terization of the solvability conditions for a perturbation of arbitrarily high order. While we confirm

Jin and Judd’s (2002) assessment that these conditions change with the order of approximation, the

change is minimal comprising only Kronecker powers of the linear transition matrix of the state

space. Our same factorization enabled us to weaken the requirements for the local existence proof

of a solution, which provides the theoretical foundation for the Taylor expansion that we have proven
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is necessarily uniquely recoverable by successive differentiation of the equilibrium conditions given

a unique stable solution at the first order of approximation.

5 Applications

Here we will address to specific components of our arbitrary order perturbation: the linear mapping

from exogenous (in our caseεt) to endogenous (hereyt) variables and the first order independence

of the policy function on the perturbation parameterσ. Many studies on linear solution methods

have paid the existence and uniqueness of the first mapping little attention, directing focus towards

the endogenous mapping associated (in our formulation) with the matrix quadratic equation. Our

factorization from the generalized Bézout theorem can be applied directly in the context of such

linear studies—we center our analysis around Uhlig (1999)—to prove the existence and uniqueness

of this mapping under saddle stability conditions. In a nonlinear result, Jin and Judd (2002) and

Schmitt-Grohé and Uribe (2004) have conjectured the independence of the policy function from

first order effects of the perturbation parameter (yzj σi = 0 for i = 1), as the equations that these

coefficients solve are homogenous. Our analysis adds the missing link, showing not only that zero

is a solution (as follows from the homogeneity), but that it is the only solution.

5.1 Uhlig’s (1999)Q or the Linear Mapping from Exogenous Variables

The literature on linear DSGE models is well established, but the matrix factorization provided

by the generalized Bézout theorem can also be applied to thesolvability of the mapping from ex-

ogenous to endogenous variables in existing linear solution methods. Specifically, we show how

the techniques of the previous two sections can be applied tothis mapping in several linear solution

methods spanning the last three decades. The result that this mapping can be uniquely resolved is not

new— the procedure of King and Watson (2002, pp. 73–74) and Klein (2000, p. 1416) is a recursive

scalar alternative to our direct matrix approach. However,the main focus of most research on lin-

ear solutions concentrates on the quadratic equation—the mapping of endogenous variables through
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time. McCallum (1983), Binder and Pesaran (1997), Uhlig (1999), and Cho and Moreno (2011)

are a few papers in this expansive literature that leave the existence and uniqueness of the mapping

from exogenous variables to endogenous variables unresolved. While this solvability is guaranteed

by our proposition3.15, it is instructive to apply the underlying linear algebra—proposition3.13

and theorem4.2—directly to this well known literature. We will focus in detail on Uhlig (1999),

adopting his notation for this section, and then relate the solvability of his exogenous to endogenous

mapping to that of McCallum (1983), Binder and Pesaran (1997), and Cho and Moreno (2011).

Uhlig (1999) solves a linear model by the method of undetermined coefficients, with the follow-

ing problem statement21

0= Et [Fxt+1+Gxt +Hxt−1+Lzt+1+Mzt ] , zt = Nzt−1+ εt(30)

wherext is a vector (nx×1) of endogenous variables,zt is an exogenous vector (nz×1) autoregres-

sive process, andεt a vector of serially uncorrelated innovations tozt .22

Proceeding with the method of undetermined coefficients using the postulated solution

xt = Pxt−1+Qzt(31)

the matrixP solves a matrix quadratic equation

FP2+GP+H = 0(32)

Uhlig (1999) constructs a solvent with a set ofnx eigenvalues and eigenvectors associated with the

linearization of (32). Assuming there is a unique solution stable with respect tothe closed unit circle,

we can apply the generalized Bézout theorem for right division by a solvent—corollary3.12— and

combine with Uhlig’s (1999) assumption thatN has only stable eigenvalues to yield

Lemma 5.1. The matrix pencils PFPG(λ) = FP+G+λF and PN(λ) = Inzλ−N are regular.

The spectrum of PFPG(λ) is wholly outside the closed unit circle and that of PN(λ) wholly inside.

Proof. ForPFPG(λ), see proposition3.13and lemma3.14; PN(λ) is by assumption.

21This is his “brute force” formulation. The same logic applies to his “with sensitivity” approach and the results carry
over to that formulation too. We choose this formulation to conserve space.

22Note that our problem statement (1) would put Uhlig’s (1999)xt andzt in ouryt
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This leaves the mapping fromzt to xt , the matrixQ, to be determined. Uhlig (1999) shows that

Q solves a generalized Sylvester equation

FQN+(FP+G)Q+M+LN = 0(33)

He applies the vec operation on (33) to solve forQ, yieldingV×vec(Q) =−vec(M+LN) and states

that “if [V] is invertible, then [the equation inQ has] a unique solution forQ.” If there is a unique

solution toP with all eigenvalues inside or on the unit circle, however, this proviso is not needed,

lemma5.1enables a direct application of Chu (1987), repeated here astheorem4.2) to (33,

Proposition 5.2. If there is a unique solution P stable with respect to the closed unit circle, then

there exists a unique solution for Q.

Proof. From lemma5.1, the pencilsPFPG(λ) andPN(λ) are regular and their eigenvalues form a

disjoint set. Thus, following Chu’s (1987) Theorem 1, thereexists a unique solution to (33).

Again, the uniqueness of a stable solution to the matrix quadratic equation—here (32)—guarantees

the existence of a unique solution to all remaining coefficients—hereQ as a solution to (33).

Our matrix factorization can be applied directly to numerous other linear methods from the past

thirty years. Beginning with McCallum (1983, p. 163),23 who setsH,L = 0 and states “Q will be

unique for almost all values ofF andN.” Proposition5.2 applies here directly withP= 0 always

being a stable solution to (32) and assuming its uniqueness, lemma5.1necessarily applies. Binder

and Pesaran (1997) examine the special case ofG = −Inx and add the proviso of “ifInx−FP is

invertible” to their solution method, stating that “[a]lthough it is in general difficult to establish

strong analytic results regarding the existence and multiplicity of solutions [...] we so far have

not encountered any well-specified economic model for whichInx−FP would have been singular.”

Indeed, under the assumption thatP has a unique stable solution, the invertibility ofInx−FP is

guaranteed by lemma5.1. Recently, Cho and Moreno (2011) have explored the forward solution as

23McCallum (1983, p. 164) then extends his analysis to allowH 6= 0, apparently claiming unique solvability in this
more general case. No indication is provided as to why his reservations in the more restricted case are eliminated when
he loosens his assumptions.
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a refinement mechanism, likewise under the assumption ofG = −Inx and like Binder and Pesaran

(1997), their results hold “provided thatdet(Inx−FP) 6= 0.” Again, if P is the unique stable solution

to the matrix quadratic equation, this condition necessarily holds. The generalized Bézout theorem

and the solvability of Sylvester equations ensure in the context of linear models with a unique stable

solution thatQ is unique and thatG+FP is indeed invertible.

Of course, the uniqueness ofQ has been addressed in other analyses. Klein (2000) and King

and Watson (2002) both provide a recursive procedure that proceeds element by element through

the combined vectorQzt .24 The recursivity follows from the triangularization provided by Schur

decomposition (see our theorem3.5). In particular, Klein (2000) highlights that the method will

fail if sii = tii = 0 (the notation fors and t aligns with our section3), which is ruled out by the

regularity assumption3.6, and moves through the unstable triangular block, inverting the matrix

siiN− tii Inz. If an eigenvaluetii/sii were to coincide with an eigenvalue in the exogenous transition

matrixN, Klein’s (2000) inversion would not succeed. But he is moving through the unstable block

and thus the eigenvalues ofN and the unstabletii/sii form a disjoint set, guaranteeing the necessary

invertibility. This is the same mechanism as we present above. The only difference being that our

approach uses matrix techniques to solve the problem in one step, whereas Klein (2000) and King

and Watson (2002) move element by element through the unstable set of eigenvalues.

5.2 First Order Independence fromσ

This section confirms the conjecture of both Jin and Judd (2002) and Schmitt-Grohé and Uribe

(2004) that the policy function is independent of the perturbation parameterσ. This follows intu-

itively, we argue, as the first moment of the exogenous shocksis assumed to be zero, thus eliminating

its impact at all orders. Some studies, e.g., Kim, Kim, Schaumburg, and Sims (2008), deriving their

second or higher order Taylor expansions assuming without proof that these coefficients are all zero.

24Klein (2000) also provides a matrix formulation in terms of aSylvester equation as above, but does not address the
solvability of the equation. While he advocates the recursive method for computation reasons, its formulation enables
the solvability to be directly verified in his analysis from his assumptions.
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The root of the difficulty lies in the solvability of these systems: Schmitt-Grohé and Uribe (2004) to

second order and Jin and Judd (2002) to arbitrary order provethat the unknown coefficients involv-

ing the perturbation parameter solve homogeneous equations. Of course, the zero solution solves

these equations, but the claim that the solution is uniquelyzero requires solvability in addition to

homogeneity—see, e.g., Strang (2009). Our main result confirms the conjecture by providing the

necessary solvability so as to add uniqueness to their existence of the zero solution.

With the first moment of exogenous shocks and allyzkσ for k< j zero, the generalized Sylvester

equations inyzj σ are homogenous

fy+yzj σ (zyyz)
⊗[ j ]+

(
fy+ fy+yzzy

)
yzj σ = 0(34)

As the zero matrix is always a solution to (34) and the solution must be unique following theorem

4.6, yzj σ = 0 is the unique solution for allj. We formalize this in the following

Proposition 5.3. For all j ∈ N0, yzj σ is zero.

Proof. See the Appendix.

The intuition behind this is simple: the unknown coefficientyzjσ is the comparative static matrix

measuring the impact of the first order moment of exogenous shocks on the policy functiony (and

its derivatives with respect to the state vectorzt). As the first order moment is assumed to be zero,

the first order moment of exogenous shocks has no impact at all.

6 Conclusion

We have proven the existence and uniqueness of solutions forthe undetermined coefficients in per-

turbations of an arbitrarily high order. For users of numerical perturbation algorithms, such as

Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot’s (2011) Dynare or Anderson,

Levin, and Swanson’s (2006) PerturbationAIM, we have answered two questions. First, given a

nonlinear perturbation solution from a numerical algorithm, is this solution the only solution? Sec-

ond, should a numerical algorithm fail to deliver a solution: does a solution not exist at all or did the
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numerical algorithm simply fail to find it? Given a unique stable solution at first order, our results

provide a definitive assurance that a solution must exist andthat is must be unique. In essence, we

show that successive differentiation of the equilibrium condition will generate set of equations that

are sufficient to uniquely recover the coefficients of the Taylor expansion of the policy function.

Our method exploits the analytic factorization provided bythe generalized Bézout theorem of

the matrix quadratic equation from the linear (or first order) problem, taking a unique stable solution

at that order as given. The factorization separates the original matrix quadratic problem into two

regular pencils with disjoint sets of eigenvalues. These two pencils form the basis of the pencils of

the leading and trailing coefficient matrices in the generalized Sylvester equations that govern the

undetermined coefficients at all higher orders of approximation. Our results make extensive use of

the multidimensional calculus of Lan and Meyer-Gohde (2011) that preserves linear algebraic struc-

tures, enabling us to provide this explicit representationof the homogenous components of these

linear equations. The existence and uniqueness of the solutions for the undetermined coefficients

is then a straightforward application of Chu’s (1987) theorem on solutions to generalized Sylvester

equations and follows from the regularity and disjointnessof the sets of eigenvalues of the pencils

of the leading and trailing coefficient matrices.

With the recent proliferation of interest in nonlinear methods and general familiarity of economists

with the simplest perturbation—i.e., the first order or (log-)linearization, our results should provide

researchers applying perturbation methods numerically with the confidence that a perturbation of

arbitrary order is guaranteed to provide a unique solution if the linear approximation has a unique

stable solution.
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A Appendices

A.1 Proof of corollary 2.4

From Vetter (1973, pp. 358–363), a multidimensional Taylorexpansion using the structure of deriva-

tives (evaluated at̄B) in Lan and Meyer-Gohde (2011) is given by

M
(p×1)

( B
(s×1)

) = M(B̄)+
N

∑
n=1

1
n!

D
n
BT nM(B̄)(B− B̄)⊗[n]

+RN+1(B̄,B)(A-1)

whereRN+1(B̄,B) =
1

N!

∫ B

ξ=B̄
D

N+1
BTN+1M(ξ)

(

Is⊗ (B−ξ)⊗[N]
)

dξ(A-2)

Differentiating (3) with respect to all its argumentsM times and noting permutations of the order

of differentiation, a Taylor approximation about the nonstochastic steady statez is

yt =
1
0!

(
1
0!

y+
1
1!

yσσ+
1
2!

yσ2σ2+ . . .+
1

M!
yσM σM

)

+
1
1!

(
1
0!

yz+
1
1!

yzσσ+
1
2!

yzσ2σ2+ . . .+
1

(M−1)!
yzσM−1σM−1

)

(zt −z)

+
1
2!

(
1
0!

yz2 +
1
1!

yz2σσ+
1
2!

yz2σ2σ2+ . . .+
1

(M−2)!
yz2σM−2σM−2

)

(zt −z)⊗[2]

...

+
1

M!
1
0!

yzM (zt −z)⊗[M]

Writing the foregoing more compactly yields (9) in the text.

A.2 The Generalized B́ezout Theorem

Theorem A.1. The Generalized B́ezout Theorem

The arbitrary lambda-matrix

M(λ) = M0λm+M1λm−1+ . . .Mm, where M0 6= 0
(n×n)

when divided on the right by the binomial

Inλ−A

yields

M(λ) = Q(λ)(Inλ−A)+M(A)
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where

Q(λ) = M0λm−1+(M0A+M1)λm−2+ . . .M0Am−1M1Am−2+ . . .Mm

Proof. See Gantmacher (1959a).

A.3 Proof of Lemma 3.14

The regularity of the matrix pencilPDE(z) in assumption3.6means

det
(

fy+z2+ fyz+ fzzy
)
6= 0(A-3)

Following corollary3.12, the matrix polynomial inside the foregoing admits the following factor-

ization

det
(
(z fy+ + fy+yzzy+ fy)(Inyz−yzzy)

)
6= 0(A-4)

and using the product rule of matrix determinants of Strang (2009, ch. 5), the foregoing rewrites

det(z fy+ + fy+yzzy+ fy)det(Inyz−yzzy) 6= 0(A-5)

This means neither of the two determinants is zero, or equivalently, matrix pencilsPU(z) = z fy+ +

fy+yzzy+ fy andPS(z) = Inyz−yzzy are both regular.

A.4 Proof of Lemma 4.1

We will first show that for allj, i ∈N0 such thatj + i > 1 except the casej = 1 andi = 0, successive

differentiation of the functionf with respect to its arguments,zt andσ, yields

DzT j
t σi{ f}= fy+yzjσi (zyyz)

⊗[ j ]+
(

fy+ fy+yzzy
)

yzjσi +B( j, i)(A-6)

where the functionB( j, i) is (i) linear inεt+1 up to and includingi-th Kronecker power and contains

(ii) products involving derivatives ofy andy+ with respect tozt j + i or less times andσ i or less

times except for the unknownyzj σi under consideration

B( j, i) = B
(

y+
zl σk,yzl σk,ε⊗[k]

t+1

)

(A-7)

wherel = 0,1,2, . . . , j + i; k= 0,1,2, . . . , i; l +k≤ j + i; but notl = j andk= i(A-8)
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The index rule (A-8) ensures that all the terms in theB( j, i) function are given by previous

calculations as the unknown under consideration,yzj σi , has been excluded byl = j andk= i simul-

taneously having been disallowed.

We will proceed inductively by differentiating (A-6) with respect tozt andσ respectively and

confirming that the two resulting expressions take the form of (A-6). First, differentiating (A-6) with

respect tozt yields

D
zT j+1
t σi{ f}= fy+yzj+1σi (zyyz)

⊗[ j+1]+
(

fy+ fy+yzzy
)

yzj+1σi

+DzT
t
{ fy+}

(

Ine⊗
[

y+zj σi (zyyz)
⊗[ j ]

])

+ fy+y+zj σiDzT
t

{

(zyyz)
⊗[ j ]

}

+DzT
t
{ fy}

(
Ine⊗yzj σi

)
+DzT

t
{ f+y yzzy}

(
Ine⊗yzj σi

)

+DzT
t

{

B
(

y+
zl σk,yzl σk,ε⊗[k]

t+1

)}

(A-9)

The terms in the second and third lines of the foregoing contain products involving the derivatives

of y andy+ with respect tozt j + i or less times andσ i or less times, all known from previous

calculations.

The terms in the last line contain products involving the derivatives ofy andy+ with respect to

zt j + i +1 or less times andσ i or less times. This can be shown by differentiating throughB( j, i)

in the last line with respect tozt in which

DzT
t

{

y+
zl σk

}

= y+
zl+1σk[(zyyz)⊗ Izl ], DzT

t

{
yzl σk

}
= yzl+1σk[(zyyz)⊗ Izl ](A-10)

wherel = 0,1,2, . . . , j + i; k= 0,1,2, . . . , i; l +k≤ j + i; but notl = j andk= i

Importantly, the unknown under consideration upon differentiation,yzj+1σi , is excluded by advanc-

ing the exclusion in the index rule: with noyzjσi in B( j, i), there can be noyzj+1σi in B( j +1, i).

Second the terms constitute a linear function inεt+1 up to and includingi-th Kronecker power as

differentiatingε⊗[k]
t+1 in the last line does not advance the indexi. Hence (A-9) can be rewritten

D
zT j+1
t σi{ f}= fy+yzj+1σi (zyyz)

⊗[ j+1]+
(

fy+ fy+yzzy
)

yzj+1σi +B( j +1, i)(A-11)
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Differentiating (A-6) with respect toσ yields

DzT j
t σi+1{ f}= fy+yzj σi+1 (zyyz)

⊗[ j ]+
(

fy+ fy+yzzy
)

yzj σi+1

+Dσ{ fy+}
[

y+zjσi (zyyz)
⊗[ j ]

]

+ fy+y+zj+1σi (zyyz)
⊗[ j+1]+ fy+y+zj+1σi zεεt+1(zyyz)

⊗[ j ]

+ fy+y+zj σiDσ

{

(zyyz)
⊗[ j ]

}

+Dσ{ fy}yzjσi +Dσ{ f+y yzzy}yzj σi

+Dσ

{

B
(

y+
zl σk,yzl σk,ε⊗[k]

t+1

)}

(A-12)

The terms in the second and third lines of the foregoing contain products involving the derivatives

of y andy+ with respect tozt j + i +1 or less times andσ i or less times, all known from previous

calculations. Note again that the unknown, hereyzj σi+1, only appears in the first line.

The last line contains products involving the derivatives of y andy+ with respect tozt j + i +1

or less times andσ i +1 or less times. This can be shown by differentiating throughB( j, i) in the

last line with respect toσ in which

Dσ

{

y+
zl σk

}

= y+
zl+1σk(zyyσ +zεεt+1)+y+

zl σk+1(A-13)

Dσ
{

yzl σk

}
= yzl σk+1(A-14)

wherel = 0,1,2, . . . , j + i; k= 0,1,2, . . . , i; l +k≤ j + i; but notl = j andk= i

Importantly, the unknownyzj σi+1 is again not present here either, as whenk = i or equivalently,

k+1= i+1, l = j is not allowed by the index rule: with noyzj σi in B( j, i), there can be noyzjσi+1 in

B( j, i +1). Notice that an additionalεt+1 is included in (A-13). The possibility that this term mul-

tiplies with the existingε⊗[k]
t+1 necessitates the advancement of the index associated with Kronecker

powers ofεt+1 for B( j, i +1) to remain linear in the set ofε⊗[k+1]
t+1 .

All terms in the last three lines of (A-12) can thus be collected inB
(

y+
zl σk+1,yzl σk+1,(εt+1)

⊗[k+1]
)

=

B( j, i +1) and (A-12) can be rewritten

DzT j
t σi+1{ f}= fy+yzj σi+1 (zyyz)

⊗[ j ]+
(

fy+ fy+yzzy
)

yzj σi+1 +B( j, i +1)(A-15)

The second step is to evaluate (A-6), having been verified by induction above, with the given

moments ofεt+1 and at the nonstochastic steady state. Setting the resulting expression equal to zero
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and lettingA( j, i)≡ Et [B( j, i)]
∣
∣
∣
z

yields (26) in the text.

All that remains is to address the cases that where excludingby the indexing and initialize the

induction. The two cases that were excluded are (i)( j = 0, i = 0) corresponding to the nonstochastic

steady state value ofy which was assumed given in the text; (ii)( j = 1, i = 0) for yz, which was

solved separately as (23) in the text. Noting that the case( j = 0, i = 1) for yσ in (25) also conforms

to the pattern, we can start the induction with the three second order terms( j = 2, i = 0), yz2;

( j = 1, i = 1), yzσ; and( j = 0, i = 2) yσ2 which are provided in the next section separately and thus

complete the proof.

A.5 Generalized Sylvester Equations for Second Order Terms

Following corollary2.4, the second order Taylor expansion of the policy function (3) takes the form

yt = y+yσσ+
1
2

yσ2σ2+(yz+yzσσ)(zt −z)+
1
2

yz2(zt −z)⊗[2](A-16)

Given coefficients from the first order, there are three unknowns,yz2, yzσ andyσ2, to be solved.

To find yz2, we differentiate (13) with respect tozt

DzT
t zT

t
{ f}=DzT

t

{
fy+

}(
Inz⊗y+z zyyz

)
+ fy+y+z2(zyyz)

⊗2+ fy+y+z zyyz2

+DzT
t

{
fy
}
(Inz⊗yz)+ fyyz2 +DzT

t
{ fz}(A-17)

where DzT
t

{
fy+

}
= fy+2

[(
y+z zyyz

)
⊗ Iny

]
+ fyy+ (yz⊗ Iny)+ fzy+

DzT
t

{
fy
}
= fy+y

[(
y+z zyyz

)
⊗ Iny

]
+ fy2 (yz⊗ Iny)+ fzy

Evaluating the foregoing at the nonstochastic steady state, taking its expectation, and setting the

resulting expression equal to zero yields

Et

[

DzT
t zT

t
{ f}

]∣
∣
∣
z
= fy+yz2(zyyz)

⊗2+( fy+yzzy+ fy)yz2

+Et

[

DzT
t

{
fy+

}
(Inz⊗y+z zyyz)+DzT

t

{
fy
}
(Inz⊗yz)+DzT

t
{ fz}

]∣
∣
∣
z

=0(A-18)

This is the generalized Sylvester equation (26) with j = 2 andi = 0, and under the expectation are

known terms from previous orders.

42



To determineyzσ, we differentiate (24) with respect tozt

D
2
zT
t σ{ f}=DzT

t

{
fy+

}(
Inz⊗ ( fy+[y

+
z (zyyσ +zεεt+1)+y+σ ])

)

+ fy+DzT
t

{
y+z

}
[Inz⊗ (zyyσ +zεεt+1)]+ fy+y+z zyyzσ

+ fy+y+zσzyyz+DzT
t

{
fy
}
(Inz⊗yσ)+ fyyzσ(A-19)

where DzT
t

{
y+z

}
= y+z2(zyyz)

⊗2+y+z zyyz2

Setting the expectation of the foregoing evaluated at the nonstochastic steady state to zero yields

Et

[

DzT
t σ{ f}

]∣
∣
∣
z
= fy+yzσ(zyyz)+

(
fy+yzzy+ fy

)
yzσ

+Et

[

DzT
t

{
fy+

}(
Inz⊗ ( fy+ [y

+
z (zyyσ +zεεt+1)+y+σ ])

)

+ fy+DzT
t

{
y+z

}
[Inz⊗ (zyyσ +zεεt+1)]+DzT

t

{
fy
}
(Inz⊗yσ)

]∣
∣
∣
z

=0(A-20)

This is (26) with j = 1 andi = 1.

To determineyσ2, we differentiate (24) with respect toσ

D
2
σ2{ f}=Dσ

{
fy+

}(
Inz⊗ ( fy+

[
y+z (zyyσ +zεεt+1)+y+σ

]
)
)

+ fy+Dσ
{

y+z
}
(Inz⊗ (zyyσ +zεεt+1))+ fy+y+z zyyσ2 + fy+y+σ2

+Dσ
{

fy
}
(Inz⊗yσ)+ fyyσ2(A-21)

where Dσ
{

fy+
}
= fy+2

[(
y+z (zyyσ +zεεt+1)+y+σ

)
⊗ Iny

]
+ fyy+(yσ ⊗ Iny)

Dσ
{

y+z
}
= y+z2(zyyσ +zεεt+1)+y+σz

Dσ
{

fy
}
= fy+y

[(
y+z (zyyσ +zεεt+1)+y+σ

)
⊗ Iny

]
+ fy2(yσ ⊗ Iny)

Evaluating the foregoing at the nonstochastic steady state, taking its expectation, and setting the

resulting expression equal to zero yields

Et
[
D

2
σ2 { f}

]
∣
∣
∣
z
= fy+yσ2 +

(
fy+yzzy+ fy

)
yσ2

+Et

[

Dσ
{

fy+
}(

Inz⊗ ( fy+
[
y+z (zyyσ +zεεt+1)+y+σ

]
)
)

+ fy+Dσ
{

y+z
}
(Inz⊗ (zyyσ +zεεt+1))+Dσ

{
fy
}
(Inz⊗yσ)

]∣
∣
∣
z
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=0(A-22)

This is (26) with j = 0 andi = 2.25

A.6 Proof of Lemma 4.5

From (29), it follows that the eigenvalues ofzyyz are those ofyzzy plus a zero eigenvalue with al-

gebraic multiplicityneand are thus, following theorem3.9, all inside the closed unit circle. From

Theorem 1 of Magnus and Neudecker (2007, ch .2), the eigenvalues of the Kronecker product of

two matrices are equal to the products of the eigenvalues of the two matrices and hence it follows

immediately that all the eigenvalues of(zyyz)
⊗[ j ] for all j ∈ N0, and hence the trailing pencil of def-

inition 4.3, are also inside the closed unit circle. The eigenvalues of the leading pencil of definition

4.3 are all outside the closed unit circle from proposition3.13. The two pencils in question have

thusly no eigenvalue in common as their spectra are separated by the unit circle.

A.7 Proof of Theorem4.7

Under our problem statement (1), the derivative of Jin and Judd’s (2002) operatorN (y,σ) has a

leading coefficient matrix given byfy + fy+yzzy at the steady state. From proposition3.13, this

matrix is necessarily invertible. Hence, we conclude that Jin and Judd’s (2002) assumption (ii),

from which our theorem3.9follows, ensures that their assumption (iii), the invertibility of N y(y,0),

is necessarily fulfilled.

A.8 Proof of Proposition 5.3

Following the proof of lemma4.1 in sectionA.4, we can write the set of equations governingyzj σ,

for j ≥ 0, as

fy+yzj σ (zyyz)
⊗[ j ]+

(
fy+ fy+yzzy

)
yzj σ +A( j,1) = 0(A-23)

25The second moment of future shocks in (A-22) can be identified by multiplying out the terms under the expectation

operator. Terms of the form, i.e.,(zεεt+1)⊗ (zεεt+1) can be rewritten as
(

z⊗[2]
ε

)(

ε⊗[2]
t+1

)

using the mixed Kronecker

product rule.
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whereA( j,1) = Et [B( j,1)]. We will proceed inductively over the terms inB( j,1) where the homo-

geneity of the set of equations governingyzj σ will follow inductively from the solvability proven in

proposition4.6.

To begin, assume that for somej ≥ 0, B( j,1) is a set of terms involving a product of at least one

of yzkσ, k< j, or εt+1, but at most one of the latter. As differentiating

fy+yzj σ (zyyz)
⊗[ j ]+

(
fy+ fy+yzzy

)
yzj σ +B( j,1) = 0(A-24)

with respect tozt only advances the indexj, see sectionA.4, it follows that

DzT
t σ{B( j,1)}= B( j +1,1)(A-25)

with B( j +1,1) being a set of terms involving a product of at least one ofyzkσ, k < j +1, or εt+1,

but at most one of the latter. To start the induction, note from (24) that

B(0,1) = fy+y+z zεεt+1(A-26)

thus, confirming the composition ofB( j,1) as a set of terms involving a product of at least one of

yzkσ, k< j, or εt+1, but at most one of the latter.26

Taking expectations

A( j,1) = Et [B( j,1)](A-27)

and as the first moment ofεt was assumed zero, all terms except those involving only products of

yzkσ, k < j are eliminated. Thus, if allyzkσ, k < j are zero, thenA( j,1) and the equation inyzj σ is

homogenous. From proposition4.6 it then follows thatyzj σ must also be zero, as a unique solution

exists and zero is always a solution of a homogenous equation. Hence by induction, starting from

the homogenous equation foryσ, all yzjσ = 0, for j ≥ 0.

26As k < j permits only negative powers ofk in yzkσ in B(0,1), it is perhaps useful to examineB(1,1) as well.
Eaxmining (A-19) for the second order case, which gives

B(1,1) =DzT
t

{
fy+

}(
Inz⊗ ( fy+ [y

+
z (zyyσ + zεεt+1)+ y+σ ])

)
+ fy+DzT

t

{
y+z

}
[Inz⊗ (zyyσ + zεεt+1)]+DzT

t
{ fy}(Inz⊗ yσ)

where DzT
t

{
y+z

}
= y+

z2(zyyz)
⊗2+ y+z zyyz2

notice that all terms involve a product of at least one ofyσ, or εt+1, but at most one of the latter.
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