7 research outputs found

    A Survey of Downlink Non-orthogonal Multiple Access for 5G Wireless Communication Networks

    Get PDF
    Accepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsNon-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cellular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier simultaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-input multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential research challenges

    Optimal Joint Subcarrier and Power Allocation in NOMA is Strongly NP-Hard

    Get PDF
    International audienceNon-orthogonal multiple access (NOMA) is a promising radio access technology for 5G. It allows several users to transmit on the same frequency and time resource by performing power-domain multiplexing. At the receiver side, successive interference cancellation (SIC) is applied to mitigate interference among the multiplexed signals. In this way, NOMA can outperform orthogonal multiple access schemes used in conventional cellular networks in terms of spectral efficiency and allows more simultaneous users. This paper investigates the computational complexity of joint subcarrier and power allocation problems in multi-carrier NOMA systems. We prove that these problems are strongly NP-hard for a large class of objective functions, namely the weighted generalized means of the individual data rates. This class covers the popular weighted sum-rate, proportional fairness, harmonic mean and max-min fairness utilities. Our results show that the optimal power and subcarrier allocation cannot be computed in polynomial time in the general case, unless P = NP. Nevertheless, we present some tractable special cases and we show that they can be solved efficiently

    Weighted Sum-Rate Maximization in Multi-Carrier NOMA with Cellular Power Constraint

    Get PDF
    International audienceNon-orthogonal multiple access (NOMA) has received significant attention for future wireless networks. NOMA outperforms orthogonal schemes, such as OFDMA, in terms of spectral efficiency and massive connectivity. The joint subcarrier and power allocation problem in NOMA is NP-hard to solve in general, due to complex impacts of signal superposition on each user's achievable data rates, as well as combinatorial constraints on the number of multiplexed users per sub-carrier to mitigate error propagation. In this family of problems, weighted sum-rate (WSR) is an important objective function as it can achieve different tradeoffs between sum-rate performance and user fairness. We propose a novel approach to solve the WSR maximization problem in multi-carrier NOMA with cellular power constraint. The problem is divided into two polynomial time solvable sub-problems. First, the multi-carrier power control (given a fixed subcarrier allocation) is non-convex. By taking advantage of its separability property, we design an optimal and low complexity algorithm (MCPC) based on projected gradient descent. Secondly, the single-carrier user selection is a non-convex mixed-integer problem that we solve using dynamic programming (SCUS). This work also aims to give an understanding on how each sub-problem's particular structure can facilitate the algorithm design. In that respect, the above MCPC and SCUS are basic building blocks that can be applied in a wide range of resource allocation problems. Furthermore, we propose an efficient heuristic to solve the general WSR maximization problem by combining MCPC and SCUS. Numerical results show that it achieves near-optimal sum-rate with user fairness, as well as significant performance improvement over OMA

    Joint Subcarrier and Power Allocation in NOMA: Optimal and Approximate Algorithms

    Get PDF
    Non-orthogonal multiple access (NOMA) is a promising technology to increase the spectral efficiency and enable massive connectivity in 5G and future wireless networks. In contrast to orthogonal schemes, such as OFDMA, NOMA multiplexes several users on the same frequency and time resource. Joint subcarrier and power allocation problems (JSPA) in NOMA are NP-hard to solve in general. In this family of problems, we consider the weighted sum-rate (WSR) objective function as it can achieve various tradeoffs between sum-rate performance and user fairness. Because of JSPA's intractability, a common approach in the literature is to solve separately the power control and subcarrier allocation (also known as user selection) problems, therefore achieving sub-optimal result. In this work, we first improve the computational complexity of existing single-carrier power control and user selection schemes. These improved procedures are then used as basic building blocks to design new algorithms, namely Opt-JSPA, Δ\varepsilon-JSPA and Grad-JSPA. Opt-JSPA computes an optimal solution with lower complexity than current optimal schemes in the literature. It can be used as a benchmark for optimal WSR performance in simulations. However, its pseudo-polynomial time complexity remains impractical for real-world systems with low latency requirements. To further reduce the complexity, we propose a fully polynomial-time approximation scheme called Δ\varepsilon-JSPA. Since, no approximation has been studied in the literature, Δ\varepsilon-JSPA stands out by allowing to control a tight trade-off between performance guarantee and complexity. Finally, Grad-JSPA is a heuristic based on gradient descent. Numerical results show that it achieves near-optimal WSR with much lower complexity than existing optimal methods

    Capacity-Achieving MIMO-NOMA: Iterative LMMSE Detection

    Full text link
    This paper considers a low-complexity iterative Linear Minimum Mean Square Error (LMMSE) multi-user detector for the Multiple-Input and Multiple-Output system with Non-Orthogonal Multiple Access (MIMO-NOMA), where multiple single-antenna users simultaneously communicate with a multiple-antenna base station (BS). While LMMSE being a linear detector has a low complexity, it has suboptimal performance in multi-user detection scenario due to the mismatch between LMMSE detection and multi-user decoding. Therefore, in this paper, we provide the matching conditions between the detector and decoders for MIMO-NOMA, which are then used to derive the achievable rate of the iterative detection. We prove that a matched iterative LMMSE detector can achieve (i) the optimal capacity of symmetric MIMO-NOMA with any number of users, (ii) the optimal sum capacity of asymmetric MIMO-NOMA with any number of users, (iii) all the maximal extreme points in the capacity region of asymmetric MIMO-NOMA with any number of users, (iv) all points in the capacity region of two-user and three-user asymmetric MIMO-NOMA systems. In addition, a kind of practical low-complexity error-correcting multiuser code, called irregular repeat-accumulate code, is designed to match the LMMSE detector. Numerical results shows that the bit error rate performance of the proposed iterative LMMSE detection outperforms the state-of-art methods and is within 0.8dB from the associated capacity limit.Comment: Accepted by IEEE TSP, 16 pages, 9 figures. This is the first work that proves the low-complexity iterative receiver (Parallel Interference Cancellation) can achieve the capacity of multi-user MIMO systems. arXiv admin note: text overlap with arXiv:1604.0831

    Joint Subcarrier and Power Allocation in NOMA: Optimal and Approximate Algorithms

    Get PDF
    Non-orthogonal multiple access (NOMA) is a promising technology to increase the spectral efficiency and enable massive connectivity in 5G and future wireless networks. In contrast to orthogonal schemes, such as OFDMA, NOMA multiplexes several users on the same frequency and time resource. Joint subcarrier and power allocation problems (JSPA) in NOMA are NP-hard to solve in general. In this family of problems, we consider the weighted sum-rate (WSR) objective function as it can achieve various tradeoffs between sum-rate performance and user fairness. Because of JSPA's intractability, a common approach in the literature is to solve separately the power control and subcarrier allocation (also known as user selection) problems, therefore achieving sub-optimal result. In this work, we first improve the computational complexity of existing single-carrier power control and user selection schemes. These improved procedures are then used as basic building blocks to design new algorithms, namely OPT-JSPA, Δ-JSPA and GRAD-JSPA. OPT-JSPA computes an optimal solution with lower complexity than current optimal schemes in the literature. It can be used as a benchmark for optimal WSR performance in simulations. However, its pseudo-polynomial time complexity remains impractical for real-world systems with low latency requirements. To further reduce the complexity, we propose a fully polynomial-time approximation scheme called Δ-JSPA. Since, no approximation has been studied in the literature, Δ-JSPA stands out by allowing to control a tight trade-off between performance guarantee and complexity. Finally, GRAD-JSPA is a heuristic based on gradient descent. Numerical results show that it achieves near-optimal WSR with much lower complexity than existing optimal methods
    corecore