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Joint Subcarrier and Power Allocation in NOMA:
Optimal and Approximate Algorithms

Lou Salaün, Student Member, IEEE, Marceau Coupechoux, and Chung Shue Chen, Senior Member, IEEE

Abstract—Non-orthogonal multiple access (NOMA) is a
promising technology to increase the spectral efficiency and
enable massive connectivity in 5G and future wireless networks.
In contrast to orthogonal schemes, such as OFDMA, NOMA
multiplexes several users on the same frequency and time
resource. Joint subcarrier and power allocation problems (JSPA)
in NOMA are NP-hard to solve in general. In this family of
problems, we consider the weighted sum-rate (WSR) objective
function as it can achieve various tradeoffs between sum-rate
performance and user fairness. Because of JSPA’s intractability,
a common approach in the literature is to solve separately the
power control and subcarrier allocation (also known as user
selection) problems, therefore achieving sub-optimal result. In
this work, we first improve the computational complexity of
existing single-carrier power control and user selection schemes.
These improved procedures are then used as basic building
blocks to design new algorithms, namely OPT-JSPA, ε-JSPA
and GRAD-JSPA. OPT-JSPA computes an optimal solution with
lower complexity than current optimal schemes in the literature.
It can be used as a benchmark for optimal WSR performance
in simulations. However, its pseudo-polynomial time complexity
remains impractical for real-world systems with low latency
requirements. To further reduce the complexity, we propose
a fully polynomial-time approximation scheme called ε-JSPA.
Since, no approximation has been studied in the literature, ε-
JSPA stands out by allowing to control a tight trade-off between
performance guarantee and complexity. Finally, GRAD-JSPA is
a heuristic based on gradient descent. Numerical results show
that it achieves near-optimal WSR with much lower complexity
than existing optimal methods.

I. INTRODUCTION

In multi-carrier multiple access systems, the total frequency
bandwidth is divided into subcarriers and assigned to users
to optimize the spectrum utilization. Orthogonal multiple
access (OMA), such as orthogonal frequency-division multiple
access (OFDMA) adopted in 3GPP-LTE and also 5G New
Radio Phase 1 standards [1], [2], only serves one user per
subcarrier in order to avoid intra-cell interference and have
low-complexity signal decoding at the receiver side. OMA is
known to be suboptimal in terms of spectral efficiency [3].

The principle of multi-carrier non-orthogonal multiple ac-
cess (MC-NOMA) is to multiplex several users on the same
subcarrier by performing signals superposition at the transmit-
ter side. Successive interference cancellation (SIC) is applied
at the receiver side to mitigate interference between super-
posed signals. MC-NOMA is a promising multiple access
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technology for 5G and beyond mobile networks as it can
achieve higher spectral efficiency than OMA schemes [4], [5].

Careful optimization of the transmit powers is required to
control the intra-carrier interference of superposed signals and
maximize the achievable data rates. Besides, due to error
propagation and decoding complexity concerns in practice [6],
subcarrier allocation for each transmission also needs to be
optimized. As a consequence, joint subcarrier and power
allocation problems (JSPA) in NOMA have received much
attention. In this class of problems, weighted sum-rate (WSR)
maximization is especially important as it can achieve different
tradeoffs between sum-rate performance and user fairness [7].

Two types of power constraints are considered in the lit-
erature. On the one hand, cellular power constraint is mostly
used in downlink transmissions to represent the total transmit
power budget available at the base station (BS). On the
other hand, individual power constraint sets a power limit
independently for each user. The latter is often considered in
uplink scenarios [8], [9], nevertheless it can also be applied
to the downlink [10], [11].

It is known that the equal-weight sum-rate and WSR max-
imization are both strongly NP-hard if we consider individual
power constraints in OFDMA [12] and in MC-NOMA sys-
tems [11], [13]. Nevertheless, several algorithms have been
developed to perform subcarrier and/or power allocation for
MC-NOMA and this type of constraints. Fractional transmit
power control (FTPC) is a simple heuristic that allocates a
fraction of the total power budget to each user based on
their channel conditions [4]. In [8] and [9], heuristic user
pairing strategies and iterative resource allocation algorithms
are studied for uplink transmissions. A time efficient two-
step heuristic is introduced in [10] to solve the problem with
equal weights. Reference [11] derives an upper bound on the
optimal WSR and proposes a Lagrangian duality and dynamic
programming (LDDP) scheme. This scheme achieves near-
optimal result, assuming the power budget is divided in J
equal parts to be allocated. It mainly serves as benchmark
due to its high computational complexity when J is large in
practical systems, which may not be suitable for low latency
requirements.

If we consider now cellular power constraints without
individual power constraints, the equal-weight sum-rate max-
imization is polynomial time solvable in OFDMA [14]. To
the best of our knowledge, it is unknown whether WSR
maximization in MC-NOMA under this type of constraints is
polynomial time solvable or NP-hard. Reference [15, Proposi-
tion 1] proves that the subcarrier optimization is NP-hard only
in the case of equal power allocation among the users. The
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proposed polynomial-time reduction from the NP-complete 3-
dimensional matching (3DM) to the NOMA problem should
have shown that all instances of 3DM can be mapped into
an instance of the NOMA problem to be complete. Besides,
the two-stage dynamic programming (TSDP) proposed in [11]
solves it optimally in pseudo-polynomial time depending on
J . Therefore, the WSR problem with cellular power constraint
is weakly NP-hard at most (in contrast to strongly NP-hard
for the individual power constraints as mentioned previously).
Only a few papers have developed optimization schemes in
this setting, which are either heuristics with no theoretical
performance guarantee or algorithms with impractical com-
putational complexity. For example, a greedy user selection
and heuristic power allocation scheme based on difference-of-
convex programming is proposed in [16]. In reference [15],
a matching algorithm is developed to perform subcarrier
allocation. A minorization-maximization algorithm is used
in [17] to compute precoding vectors of a MISO-NOMA
system. The authors of [18] employ monotonic optimization
to develop an optimal resource allocation policy, which serves
as benchmark due to its exponential complexity. The TSDP
scheme is also optimal for cellular power constraint scenarios
as proven in Theorem 13 of reference [11], but it has high
pseudo-polynomial complexity as well.

We note that, to the best of our knowledge, no polynomial-
time approximation scheme (PTAS) has been proposed in the
literature. Although PTAS is interesting for practical consider-
ations of NP-hard problems, as it provides theoretical perfor-
mance guarantees with controllable computational complexity.
Motivated by this observation, we extend the framework of our
previous paper [19] with a fully polynomial-time approxima-
tion scheme (FPTAS) for the WSR maximization problem with
cellular power constraint. In [19], we developed the following
algorithms: two basic building blocks SCPC and SCUS which
solve respectively the single-carrier power control and single-
carrier user selection problems in polynomial time; and a
heuristic JSPA scheme based on projected gradient descent,
SCPC and SCUS, denoted here by GRAD-JSPA. Our contri-
butions are as follows:

1) We improve SCPC and SCUS by performing precom-
putation to avoid repeated operations each time they are
executed. This reduces their computational complexity by
a factor proportional to the number of users.

2) The above precomputation also speeds up GRAD-JSPA,
which now has low and practical computational com-
plexity. In addition, numerical results show that GRAD-
JSPA achieves near-optimal WSR, as well as significant
improvement in performance over OMA.

3) We develop a new optimal algorithm, called OPT-JSPA,
suitable for use as a benchmark for optimal WSR per-
formance in simulations. We show that OPT-JSPA has
lower computational complexity than existing optimal
schemes [11], [18].

4) We propose a FPTAS, which is denoted by ε-JSPA. Its
design is based on the improved SCPC and SCUS, as
well as techniques from the multiple choice knapsack prob-
lem [20]. By definition of FPTAS, its performance is within

a factor 1 − ε of the optimal, for any ε > 0. Moreover, it
has polynomial complexity in both the input size and 1/ε.
Since, no approximation has been studied in the literature,
ε-JSPA stands out by allowing to control a tight trade-off
between performance guarantee and complexity.

Through the aforementioned points, our aim is to deepen
the understanding of JSPA and NOMA resource allocation
problems. We develop optimal, approximate and heuristic
schemes which are each suitable for systems with different
computational capabilities, as well as for performance bench-
marking. In addition, we provide mathematical tools to study
the WSR maximization problem, which can also be applied to
other similar resource allocation problems.

The paper is organized as follows. In Section II, we
present the system model and notations. Section III formu-
lates the WSR problem. We consider two single-carrier sub-
problems in Section IV that were previously solved using
SCPC and SCUS in [19]. We propose improved versions
of these algorithms, namely i-SCPC and i-SCUS, which
perform precomputation to reduce their complexity. Based on
these basic building blocks, we develop a low complexity
gradient descent based heuristic (GRAD-JSPA), a pseudo-
polynomial time optimal algorithm (OPT-JSPA) and a FPTAS
with ε-approximation guarantee (ε-JSPA) in Section V. We
show in Section VI some numerical results, highlighting our
solution’s WSR performance and computational complexity.
In Section VII, we discuss about how to generalize our
framework to more realistic channel estimation models and
multi-antenna systems. Finally, we conclude in Section VIII.

II. SYSTEM MODEL AND NOTATIONS

We define in this section the system model and notations
used throughout the paper. We consider a downlink multi-
carrier NOMA system composed of one base station (BS)
serving K users. We denote the index set of users by K ,
{1, . . . ,K}, and the set of subcarriers by N , {1, . . . , N}.
The total system bandwidth W is divided into N subcarriers of
bandwidth Wn, for each n ∈ N , such that

∑
n∈N Wn = W .

We assume orthogonal frequency division, so that adjacent
subcarriers do not interfere each other. Moreover, each sub-
carrier n ∈ N experiences frequency-flat block fading on its
bandwidth Wn.

Let pnk denotes the transmit power from the BS to user
k ∈ K on subcarrier n ∈ N . User k is said to be active on
subcarrier n if pnk > 0, and inactive otherwise. In addition,
let gnk be the channel gain between the BS and user k on
subcarrier n, and ηnk be the received noise power. We assume
that the channel gains are perfectly known. We discuss about
more realistic models with imperfect channel state information
(CSI) in Section VII. For simplicity of notations, we define
the normalized noise power as η̃nk , ηnk /g

n
k . We denote

by p , (pnk )k∈K,n∈N the vector of all transmit powers, and
pn , (pnk )k∈K the vector of transmit powers on subcarrier n.

In power domain NOMA, several users are multiplexed on
the same subcarrier using superposition coding. A common
approach adopted in the literature is to limit the number of
superposed signals on each subcarrier to be no more than M .
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The value of M is meant to characterize practical limitations
of SIC due to decoding complexity and error propagation [6].
We represent the set of active users on subcarrier n by
Un , {k ∈ K : pnk > 0}. The aforementioned constraint can
then be formulated as ∀n ∈ N , |Un| ≤M , where |·| denotes
the cardinality of a finite set. Each subcarrier is modeled as a
multi-user Gaussian broadcast channel [6] and SIC is applied
at the receiver side to mitigate intra-band interference.

The SIC decoding order on subcarrier n is usually de-
fined as a permutation over the active users on n, i.e.,
πn : {1, . . . , |Un|} → Un. However, for ease of reading, we
choose to represent it by a permutation over all users K, i.e.,
πn : {1, . . . ,K} → K. These two definitions are equivalent
in our model since the Shannon capacity (2) does not depend
on the inactive users k ∈ K \ Un, for which pnk = 0. For
i ∈ {1, . . . ,K}, πn(i) returns the i-th decoded user’s index.
Conversely, user k’s decoding order is given by π−1

n (k).
In this work, we consider the optimal decoding order studied

in [6, Section 6.2]. It consists of decoding users’ signals from
the highest to the lowest normalized noise power:

η̃nπn(1) ≥ η̃nπn(2) ≥ · · · ≥ η̃nπn(K). (1)

User πn(i) first decodes the signals of users πn(1) to πn(i−1)
and subtracts them from the superposed signal before decoding
its own signal. Interference from users πn(j) for j > i is
treated as noise. The maximum achievable data rate of user k
on subcarrier n is given by Shannon capacity:

Rnk (pn) ,Wn log2

(
1 +

gnk p
n
k∑K

j=π−1
n (k)+1 g

n
k p

n
πn(j) + ηnk

)
,

(a)
= Wn log2

(
1 +

pnk∑K
j=π−1

n (k)+1 p
n
πn(j) + η̃nk

)
, (2)

where equality (a) is obtained after normalizing by gnk . We
assume perfect SIC, therefore interference from users πn(j)
for j < π−1

n (k) is completely removed in (2).

III. PROBLEM FORMULATION

Let w = {w1, . . . , wK} be a sequence of K positive
weights. The main focus of this work is to solve the following
JSPA optimization problem:

maximize
p

∑

k∈K
wk
∑

n∈N
Rnk (pn),

subject to C1 :
∑

k∈K

∑

n∈N
pnk ≤ Pmax,

C2 :
∑

k∈K
pnk ≤ Pnmax, n ∈ N ,

C3 : pnk ≥ 0, k ∈ K, n ∈ N ,
C4 : |Un| ≤M, n ∈ N .

(P)

The objective of P is to maximize the system’s WSR. As
discussed in Section I, this objective function has received
much attention since its weights w can be chosen to achieve
different tradeoffs between sum-rate performance and fair-
ness [7]. Note that C1 represents the cellular power constraint,
i.e., a total power budget Pmax at the BS. In C2, we set a

power limit of Pnmax for each subcarrier n. This is a common
assumption in multi-carrier systems, e.g., [12], [14]. Constraint
C3 ensures that the allocated powers remain non-negative.
Due to decoding complexity and error propagation in SIC [6],
we restrict the maximum number of multiplexed users per
subcarrier to M in C4.

For ease of reading, we summarize some system parameters
of a given instance of P , for all n ∈ N , as follows:

In = (w,K,Wn, (g
n
k )k∈K, (η

n
k )k∈K) .

Let us consider the following change of variables:

∀n ∈ N , xni ,
{∑K

j=i p
n
πn(j), if i ∈ {1, . . . ,K},

0, if i = K + 1.
(3)

We define x , (xni )i∈{1,...,K},n∈N and xn , (xni )i∈{1,...,K}.

Lemma 1 (Equivalent problem P ′).
Problem P is equivalent to problem P ′ formulated below:

maximize
x

∑

n∈N

K∑

i=1

fni (xni ) +A, (P ′)

subject to C1′ :
∑

n∈N
xn1 ≤ Pmax,

C2′ : xn1 ≤ Pnmax, n ∈ N ,
C3′ : xni ≥ xni+1, i ∈ {1, . . . ,K}, n ∈ N ,
C3′′ : xnK+1 = 0, n ∈ N ,
C4′ : |U ′n| ≤M, n ∈ N ,

where for any i ∈ {1, . . . ,K} and n ∈ N , we have:

fni (xni ) ,





Wn log2

((
xn1 + η̃nπn(1)

)wπn(1)
)
, if i = 1,

Wn log2

(
(xni +η̃nπn(i))

wπn(i)(
xni +η̃n

πn(i−1)

)wπn(i−1)

)
, if i > 1,

and where U ′n , {i ∈ {1, . . . ,K} : xni > xni+1}. The constant

term A =
∑
n∈N wπn(K) log2

(
1/η̃nπn(K)

)
is chosen so that P

and P ′ have exactly the same optimal value.

Proof: The idea is to apply the change of variables (3)
to problem P . Details of the calculation can be found in
Appendix A.

The advantage of this formulation P ′ is that it exhibits a sep-
arable objective function in both dimensions i ∈ {1, . . . ,K}
and n ∈ N . In other words, it can be written as a sum of
functions fni , each only depending on one variable xni .

IV. SINGLE-CARRIER OPTIMIZATION

In this section, we focus on a simpler problem, in which
there is a single subcarrier n ∈ N and a power budget P̄n is
given for this subcarrier:

Fn
(
P̄n
)

= max
xn

K∑

i=1

fni (xni ) +An, (P ′SC(n))

subject to C2′–3′ : P̄n ≥ xn1 ≥ . . . ≥ xnK ≥ 0,

C4′ : |U ′n| ≤M,
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where An = wπn(K) log2

(
1/η̃nπn(K)

)
. C2′–3′ is obtained by

combining C2′, C3′ and C3′′. Fn
(
P̄n
)

denotes its optimal
value. Algorithms SCPC and SCUS have been introduced
in our previous paper [19] to tackle respectively the single-
carrier power control and single-carrier user selection sub-
problems that arise from P ′SC(n). We provide technical details
of these algorithms below, and we show how precomputation
can further improve their computational complexity. They will
be used as basic building blocks in Section V to design
efficient algorithms GRAD-JSPA, OPT-JSPA and ε-JSPA, for
the joint resource allocation problem.

A. Analysis of the Separable Functions fni
We introduce auxiliary functions to help us in the analysis

of fni and the algorithm design. For n ∈ N , i ∈ {1, . . . ,K}
and j ≤ i, assume that the consecutive variables xnj , . . . , x

n
i

are all equal to a certain value x ∈
[
0, P̄n

]
. We define fnj,i as:

fnj,i(x) ,
i∑

l=j

fnl (x),

=





Wn log2

((
x+ η̃nπn(i)

)wπn(i)
)
, if j = 1,

Wn log2

(
(x+η̃nπn(i))

wπn(i)(
x+η̃n

πn(j−1)

)wπn(j−1)

)
, if j > 1.

This simplification of notation is relevant for the analysis of
SCPC and SCUS in the following subsections. Indeed, if
users j, . . . , i− 1 are not active (i.e., j, . . . , i− 1 /∈ U ′n), then
xnj = · · · = xni , therefore

∑i
l=j f

n
l can be replaced by fnj,i

and xnj+1, . . . , x
n
i are redundant with xnj . If constraint C4′ is

satisfied, up to M users are active on each subcarrier. Thus,
evaluating the objective function of P ′SC(n) only requires
O(M) operations.

We study the properties of fnj,i in Lemma 2. Note that fni =
fni,i, therefore Lemma 2 also holds for functions fni . Fig. 1
shows the two general forms that can be taken by fnj,i.

Lemma 2 (Properties of fnj,i).
Let n ∈ N , i ∈ {1, . . . ,K}, and j ≤ i, we have:
• If j = 1 or wπn(i) ≥ wπn(j−1), then fnj,i is increasing

and concave on [0,∞).
• Otherwise when j > 1 and wπn(i) < wπn(j−1), fnj,i is

unimodal. It increases on
(
−η̃πn(j−1), c1

]
and decreases

on [c1,∞), where

c1 =
wπn(j−1)η̃πn(i) − wπn(i)η̃πn(j−1)

wπn(i) − wπn(j−1)
.

Besides, fnj,i is concave on
(
−η̃πn(j−1), c2

]
and convex

on [c2,∞), where

c2 =

√
wπn(j−1)η̃πn(i) −√wπn(i)η̃πn(j−1)√

wπn(i) −√wπn(j−1)
≥ c1.

Proof: These analytical properties can be obtained by
studying the first and second derivatives of fnj,i. Details can
be found in Appendix B.

We present in Algorithm 1 the pseudocode ARGMAXf
which computes the maximum of fnj,i on

[
0, P̄n

]
following

the result of Lemma 2. ARGMAXf only requires a constant
number of basic operations, therefore its complexity is O(1).

max at c1

change of convexity at c2

f n
j ,i , for wπn(i) < wπn(j−1)

f n
j ,i , for wπn(i) ≥ wπn(j−1)

Fig. 1. The two general forms of functions fnj,i

Algorithm 1 Compute maximum of fnj,i on
[
0, P̄n

]

function ARGMAXf
(
j, i, In, P̄n

)

1: a← πn(i)
2: b← πn(j − 1)
3: if j = 1 or wa ≥ wb then
4: return P̄n

5: else
6: return max

{
0,min

{
wbη̃a−waη̃b
wa−wb , P̄n

}}

7: end if
end function

B. Single-Carrier Power Control

The single-carrier power control problem P ′SCPC(n) is
equivalent to problem P ′SC(n), with the exception that a fixed
user selection U ′n (or equivalently Un) is given as input instead
of being an optimization variable. It is defined below:

maximize
xn

K∑

i=1

fni (xni ) +An, (P ′SCPC(n))

subject to C2′–3′ : P̄n ≥ xn1 ≥ . . . ≥ xnK ≥ 0.

We denote its optimal value by Fn
(
U ′n, P̄n

)
.

Since inactive users k /∈ Un have no contribution on the
data rates, i.e., pnk = 0 and Rnk = 0, we remove them for
the study of this sub-problem. Without loss of generality,
we index the remaining active users on subcarrier n by
in ∈ {1n, . . . , |U ′n|n}. For example, if U ′n = {4, 7, 10}, then
1n = 4, 2n = 7 and 3n = 10. For simplicity of notation,
we add an index 0n = 0, which does not correspond to any
user. From the definition of U ′n, variables xnl with index from
l = (i− 1)n + 1 to in are equal, for any i ≥ 1. In the above
example, we would have x1 = x2 = x3 = x4 > x5 =
x6 = x7 > x8 = x9 = x10. Thus, the objective function
of P ′SCPC(n) can be written as:

K∑

i=1

fni (xni ) +An =

|U ′n|∑

i=1

fn(i−1)n+1,in

(
xnin
)

+Bn, (4)

where Bn = An if the last active user’s index is |U ′n|n = K,
and Bn = fn|U ′n|n+1,K (0)+An otherwise. For 1 ≤ j ≤ i ≤ K,
we simplify some notations as follows:

f̃nj,i (U ′n, ·) , fn(j−1)n+1,in
(·) ,

ARGMAXf̃
(
j, i, In,U ′n, P̄n

)
,

ARGMAXf
(
(j−1)n+1, in, In, P̄n

)
.



5

We reformulate the problem as:

maximize
xnin

|U ′n|∑

i=1

f̃ni,i
(
U ′n, xnin

)
+Bn, (P ′SCPC(n))

subject to C2′–3′ : P̄n ≥ xn1n ≥ . . . ≥ xn|U ′n|n ≥ 0.

Algorithm 2 presents the SCPC method proposed in [19]. The
idea is to iterate over variables xnin for i = 1 to |U ′n|, and com-
pute their optimal value x∗ = ARGMAXf̃(i, i, In,U ′n, P̄n)
at line 3. If the current allocation satisfies constraint C3′,
then xnin gets value x∗. Otherwise, the algorithm backtracks
at line 6 and finds the highest index j ∈ {1, . . . , i − 2}
such that xnjn ≥ ARGMAXf̃(j + 1, i, In,U ′n, P̄n). Then,
variables xn(j+1)n

, . . . , xnin are set equal to ARGMAXf̃(j +

1, i, In,U ′n, P̄n) at line 10. The optimality and complexity
of SCPC are presented in Theorem 3.

Algorithm 2 Single-carrier power control algorithm (SCPC)

function SCPC
(
In,U ′n, P̄n

)

1: for i = 1 to |U ′n| do
2: . Compute the optimal of f̃ni,i
3: x∗ ← ARGMAXf̃

(
i, i, In,U ′n, P̄n

)

4: . Modify x∗ if this allocation violates constraint C3′

5: j ← i− 1
6: while xnjn < x∗ and j ≥ 1 do
7: x∗ ← ARGMAXf̃

(
j, i, In,U ′n, P̄n

)

8: j ← j − 1
9: end while

10: xn(j+1)n
, . . . , xnin ← x∗

11: end for
12: return xn1n , . . . , x

n
|U ′n|n

end function

Theorem 3 (Optimality and complexity of SCPC).
Given subcarrier n ∈ N , a set U ′n of M active users and
a power budget P̄n, algorithm SCPC computes the optimal
single-carrier power control. Its worst case computational
complexity is O

(
M2
)
.

Proof: We prove this theorem in Appendix C by mathe-
matical induction combined with Lemma 2.

In multi-carrier resource allocation schemes, such as GRAD-
JSPA and ε-JSPA, it is often required to compute the optimal
single-carrier power control and WSR for many different
values of power budget P̄n. In these cases, running many
times SCPC is actually not efficient in terms of computational
complexity, since several computations may be repeated. To
avoid this, we propose in Algorithm 3 an improved SCPC
algorithm (i-SCPC). The idea is to perform precomputation
before runtime by calling SCPC(In,U ′n, Pmax) and storing its
result xn1n , . . . , x

n
|U ′n|n as a global variable (also called lookup

table). Any subsequent evaluation with input In, U ′n, P̄n,
where P̄n ≤ Pmax, can be obtained as in line 1.

Theorem 4 (Optimality and complexity of i-SCPC).
Given subcarrier n ∈ N and a set U ′n of M active users,
the precomputation of i-SCPC has complexity O

(
M2
)
. Any

subsequent evaluation costs O(M). Hence, for C different

Algorithm 3 Improved SCPC algorithm with precomputation
input: In,U ′n, Pmax
global variable: xn1n , . . . , x

n
|U ′n|n

initialization: xn1n , . . . , x
n
|U ′n|n ← SCPC(In,U ′n, Pmax)

function i-SCPC
(
P̄n
)

1: return min{xn1n , P̄n}, . . . ,min{xn|U ′n|n , P̄
n}

end function

power budgets, algorithm i-SCPC computes their respective
optimal single-carrier power control with overall complexity
O
(
M2 + CM

)
.

Proof: We show in Appendix D that subsequent evalua-
tions of SCPC can be obtained as in line 1 of Algorithm 3.

Remark. Note that SCPC and i-SCPC returns |U ′n| values
xn1n , . . . , x

n
|U ′n|n representing only the active users’ variables.

These values are sufficient to compute the optimal power
allocation and WSR of P ′SCPC(n) as shown in Eqn. (4). If
needed, the full vector xn can be obtained by the following
procedure in O(K) operations:

1: for i = 1 to |U ′n| and l = (i− 1)n + 1 to in do
2: xnl ← xnin
3: end for
4: for l = |U ′n|n + 1 to K do
5: xnl ← 0
6: end for

C. Single-Carrier User Selection

Unlike in the previous subsection, we consider here further-
more the user selection U ′n optimization under multiplexing
and SIC constraint C4′, i.e., we solve P ′SC(n). In [19], a
dynamic programming (DP) is proposed to solve P ′SC(n).
Here, we first develop a similar DP procedure in Algorithm 4
(SCUS). Then, we propose an improved version (i-SCUS)
which performs SCUS as precomputation.

The idea of SCUS is to compute recursively the elements of
three arrays V , X , U . Let m ∈ {0, . . . ,M}, j ∈ {1, . . . ,K}
and i ∈ {j, . . . ,K}, we define V [m, j, i] as the optimal value
of the following problem P ′SC [m, j, i]:

V [m, j, i] , max
xn

K∑

l=j

fnl (xnl ), (P ′SC [m, j, i])

subject to C2′, C3′, C3′′,

C4′ : |U ′n| ≤ m,
C5′ : xnj = · · · = xni .

This problem is more restrictive than P ′SC(n). The objective
function only depends on variables xnj , . . . , x

n
K . C4′ limits the

number of active users to m. Moreover, variables xnj , . . . , x
n
i

are equal according to C5′.
It is interesting to note that V [M, 1, 1] is the optimal value

of P ′SC(n), since the objective function is
∑K
l=1 f

n
l (xnl ) for

j = 1 and constraint C5′ becomes trivially true for j = i. Let
xnj
∗, . . . , xnK

∗ be the optimal solution achieving V [m, j, i]. We
define X[m, j, i] , xni

∗, which is also equal to xnj
∗, . . . , xni−1

∗
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Algorithm 4 Single-carrier user selection algorithm (SCUS)

function SCUS
(
In,M, P̄n

)

1: . Initialize arrays V , X , U for m = 0 and i = K
2: for i = K to 1 and j = i to 1 do
3: V [0, j, i]← fnj,K (0)
4: X [0, j, i]← 0
5: U [0, j, i]← ∅
6: end for
7: for m = 1 to M and j = K to 1 do
8: x∗ ← ARGMAXf

(
j,K, In, P̄n

)

9: V [m, j,K]← fnj,K (x∗)
10: X [m, j,K]← x∗

11: U [m, j,K]← ∅
12: end for
13: . Compute V , X , U for m ∈ [1,M ] and j ≤ i ≤ K − 1
14: for i = K − 1 to 1 and m = 1 to M and j = i to 1 do
15: x∗ ← ARGMAXf

(
j, i, In, P̄n

)

16: vact ← fnj,i (x∗) + V [m− 1, i+ 1, i+ 1]
17: vinact ← V [m, j, i+ 1]
18: if vact > vinact and x∗ > X [m− 1, i+ 1, i+ 1] then
19: V [m, j, i]← vact
20: X [m, j, i]← x∗

21: U [m, j, i]← (m− 1, i+ 1, i+ 1)
22: else
23: V [m, j, i]← vinact
24: X [m, j, i]← X [m, j, i+ 1]
25: U [m, j, i]← (m, j, i+ 1)
26: end if
27: end for
28: . Retrieve the optimal solution xn

29: xn1 , . . . , x
n
K ← 0

30: (m, j, i)← (M, 1, 1)
31: repeat
32: xnj , . . . , x

n
i ← X [m, j, i]

33: (m, j, i)← U [m, j, i]
34: until (m, j, i) = ∅
35: return xn

end function

due to constraint C5′. The idea of SCUS is to recursively
compute the elements of V through the following relation:

V [m, j, i] =





vact, if vact > vinact

and x∗ > X [m− 1, i+ 1, i+ 1],

vinact, otherwise,
(5)

where x∗ = ARGMAXf
(
j, i, In, P̄n

)
, and vact (resp. vinact)

corresponds to allocation where user i is active (resp. inactive):

vact = fnj,i (x∗) + V [m− 1, i+ 1, i+ 1],

vinact = V [m, j, i+ 1].

During SCUS’s iterations, the array U keeps track of which
previous element of V has been used to compute the current
value function V [m, j, i]. This allows us to retrieve the entire
optimal vector xn at the end of Algorithm 4 (at lines 28-
35) by backtracking from index (M, 1, 1) to ∅, where ∅
is set at initial indices (see lines 5 and 11) to indicate the
recursion termination. To sum up, X and U have two different

recurrence relations depending on the cases in Eqn. (5).
If V [m, j, i] = vact, then:

X [m, j, i] = x∗,

U [m, j, i] = (m− 1, i+ 1, i+ 1).

If V [m, j, i] = vinact, then:

X [m, j, i] = X [m, j, i+ 1] ,

U [m, j, i] = (m, j, i+ 1).

When m = 0, no user can be active on this subcarrier due
to constraint C4′. Therefore, V , X , U can be initialized by:

V [0, j, i] = fnj,K (0) ,

X [0, j, i] = 0,

U [0, j, i] = ∅.

For simplicity, we also extend V , X and U on the index i = K
and j ≤ K and initialize them as follows:

V [m, j,K] = fnj,K (x∗) ,

X [m, j,K] = x∗,

U [m, j,K] = ∅.

A detailed analysis is given in Appendix E.

Theorem 5 (Optimality and complexity of SCUS).
Given a subcarrier n ∈ N , a power budget P̄n and M ≥ 1,
algorithm SCUS computes the optimal single-carrier power
control and user selection of P ′SC(n). Its worst case compu-
tational complexity is O

(
MK2

)
.

Proof: The proof is done by induction based on the
principle of dynamic programming. See Appendix E.

We present i-SCUS in Algorithm 5, which performs pre-
computation to avoid repeating the DP procedure when mul-
tiple evaluations are required. The algorithm precomputes
vectors V , X , U from SCUS(In,M, Pmax) before runtime,
at line 1. Then, in lines 2-5, it retrieves the active users set
U ′n and optimal solution xn1 , . . . , x

n
K of each V [M, 1, i], i ∈

{1, . . . ,K}, and stores them in collection. Any subsequent
evaluation with a lower budget P̄n ≤ Pmax, can be obtained
by searching the best allocation among the K possibilities
in collection (lines 6-7). Each allocation is truncated as
in i-SCPC

(
P̄n
)

to satisfy budget P̄n. The optimality and
complexity of Algorithm 5 are given in Theorem 6.

Theorem 6 (Optimality and complexity of i-SCUS).
Given a subcarrier n ∈ N , a power budget P̄n and M ≥ 1,
the precomputation of i-SCUS has complexity O

(
MK2

)
. Any

subsequent evaluation costs O(MK). Hence, for C different
power budgets, i-SCUS computes their respective optimal
single-carrier power control and user selection P ′SC(n) with
overall complexity O

(
MK2 + CMK

)
.

Proof: See Appendix F.
Table I summarizes the complexity of the single-carrier

algorithms developed in this section. They will be used as
basic building blocks to design JSPA schemes in Section V.
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Algorithm 5 Improved SCUS algorithm with precomputation
input: In,M, Pmax
global variable: collection
initialization:

1: Get V,X,U from SCUS(In,M, Pmax)
2: for i = 1 to K do
3: Retrieve the active users set U ′n of V [M, 1, i] and its

optimal solution xn1 , . . . , x
n
K

4: Add (U ′n, xn1 , . . . , xnK) to collection
5: end for

function i-SCUS
(
P̄n
)

6: Get (U ′n, xn1 , . . . , xnK) in collection that maximizes
Fn(U ′n, P̄n) =

∑|U ′n|
l=1 f̃

n
l,l

(
U ′n,min{xnln , P̄n}

)
+Bn

7: return min{xn1 , P̄n}, . . . ,min{xnK , P̄n}
end function

TABLE I
SUMMARY OF THE SINGLE-CARRIER RESOURCE ALLOCATION SCHEMES

Algorithm Complexity to perform C evaluations
SCPC [19] O

(
CM2

)
i-SCPC O

(
M2 + CM

)
SCUS [19] O

(
CMK2

)
i-SCUS O

(
MK2 + CMK

)
V. JOINT SUBCARRIER AND POWER ALLOCATION

Recall that Fn
(
P̄n
)

is the optimal value of P ′SC(n) with
power budget P̄n. We have Fn

(
P̄n
)

=
∑K
i=1 f

n
i (xni ) + An,

where xn1 , . . . , x
n
K is the output of i-SCUS

(
P̄n
)
. Using this

notation, the JSPA problem P ′ can be simplified as:

maximize
P̄

∑

n∈N
Fn
(
P̄n
)
, (P ′MC)

subject to P̄n ∈ F ,
where P̄n, for n ∈ N , are intermediate variables representing
each subcarrier’s power budget. P̄ ,

(
P̄ 1, . . . , P̄N

)
denotes

the power budget vector. The feasible set

F , {P̄ :
∑

n∈N
P̄n ≤ Pmax and 0 ≤ P̄n ≤ Pnmax, n ∈ N}

is chosen to satisfy C1′ and C2′ in P ′.
Problem P ′MC consists in optimizing the power budget

P̄n allocated to each subcarrier n. For a given budget P̄n,
Fn
(
P̄n
)

is computed by finding the optimal single-carrier
user selection and power control using i-SCUS

(
P̄n
)
. The

choice of P̄n affects the single-carrier user selection and power
control, i.e., variables xn and U ′n. The latter influence the
value of Fn, which in turn has an impact on the power budget
optimization. Although variables xn and U ′n are hidden in Fn,
they are nevertheless optimized jointly with P̄n. Indeed, we
can see that P ′MC is equivalent to P ′ when replacing Fn by
its definition in P ′SC(n) along with its constraints C2′ to C4′.

A. Gradient Descent Based Heuristic

GRAD-JSPA is an efficient heuristic based on projected
gradient descent. Its principle is to perform a two-stage opti-
mization as presented in Fig. 2. The first-stage is a projected
gradient descent on P̄ in the search space F . The gradient
descent requires to evaluate

∑
n∈N F

n and its gradient at each

iteration. This task is carried out by i-SCUS in the second-
stage. We denote the derivative of Fn at P̄n by Fn′

(
P̄n
)
.

Lemma 7 shows how to compute it. As illustrated in Fig. 2,
the second-stage is called at each gradient iteration to return
Fn
(
P̄n
)

and Fn′
(
P̄n
)

to the first-stage, for all n ∈ N .

Lemma 7 (Derivative of Fn).
Let xn1 , . . . , x

n
K be the output of i-SCUS

(
P̄n
)
. The left deriva-

tive of Fn at P̄n, can be computed as follows:

Fn′
(
P̄n
)

=
Wnwπn(l)(

xnl + η̃nπn(l)

)
ln(2)

=
Wnwπn(l)(

P̄n + η̃nπn(l)

)
ln(2)

,

where l is the greatest index such that xnl = P̄n, and ln(2) is
the natural logarithm of 2.

Proof: To get Fn′, we first prove that Fn′
(
U ′n, P̄n

)
=

fn′1,l

(
P̄n
)

and Fn(P̄n)=maxU ′n{Fn(U ′n, P̄n)}, where max is
taken over all active users sets in collection of i-SCUS. See
Appendix G for the detailed proof of semi-differentiability.

First-stage algorithm: projected gradient descent
Follow the gradient of

∑
n∈N Fn(P̄n) and update

each subcarrier’s power budget P̄n in the simplex F

Second-stage algorithm: i-SCUS
Compute the optimal single-carrier power allocation
xn under budget P̄n and constraint |U ′

n| ≤ M

Input:
M,Pmax, P

n
max

in out

Output:
optimal power allocation
among subcarriers P̄

For each Fn evaluation:
In, M, P̄n

in out

Fn(P̄n), Fn′
(P̄n)

Fig. 2. Overview of GRAD-JSPA

The pseudocode of GRAD-JSPA is described in Algo-
rithm 6. Input ξ corresponds to the error tolerance at ter-
mination, as we can see at line 8. The search direction
at lines 4-5 is the gradient of

∑
n∈N F

n evaluated at P̄ .
Since F 1, . . . , FN are independent, it is equal to the vector
of F 1′(P̄ 1

)
, . . . , FN ′

(
P̄N
)
. Note that the step size α at

line 6 can be tuned by backtracking line search or exact
line search [21, Section 9.2]. We adopt the latter to perform
simulations. The projection of P̄ + α∆ on the simplex F
at line 7 can be computed efficiently [21, Section 8.1.1], the
details of its implementation are omitted here.

We showed in our previous work [19] that GRAD-JSPA
worst case complexity is O

(
log(1/ξ)NMK2

)
when SCUS is

used to evaluate functions Fn, n ∈ N . We show in Theorem 8
that the complexity of GRAD-JSPA can be reduced by the use
of i-SCUS.

Theorem 8 (Complexity of GRAD-JSPA).
Let ξ be the error tolerance at termination. Algorithm GRAD-
JSPA has complexity O

(
NMK2 + log(1/ξ)NMK

)
when i-

SCUS is used to evaluate functions Fn, n ∈ N .

Proof: In Appendix G, we prove that the objective
function is piece-wise α-strongly concave and β-smooth.
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Algorithm 6 Gradient descent based heuristic (GRAD-JSPA)
function GRAD-JSPA

(
(In)n∈N ,M, Pmax, P

n
max, ξ

)

1: Let P̄ ← 0 be the starting point
2: repeat
3: Save the previous vector P̄ ′ ← P̄
4: Determine a search direction ∆
5: ∆←

(
F 1′(P̄ 1

)
, . . . , FN ′

(
P̄N
))

6: Choose a step size α
7: Update P̄ ← projection of P̄ + α∆ on F
8: until ||P̄ ′ − P̄ || ≤ ξ
9: return P̄

end function

Therefore, the convergence to a local optimum follows from
classical convex optimization results [22, Section 2.2.4].

Although i-SCUS (or equivalently SCUS) is optimal, the
returned Fn

(
P̄n
)

is not necessarily concave in P̄n. As a
consequence, GRAD-JSPA is not guaranteed to converge to a
global maximum. Nevertheless, we show by numerical results
in Section VI that it achieves near-optimal WSR performance
with low complexity.

B. Pseudo-Polynomial Time Optimal Scheme

The JSPA problem as formulated in P ′MC has real variables
P̄n on a continuous search space F . However, the study of NP-
hard optimization problems and their approximation requires
parameters and variables to be represented by a bounded
number of bits [23], i.e., with bounded precision. This is also
a reasonable assumption in practice since MC-NOMA systems
are subject to minimum transmit power limitation at the BS
and floating-point arithmetic precision of the hardware. As a
consequence, we discretize the search space F , in the same
way as in [11]. Let δ be the minimum transmit power such
that the variables P̄n can only take value of the form l · δ, for
l ∈ {0, 1, . . . , bPmaxδ c}. We denote the number of non-zero
power values as J = bPmaxδ c. The feasible set then becomes

F ′ , {P̄ :
∑

n∈N
P̄n ≤ Pmax and 0 ≤ P̄n ≤ Pnmax, n ∈ N ,

and P̄n = l · δ, l ∈ {0, . . . , J}, n ∈ N}.
We rewrite problem P ′MC with search space F ′ as follows:

maximize
y

∑

n∈N

J∑

l=1

cn,lyn,l, (MCKP)

subject to
∑

n∈N

J∑

l=1

an,lyn,l ≤ Pmax,

J∑

l=1

an,lyn,l ≤ Pnmax, n ∈ N ,

J∑

l=1

yn,l ≤ 1, n ∈ N ,

yn,l ∈ {0, 1}, n ∈ N , l ∈ [1, J ] ,

where cn,l = Fn(l · δ) and an,l = l · δ. The discretized
JSPA problem, denoted by MCKP, is known as the multiple
choice knapsack problem [20]. It has N disjoint classes

each containing J items to be packed into a knapsack of
capacity Pmax. Each item has a profit cn,l and a weight an,l,
representing respectively the WSR and power consumption of
this allocation on subcarrier n. The binary variable yn,l takes
value 1 if and only if item l in class n is assigned to the
knapsack. The problem consists in assigning at most one item
from each class to maximize the sum of their profit. We denote
its optimal value by F ∗MCKP .

As mentioned previously, discretizing P ′MC is necessary
due to the bounded precision which arises inherently from the
study of algorithms and their implementation in practical sys-
tems. Besides, MCKP can be used to approach the continuous
solution of P ′MC with arbitrary precision. Indeed, Theorem 9
shows that the discretization error is upper-bounded by a linear
function in δ with a coefficient depending on the system’s
parameters.

Theorem 9 (Discretization error between F ∗ and F ∗MCKP ).
The gap between the optimal values of the continuous prob-
lem P ′MC and its discretized version MCKP with step size δ
is upper-bounded by:

F ∗ − F ∗MCKP ≤ δ
∑

n∈N
max
k∈K

{
Wnwπn(k)(

P̄n∗ + η̃nπn(k)

)
ln(2)

}
,

where P̄n∗ is the optimal power budget of P ′MC on subcarrier
n ∈ N .

Proof: We derive the proof in Appendix H.
The discrete problem MCKP can be solved optimally by dy-

namic programming by weights studied in [20, Section 11.5].
Based on this idea, we propose OPT-JSPA (see Algorithm 7)
to solve P ′MC . We first transform P ′MC to problem MCKP:
from line 1 to 5, every item’s profit cn,l is computed using i-
SCUS. Then, we perform dynamic programming by weights
at lines 6-7. We summarize the optimality and complexity of
OPT-JSPA in Theorem 10. Detailed analysis of the dynamic
programming can be found in Appendix I.

Algorithm 7 The pseudo-polynomial time optimal scheme

function OPT-JSPA
(
(In)n∈N ,M, Pmax, P

n
max, δ

)

1: . Compute the parameters of MCKP
2: for n ∈ N and l ∈ [0, J ] do
3: an,l ← l · δ
4: cn,l ← Fn (l · δ)
5: end for
6: return optimal allocation from the dynamic program-
7: ming by weights [20]

end function

Theorem 10 (Optimality and complexity of OPT-JSPA).
Given a minimum transmit power δ, algorithm OPT-JSPA
computes the optimal of P ′MC on the discrete set F ′. Its
computational complexity is O

(
NMK2 + JNMK + J2N

)
,

which is pseudo-polynomial in J .

Proof: We explain the principle of dynamic programming
by weights and derive its complexity in Appendix I.
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TABLE II
COMPARISON OF SOME JSPA SCHEMES PROPOSED IN THIS WORK AND IN THE LITERATURE

Algorithm Performance guarantee Complexity for J discrete power values

Monotonic optimization with outer
polyblock approximation [18] Optimal Exponential in K and N

TSDP [11] Optimal O
(
J2NMK

)
OPT-JSPA Optimal O

(
NMK2 + JNMK + J2N

)
ε-JSPA FPTAS, i.e., its performance is within a

factor 1− ε of the optimal, for any ε > 0
O
(
NMK2+min

{
log(J) N2MK

ε
+N3

ε2
, JNMK+J2N

})
GRAD-JSPA Heuristic O

(
NMK2 + log(J)NMK

)

OPT-JSPA is said to be pseudo-polynomial since it depends
on the total number of power values J , whereas all system’s
parameters and variables are encoded in O(log(J)) bits. As a
consequence, in practical systems, the contribution of J to the
computation time is way higher than parameters N , K, M .

C. Fully Polynomial-Time Approximation Scheme

We develop a FPTAS to avoid the pseudo-polynomial com-
plexity in J that is inherent to the optimal schemes OPT-JSPA
and TSDP [11]. According to [24], an algorithm is said to be
a FPTAS if it outputs a solution within a factor 1 − ε of the
optimal, for any ε > 0. Moreover, its running time is bounded
by a polynomial in both the input size and 1/ε. A FPTAS is
the best trade-off one can hope for an NP-hard optimization
problem in terms of performance guarantee and complexity,
assuming P 6= NP.

The proposed FPTAS, called ε-JSPA (see Algorithm 8), is
based on dynamic programming with scaled profits. Scaling
the profits is a common technique to reduce the number of
items computed in MCKP. First, we compute an estimation U
of MCKP’s optimal value, such that U ≥ F ∗MCKP ≥ U/4. We
explain the estimation procedure in Appendix J. Then, instead
of computing all JN profit values cn,l, we only consider the
subset Ln of items on each subcarrier n such that:

Ln , {l′ ≤ J, l ≤
4N

ε
− 1: cn,l′ ≥ l

εU

4N
> cn,l′−1}.

This can be seen as considering only one profit value per
interval of the form [(l − 1) · εU/4N, l · εU/4N ], for l ∈
{1, . . . , 4N/ε}. Each Ln, for n ∈ N , can be obtained by
multi-key binary search [25]. All function evaluations required
by the multi-key binary search are done by i-SCUS.

Finally, we apply the dynamic programming by profits [20,
Section 11.5] in lines 5-6. It is known that the optimal solution
obtained by dynamic programming by profits considering only
items in Ln, differs from F ∗MCKP by at most a factor 1− ε.
The performance of ε-JSPA are summarized in Theorem 11.
We provide more details on the estimation U in Appendix J
and the dynamic programming by profits in Appendix K.

Theorem 11 (Performance and complexity of ε-JSPA).
Given a minimum transmit power δ and an
approximation factor ε, algorithm ε-JSPA computes
an ε-approximation of P ′MC on the discrete set F ′.
The algorithm is a FPTAS with asymptotic complexity:
O
(
NMK2+min

{
log(J) N

2MK
ε

+N3

ε2
, JNMK+J2N

})
.

Proof: We derive this result in Appendix K, using the
dynamic programming by profits and the estimation procedure
studied in Appendix J.

Algorithm 8 The proposed FPTAS (ε-JSPA)

function ε-JSPA
(
(In)n∈N ,M, Pmax, P

n
max, δ, ε

)

1: Compute an estimation U of F ∗MCKP

2: for n ∈ N do
3: Get an,l, cn,l, for l ∈ Ln by multi-key binary search
4: end for
5: return ε-approximate allocation from the dynamic
6: programming by profits [20]

end function

D. Comparison of JSPA Algorithms

In Table II, we compare the performance and complexity of
the proposed algorithms with JSPA schemes in the literature.
Reference [18] studied an optimal monotonic optimization
framework, which has exponential complexity in K and N .
The two-stage dynamic programming algorithm (TSDP) pro-
posed by Lei et al. has complexity O

(
J2NMK

)
according

to [11, Theorem 13]. Both TSDP and the proposed OPT-
JSPA are optimal. However, OPT-JSPA has lower complexity
than TSDP. Indeed, the right term J2N is lower by a factor
MK, the middle term JNMK by a factor J . The left term
NMK2 also improves the complexity, since reference [10]
shows that in practical systems J = Θ (min{K,MN}). This
result is verified by simulation in Section VI. ε-JSPA is the
proposed FTPAS. Its complexity is bounded by a polynomial
in N/ε and log(J). If N/ε = O(J), it has lower complexity
than OPT-JSPA. Otherwise, if N/ε = Ω(J), its complexity
is asymptotically equivalent to OPT-JSPA’s complexity. This
means that for very low error rate ε, the complexity of ε-JSPA
tends to that of OPT-JSPA. Finally, GRAD-JSPA is a heuristic.
Its performance is evaluated through simulation in the next
section. When applied in a discrete setting, the error tolerance
or precision ξ is related to δ = 2ξ. Hence, its complexity is
proportional to log(J), which is way lower than the optimal
schemes with pseudo-polynomial complexity due to J .

VI. NUMERICAL RESULTS

We evaluate the WSR and computational complexity of
OPT-JSPA, ε-JSPA and GRAD-JSPA through numerical sim-
ulations. We compare them with the optimal benchmark
scheme TSDP introduced in [11]. We consider a hexagonal
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TABLE III
SIMULATION PARAMETERS

Parameter Value
Cell radius 1000 m

Min. distance from user to BS 35 m
Carrier frequency 2 GHz
Path loss model 128.1 + 37.6 log10 d dB, d is in km

Shadowing Log-normal, 10 dB standard deviation
Fading Rayleigh fading with variance 1

Noise power spectral density −174 dBm/Hz
System bandwidth W 5 MHz

Number of subcarriers N 20
Number of users K 5 to 60

Total power budget Pmax 10 W
Minimum transmit power δ 0.01 W
Number of power values J 103

Error tolerance ξ 10−4

Parameter M 1 (OMA), 2 and 3 (NOMA)
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Fig. 3. WSR of the optimal schemes for different number of users K

cell of diameter 1000 meters, with one BS located at its center
and K users distributed uniformly at random in the cell. The
users’ weights are generated uniformly at random in [0, 1].
The number of users K varies from 5 to 60, and the number
of subcarriers is N = 20. We assume a system bandwidth
of W = 5 MHz and Wn = W/N for all n. We follow
the radio propagation model of [26], including path loss,
shadowing and Rayleigh fading. The minimum transmit power
is δ = 0.01 W. The cellular power budget is Pmax = 10 W,
therefore the number of power values is J = 103. Each point
in the following figures is the average value obtained over
1000 random instances. Only Fig. 6 and 7 represent a single
instance. The simulation parameters and channel model are
summarized in Table III.

Fig. 3 shows the WSR performance of OPT-JSPA and
TSDP, for M = 1, 2 and 3. We only simulate TSDP for
K = 5 to 30, due to its high running time complexity.
We see that OPT-JSPA and TSDP achieve the same WSR
performance, which is consistent with the fact that they are
both optimal. Indeed, the optimality of OPT-JSPA is shown
in Theorem 10, and the optimality of TSDP has been proven
in [11, Theorem 13]. Although both algorithms have the same
performance, we will see further on in Fig. 5 that OPT-
JSPA has lower computational complexity than TSDP. The
performance gain of NOMA with M = 2 (resp. M = 3) over
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Fig. 4. Performance loss of GRAD-JSPA compared to the optimal WSR

OMA (i.e., M = 1) is about 8% (resp. 10%), for K = 60.
Fig. 4 illustrates the performance loss of GRAD-JSPA

compared to the optimal, for M = 1, 2 and 3. The performance
loss is defined as:

Optimal WSR− GRAD-JSPA WSR
Optimal WSR

.

The markers represent the average performance loss, while
the upper intervals indicate the 90th percentile. For example,
for K = 10 and M = 1, 90% of GRAD-JSPA results have
less than 9 × 10−4 of performance loss. We observe that the
average performance loss is always below 6 × 10−4. Hence,
our proposed heuristic GRAD-JSPA achieves near-optimal
solutions in these simulation settings. It is also suitable for
large systems, since the performance loss decreases as K or
M increases.

In Fig. 5, we count the number of basic operations (ad-
ditions, multiplications, comparisons) performed by each al-
gorithm, which reflects their computational complexity. The
term “improved” in the legend represents the complexity of
OPT-JSPA and GRAD-JSPA when using i-SCPC and i-SCUS
instead of SCPC and SCUS. There is a significant speed
up by employing i-SCPC and i-SCUS as basic building
blocks. Indeed, for K = 60 and M = 1, 2 or 3, there is
a factor of at least 10 between OPT-JSPA and its improved
version. Besides, the improved OPT-JSPA outperforms TSDP
in terms of complexity. For instance, OPT-JSPA reduces the
complexity by a factor 330, for K = 30 and M = 3. Finally,
GRAD-JSPA has low complexity, which makes it a good
choice for practical implementation.

Fig. 6 and 7 present the WSR and complexity of ε-JSPA
versus 4N/ε. We choose such a normalized x-axis, as it is
equal to the number of items evaluated in each subcarrier, i.e.,
|Ln| = 4N/ε. It can be directly compared to J , which is the
total number of items in each subcarrier in the discretized
problem MCKP. Here, we simulate a single instance with
K = 60 users to show how ε-JSPA behaves as a function of
ε. In Fig. 6, we also present its performance guarantee. Recall
that the performance guarantee is 1− ε times the optimal. As
expected, ε-JSPA is always above its performance guarantee.
As N/ε increases, the approximation guarantee tends to the
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Fig. 5. Number of basic operations performed by each algorithm versus K

optimal. In this instance, the algorithm already achieves a near-
optimal solution for 4N/ε = 400, i.e., ε = 0.2. In Fig. 7,
we also plot the complexity of the improved OPT-JSPA for
comparison. As explained in Section V-C, the complexity
increases with N/ε and becomes (asymptotically) equal to
that of OPT-JSPA for N/ε = Ω(J). In this regime, there
is apparently no benefit of using ε-JSPA, since OPT-JSPA
achieves the optimal with the same complexity. Nevertheless,
in practice, we can see that even for 4N/ε ≥ J , ε-JSPA has
less operations than OPT-JSPA. This is because the number of
items computed by ε-JSPA increases slowly and smoothly as
a function of ε. This behavior is not captured in the asymptotic
complexity (big-O notation). This is verified in Fig. 7 for up
to 4J = 4000. In summary, ε-JSPA allows us to control the
trade-off between WSR and complexity with ε.

VII. DISCUSSION ON POSSIBLE GENERALIZATIONS

In this work, we assume that the channel gains are perfectly
known. Two more realistic models using only partial CSI can
be considered instead: imperfect CSI studied in [27], [28], for
which the channel gains are given with a known estimation
error probability distribution, and second order statistics (SOS)
adopted in [29], for which only the distances between users
and BS are known. We believe that our framework can be
extended to these cases by maximizing the expected WSR
depending on stochastic channel gains, while the power con-
straints remain unchanged (i.e., non-stochastic). The challenge
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would be to characterize such a stochastic objective function
in many scenarios. This is a possible future research direction.

As multi-antenna technologies are becoming more and more
important in 5G and Beyond 5G systems [1], [2], it would
be interesting to extend the current work to multi-antenna
transmissions. Paper [30] states that MC-NOMA with multiple
antennas is a much more complex problem which requires
to develop novel low complexity solutions. One may draw
inspiration from the work of Sun et al. [31] which generalizes
the monotonic optimization framework of [18] to a MC-MISO-
NOMA system. A similar approach might be adopted in our
framework, which is explained as follows: Since the SIC
decoding order in multi-antenna MC-NOMA systems does not
only depend on the channel gains but also on the beamforming
(BF), the user clustering (UC) and BF have to be jointly
optimized to achieve optimal or approximate performance.
Hence, the idea would be to extend SCUS to a joint UC and
BF optimization scheme. This scheme can then be integrated in
OPT-JSPA, ε-JSPA and GRAD-JSPA, while preserving their
performance guarantees. Although optimal joint UC and BF
remains a difficult open problem, existing heuristics can be
adopted instead. For example, the schemes of paper [32] have
shown to outperform classical (OMA-based) MIMO systems
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and other multi-antenna NOMA algorithms by simulations.

VIII. CONCLUSION

In this work, we investigate the WSR maximization in MC-
NOMA with cellular power constraint. We improve the com-
plexity of the single-carrier power control (SCPC) and user
selection (SCUS) procedures using precomputation. These
improved schemes are denoted by i-SCPC and i-SCUS. We
develop three algorithms to solve the JSPA problem, based on
i-SCPC and i-SCUS. Firstly, OPT-JSPA gives optimal results
with lower complexity than current state-of-the-art optimal
schemes, i.e., TSDP [11] and monotonic optimization [18].
Secondly, ε-JSPA is a FPTAS. It achieves a controllable and
tight trade-off between approximation guarantee and complex-
ity. OPT-JSPA and ε-JSPA are both suitable for performance
benchmarking. Finally, GRAD-JSPA is a heuristic. We show
by simulation that it has near-optimal WSR with low and
practical complexity.
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APPENDIX

We first provide in Lemma 12 an important property on the
solution maximizing

∑i
l=1 f̃

n
l,l subject to C2′–3′, for i ≤ |U ′n|.

This Lemma will be used in Appendices C and G.

Lemma 12.
Assume we are given a subcarrier n ∈ N , a set U ′n of active
users, a power budget P̄n, and an index i. Let xn1n , . . . , x

n
in

be the allocation maximizing
∑i
l=1 f̃

n
l,l

(
U ′n, xnln

)
, while also

satisfying C2′–3′, i.e., P̄n ≥ xn1n ≥ · · · ≥ xnin ≥ 0.
xn1n , . . . , x

n
in

can be partitioned into sequences of consecutive
terms with the same value. That is, sequences of the form
xnqn , . . . , x

n
q′n

, where xnqn = · · · = xnq′n and 1 ≤ q ≤ q′ ≤ |U ′n|,
q = 1 or xn(q−1)n

> xnqn , q′ = |U ′n| or xnq′n < xn(q′+1)n
. Any

such sequence satisfies:

xnqn = · · · = xnq′n = ARGMAXf̃
(
q, q′, In,U ′n, P̄n

)
.

Proof: In this proof, we simplify notation f̃nl,l (U ′n, ·) as
f̃nl,l (·). Let xnqn , . . . , x

n
q′n

be a sequence of consecutive terms
with the same value, as defined in Lemma 12. Assume, for the
sake of contradiction, that xnqn = · · · = xnq′n 6= x∗, where x∗ =

ARGMAXf̃
(
q, q′, In,U ′n, P̄n

)
. Without loss of generality, we

consider the case xnqn < ARGMAXf̃
(
q, q′, In,U ′n, P̄n

)
and

q > 1. Let yn1n , . . . , y
n
in

be an allocation defined as:

ynln ,

{
min{xn(q−1)n

, x∗}, if q ≤ l ≤ q′,
xnln , otherwise.

(6)
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We have the following inequalities:
i∑

l=1

f̃nl,l
(
ynln
)

=
∑

l/∈{q,...,q′}
f̃nl,l
(
xnln
)

+ f̃nq,q′
(
ynln
)
, (7)

>
∑

l/∈{q,...,q′}
f̃nl,l
(
xnln
)

+ f̃nq,q′
(
xnln
)

=

i∑

l=1

f̃nl,l
(
xnln
)
. (8)

Equality (7) comes from the definition in (6). According
to Lemma 2, f̃nq,q′ is increasing on [0, x∗], which implies
inequality (8). In summary, yn1n , . . . , y

n
in

satisfies C2′–3′ by
its definition in (6), and it achieves greater value of

∑i
l=1 f̃

n
l,l

than xn1n , . . . , x
n
in

. This is a contradiction, therefore it must be
that

xnqn ≥ ARGMAXf̃
(
q, q′, In,U ′n, P̄n

)
. (9)

If q = 1, the same reasoning can be applied by replac-
ing min{xn(q−1)n

, x∗} by P̄n in Eqn. (6). We can per-
form a similar proof by contradiction on the case xnqn >

ARGMAXf̃
(
q, q′, In,U ′n, P̄n

)
to deduce that:

xnqn ≤ ARGMAXf̃
(
q, q′, In,U ′n, P̄n

)
. (10)

The desired result follows from (9) and (10).

A. Proof of Lemma 1

The objective of P can be written as:
∑

k∈K
wk
∑

n∈N
Rnk (pn) =

∑

n∈N

∑

k∈K
wkR

n
k (pn),

(b)
=
∑

n∈N
Wn

K∑

i=1

wπn(i) log2

( ∑K
j=i p

n
πn(j) + η̃nπn(i)∑K

j=i+1 p
n
πn(j) + η̃nπn(i)

)
,

(c)
=
∑

n∈N
Wn

K∑

i=1

log2




(∑K
j=i p

n
πn(j) + η̃nπn(i)

)wπn(i)

(∑K
j=i+1 p

n
πn(j) + η̃nπn(i)

)wπn(i)


,

(d)
=
∑

n∈N
Wn


wπn(1) log2




K∑

j=1

pnπn(j) + η̃nπn(1)




+

K∑

i=2

log2




(∑K
j=i p

n
πn(j) + η̃nπn(i)

)wπn(i)

(∑K
j=i p

n
πn(j) + η̃nπn(i−1)

)wπn(i−1)




+ wπn(K) log2

(
1

η̃nπn(K)

)]
.

Equality (b) comes from the definition in (2). At (c), the
weights wπn(i) are put inside the logarithm. Finally, (d) is
obtained by combining the numerator of the i-th term with
the denominator of the (i− 1)-th term, for i ∈ {2, . . . ,K}.

By applying the change of variables shown in (3), we
derive the equivalent problem P ′. The constant term is
A =

∑
n∈N wπn(K) log2

(
1/η̃nπn(K)

)
. Constraints C1′ and

C2′ are respectively equivalent to C1 and C2 since xn1 =∑K
j=1 p

n
πn(j) =

∑
k∈K p

n
k , for n ∈ N . Constraints C3′

and C3′′ come from C3 and the fact that xni − xni+1 =
pnπn(i), for any i ∈ {1, . . . ,K} and n ∈ N . In the
same way, the active users set in C4′ is defined as
U ′n , {i ∈ {1, . . . ,K} : xni > xni+1}.

B. Proof of Lemma 2

We study the first and second derivatives of fnj,i, denoted
by fnj,i

′ and fnj,i
′′. If j = 1, then we have:

fn1,i
′(x) =

Wnwπn(i)(
x+ η̃nπn(i)

)
ln(2)

, (11)

which is strictly positive and decreasing for x ≥ 0. Hence,
fn1,i is increasing and concave. For j > 1, the first and second
derivatives are as follows:

fnj,i
′(x) =

Wn

ln(2)

(
wπn(i)

x+ η̃nπn(i)

− wπn(j−1)

x+ η̃nπn(j−1)

)
,

fnj,i
′′(x) =

Wn

ln(2)




wπn(j−1)(
x+ η̃nπn(j−1)

)2 −
wπn(i)(

x+ η̃nπn(i)

)2


 .

We know that η̃nπn(j−1) ≥ η̃nπn(i) by construction of the optimal
decoding order in Eqn. (1). If, in addition, we have wπn(i) ≥
wπn(j−1), then fnj,i

′(x) ≥ 0 and fnj,i
′′(x) ≤ 0 for all x ≥ 0.

We deduce that fnj,i is increasing and concave. This proves the
first point of Lemma 2. Now suppose that wπn(i) < wπn(j−1)

instead. Values c1 and c2 defined in Lemma 2 are the unique
roots of the first and second derivatives, i.e., fnj,i

′(c1) = 0 and
fnj,i
′′(c2) = 0. fnj,i

′ is positive on
(
−η̃πn(j−1), c1

)
and negative

on (c1,∞). This implies that fnj,i is unimodal and has a unique
global maximum at c1 for x > 0. Similarly, fnj,i

′′ is negative
on
(
−η̃πn(j−1), c2

)
and positive on (c2,∞). Therefore, fnj,i is

concave before c2 and convex after c2. This proves the second
point of Lemma 2.

C. Proof of Theorem 3

The complexity and optimality proofs of SCPC are pre-
sented below.

Complexity analysis: At each for loop iteration i, the while
loop at line 6 has at most i iterations. Thus, the worst case
complexity is proportional to

∑|U ′n|
i=1 i = O

(
|U ′n|2

)
= O

(
M2
)
.

Optimality analysis: Without loss of generality, we can
suppose that the xnin ’s are initialized to zero. We will prove
by induction that at the end of each iteration i at line 10 of
Algorithm 2, the following loop invariants are true:
H1(i):

∑i
l=1 f̃

n
l,l is maximized by xn1n , . . . , x

n
in

,
H2(i): C2′–3′ is satisfied, i.e., P̄n ≥ xn1n ≥ · · · ≥ xnin ≥ 0.
Basis: For i = 1, x∗ computed at line 3 is indeed the optimal
of f̃n1,1. The while loop has no effect since j = 0 < 1, therefore
xn1n ← x∗ and statements H1(1) and H2(1) are both true.
Inductive step: Assume that xn1n(i−1), . . . , xn(i−1)n

(i−1) are
the variables verifying H1(i − 1) and H2(i − 1) at iteration
i−1 < K. Let the variables at iteration i be xn1n , . . . , x

n
in

. We
consider two cases:

i) We first suppose that:

x∗ = ARGMAXf̃(i, i, In, P̄n) ≤ xn(i−1)n
(i− 1). (12)

In this case, Algorithm 2 sets xnin = x∗ and xnln =
xnln(i−1), for all l < i. The induction hypothesis H2(i−
1) states that P̄n ≥ xn1n ≥ · · · ≥ xn(i−1)n

≥ 0. By
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taking into account Eqn. (12), this inequality becomes
P̄n ≥ xn1n ≥ · · · ≥ xn(i−1)n

≥ x∗ = xnin ≥ 0. Thus,
H2(i) is satisfied. In addition, we know from H1(i− 1)
that xn1n , . . . , x

n
(i−1)n

maximizes
∑i−1
l=1 f̃

n
l,l. Since, the

objective is separable and xnin = x∗ maximizes f̃ni,i by
construction, H1(i) is true.

ii) Now, suppose that we have the opposite:

x∗ = ARGMAXf̃(i, i, In, P̄n) > xn(i−1)n
(i− 1). (13)

In this case, the allocation mentioned above would vio-
late constraint C2′–3′. The algorithm finds the highest
index j ∈ {1, . . . , i − 2} such that xnjn(i − 1) ≥
ARGMAXf̃(j + 1, i, In,U ′n, P̄n) in the while loop at
line 6. Such an index exists since all variables are upper
bounded by P̄n and xn1n = P̄n due to Lemma 2.
Let us show by contradiction that H1(i) and H2(i) are
only satisfied if xn(j+1)n

= · · · = xnin . If it is not
the case, let k > j + 1 be the last index such that
xnkn = xn(k+1)n

= · · · = xnin and xn(k−1)n
> xnkn .

We know from the while condition that xn(k−1)n
< x∗′,

with x∗′ = ARGMAXf̃(k, i, In,U ′n, P̄n). According to
Lemma 2, f̃nk,i is increasing on [0, x∗′]. Therefore, we can
improve the objective function by setting xnkn , . . . , x

n
in
←

xn(k−1)n
. This is a contradiction with xn(k−1)n

> xnkn ,
we have thus xn(j+1)n

= · · · = xnin . Furthermore, at the
termination of the while loop, we have ARGMAXf̃(j +
1, i, In,U ′n, P̄n) ≤ xnjn(i − 1), which can be treated
as in case i). Hence, variables xn(j+1)n

, . . . , xnin are set
equal to ARGMAXf̃(j+ 1, i, In,U ′n, P̄n) at line 10, and
it satisfies H1(i) and H2(i).

We proved that, in both cases i) and ii), the allocation
xn1n , . . . , x

n
in

computed by Algorithm 2 satisfies H1(i) and
H2(i). Therefore, by mathematical induction, the allocation
returned at line 12 satisfies H1(|U ′n|) and H2(|U ′n|). We note
that H1(|U ′n|) and H2(|U ′n|) are equivalent to an optimal
solution of P ′SCPC(n), which concludes the proof. �

D. Proof of Theorem 4

Optimality analysis: Let xn1n , . . . , x
n
|U ′n|n be the optimal

allocation of SCPC with budget Pmax. We consider now a
lower budget P̄n ≤ Pmax. At each iteration i of the loop
in SCPC

(
In,U ′n, P̄n

)
, the value ARGMAXf̃

(
j, i, In,U ′n, P̄n

)

can be replaced by min{ARGMAXf̃(j, i, In,U ′n, Pmax) , P̄n},
since they are equal by definition. One can show, by mathe-
matical induction on in, that the function SCPC

(
In,U ′n, P̄n

)

returns min{xn1n , P̄n}, . . . ,min{xn|U ′n|n , P̄
n}. Therefore, the

latter allocation is also optimal.
Complexity analysis: The initialization consists in running

SCPC, with complexity O
(
M2
)

(see Theorem 3). Each
subsequent evaluation requires to compute min{xnin , P̄n}, for
i ∈ {1, . . . , |U ′n|}, with complexity O(M). �

E. Proof of Theorem 5

Complexity analysis: The complexity mainly comes from
the computation of V , X and U in the for loop from lines 13

to 27, which requires M
∑K−1
i=1 (i) = O

(
MK2

)
iterations.

Each iteration has a constant number of operations. Thus, the
overall worst case computational complexity is O

(
MK2

)
.

Optimality analysis: We will prove by induction that at any
iteration m ∈ {0, . . . ,M}, j ∈ {1, . . . ,K} and i ≥ j of
Algorithm 4, the construction of V [m, j, i] is the optimal value
of problem P ′SC [m, j, i]. It follows directly that V [M, 1, 1] is
the optimal value of P ′SC(n).
Basis: For m = 0, no user can be active due to constraint
C4′. Thus, V [0, j, i] = fnj,K(0) and X[0, j, i] is initialized
to zero. Furthermore, U [0, j, i] = ∅ to indicate that there
is no previous index in the recursion. For simplicity of the
algorithm, V,X,U are also initialized for j ≤ i = K as
explained in Section IV-C.
Inductive step: Let m ∈ {1, . . . ,M} and 1 ≤ j ≤ i ≤ K − 1.
Assume that V [m′, j′, i′] is the optimal value of P ′SC [m′, j′, i′]
for any m′ ≤ m, j′ ≥ j and i′ > i. We denote the optimal so-
lution of problem P ′SC [m, j, i] by xnj , . . . , x

n
K . Let vact (resp.

vinact) be the optimal value of P ′SC [m, j, i], given that user i
is active (resp. inactive). Let xn∗(i+1)n

= X[m− 1, i+ 1, i+ 1]
be the optimal value of xn(i+1)n

in P ′SC [m − 1, i + 1, i + 1].
If x∗ ≤ xn∗(i+1)n

, then we can prove as in case ii) of
Appendix C, that user i is inactive in the optimal solution.
In this case, V [m, j, i] = vinact. Otherwise, the optimal is
V [m, j, i] = max{vact, vinact}. Values vact and vinact are
computed as follows:

• Case vinact: Suppose that the optimal solution of prob-
lem P ′SC [m, j, i] is achieved when user i is inactive, then
we have xni = xni+1 by definition of U ′n. It follows from
C5′ that xnj = · · · = xni+1. We obtain, by definition,
V [m, j, i] = V [m, j, j + 1], which we denote by vinact.

• Case vact: Suppose now that user i is active. Since x∗ >
xn∗(i+1)n

satisfies C3′, and the objective is separable, the
optimal is obtained when maximizing independently fnj,i and∑K
l=i+1 f

n
l with m − 1 active users. That is, V [m, j, i] =

vact , fnj,i (x∗) + V [m − 1, i + 1, i + 1], where x∗ =
ARGMAXf

(
j, i, In, P̄n

)
in line 15.

Hence, V [m, j, i], as computed in (5), corresponds to the
optimal of P ′SC [m, j, i].

We derive, by mathematical induction, that V [M, 1, 1] is the
optimal value of P ′SC [M, 1, 1] =P ′SC(n). The corresponding
optimal allocation xn is retrieved in lines 28 to 35. �

F. Proof of Theorem 6

Optimality analysis: Let yn1 , . . . , y
n
K be the optimal so-

lution of P ′SC(n) subject to a power constraint P̄n. Let
i ∈ {1, . . . ,K} be the unique index such that yn1 = · · · = yni
and yni > yni+1. We know from Lemma 2 that yn1 = · · · =
yni = P̄n. Therefore, yni+1, . . . , y

n
K are all strictly less than

P̄n. Let xn1 , . . . , x
n
K be the optimal solution of P ′SC [M, 1, i]

in the execution of SCUS(In,M, Pmax), i.e., subject to a
power budget Pmax. According to Lemma 2, xn1 = · · · =
xni = Pmax. We deduce from f ’s unimodality in Lemma 2,
that yni+1, . . . , y

n
K is the optimal solution of P ′SC [M, i+1, i+1]

given any power budget no less than P̄n. In particular, we have
xnl = ynl , for all l ∈ {i + 1, . . . ,K}. Hence, xn1 , . . . , x

n
K and
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yn1 , . . . , y
n
K correspond to the same user selection U ′n, and we

derive ynln = min{xnln , P̄n}, for 1 ≤ l ≤ |U ′n|.
We proved above that, for any P̄n ≤ Pmax, there

exists (U ′n, xn1 , . . . , xnK) in collection, such that the op-
timal allocation subject to the power constraint P̄n

is min{xn1n , P̄n}, . . . ,min{xn|U ′n|n , P̄
n}. Thus, the optimal

user selection and power control is the one maximizing
Fn(U ′n, P̄n) =

∑|U ′n|
l=1 f̃

n
l,l

(
U ′n,min{xnln , P̄n}

)
+ Bn over all

elements in collection, as shown at line 6.
Complexity analysis: The initialization consists in running

SCUS, with complexity O
(
MK2

)
(see Theorem 5). Each

subsequent evaluation has complexity O(MK). Indeed, there
are K active users sets U ′n in collection, one for each
solution of P ′SC [M, 1, i], for i ∈ {1, . . . ,K}. For each of
the K possible active users set U ′n in collection, we compute
Fn(U ′n, P̄n) with complexity O(|U ′n|) = O(M). �

G. Proofs of Lemma 7 and Theorem 8

Let xn1 , . . . , x
n
K be the output of i-SCUS

(
P̄n
)
, and U ′n the

corresponding active users set. For i ∈ {1, . . . ,K}, there
exists q ≤ i and q′ ≥ i, such that xnqn = · · · = xnq′n =

ARGMAXf̃
(
q, q′, In,U ′n, P̄n

)
, according to Lemma 12. We

have:

f̃nq,q′
(
U ′n,min{xnqn , P̄n}

)
=

{
f̃nq,q′

(
U ′n, P̄n

)
, if P̄n ≤ xnqn ,

f̃nq,q′
(
U ′n, xnqn

)
, if P̄n > xnqn .

We consider it as a function of P̄n. Its left derivative at
P̄n = xnqn is 0, according to Lemma 2. Its right derivative
at P̄n = xnqn is 0, as it is constant for P̄n > xnqn .
Hence, f̃nq,q′(U ′n,min{xqn , ·}) is continuously differentiable
on [0, Pmax].

Let l be the greatest index such that xnl = P̄n. The function
Fn(U ′n, P̄n) can be written as fn1,l

(
P̄n
)

+
∑K
i=l+1 f

n
i,i (xni )+

Bn. Its derivative can be obtained by applying Eqn. (11) of
Appendix B as follows:

Fn′
(
U ′n, P̄n

)
= fn′1,l

(
P̄n
)

=
Wnwπn(l)(

P̄n + η̃nπn(l)

)
ln(2)

. (14)

As Fn(P̄n) = maxU ′n{Fn(U ′n, P̄n)}, where max is taken
over all active users sets in collection of i-SCUS, and the
max operator only preserves semi-differentiability, Eqn. (14)
is the left derivative of Fn. This proves Lemma 7.

In addition, the second left derivative of Fn satisfies:

β ≤ Fn′′
(
P̄n
)

=
−Wnwπn(l)(

P̄n + η̃nπn(l)

)2

ln(2)
≤ α < 0, (15)

where β and α are constant and defined as:

β =
−Wnwπn(l)(
η̃nπn(l)

)2

ln(2)
, α =

−Wnwπn(l)(
Pmax + η̃nπn(l)

)2

ln(2)
.

Although Fn is only semi-differentiable at some points, it is
twice differentiable on each interval where the optimal user
selection U ′n does not change. Appendix F shows that there are
K such intervals. Eqn. (15) implies that Fn is piece-wise twice
differentiable, α-strongly concave and β-smooth. Therefore,

the projected gradient descent on the simplex F converges in
O(log(1/ξ)) iterations, according to [22, Section 2.2.4]. This
proves Theorem 8. �

H. Proof of Theorem 9

Let P̄n∗ be the optimal power budget of P ′MC on subcarrier
n ∈ N . The power budget after discretization with step size
δ is denoted by a∗n , bP̄n∗/δcδ. We have:

F ∗−F ∗MCKP ≤
∑

n∈N

(
Fn
(
P̄n∗

)
− Fn(a∗n)

)
, (16)

≤
∑

n∈N
max
U ′n
{Fn′(U ′n, P̄n∗)} ×

(
P̄n∗ − a∗n

)
, (17)

≤ δ
∑

n∈N
max
k∈K

{
Wnwπn(k)(

P̄n∗ + η̃nπn(k)

)
ln(2)

}
. (18)

Inequality (16) comes from the definition of F ∗ and the
fact that F ∗MCKP ≥ ∑

n∈N F
n(a∗n), as F ∗MCKP is the

optimal discrete solution with step size δ. We know from
Appendix G that Fn(P̄n) = maxU ′n{Fn(U ′n, P̄n)}, and that
Fn
(
U ′n, P̄n

)
is twice differentiable and concave, for any U ′n

and n ∈ N . Hence, Fn lies below the maximum slope tangent
among the tangents of Fn(U ′n, P̄n∗), for all U ′n. This implies
inequality (17). We obtain (18) by applying Eqn. (14), and the
fact that P̄n∗ − a∗n ≤ δ by construction. �

I. Proof of Theorem 10

Let us first briefly explain the principle of dynamic pro-
gramming by weights. Let Z be a 2D-array such that Z[n, l]
is defined as the optimal value of MCKP restricted to the first
n classes and with restricted capacity l · δ. It is initialized as
Z[0, l] = 0, for any l = 0, . . . , J . For n ∈ N and l = 0, . . . , J ,
the recurrence relation is:

Z[n, l] = max
l′≤l
{Z[n− 1, l − l′] + cn,l′}.

The complexity and optimality proofs of OPT-JSPA are pre-
sented below.

Optimality analysis: Reference [20] proves that dynamic
programming by weights is optimal for MCKP. Since prob-
lems P ′MC and MCKP are equivalent, the proposed OPT-JSPA
based on dynamic programming by weights is also optimal
for P ′MC .

Complexity analysis: In Algorithm 7, we first trans-
form P ′MC to problem MCKP: from line 1 to 5, ev-
ery item’s profit cn,l is computed using i-SCUS in
O
(
NMK2 + JNMK

)
. Then, we perform dynamic program-

ming by weights at lines 6-7. According to [20], its complexity
is O

(
J2N

)
, which is the number of items N (J + 1) multi-

plied by the number of possible power values J+1. Therefore,
the overall complexity is O

(
NMK2 + JNMK + J2N

)
.

J. Estimation U in Algorithm 8

In this section, we denote by F ∗MCKP (Pmax) the optimal
value of MCKP with cellular power budget Pmax. We provide
some properties in Lemma 13 that will be used for the analysis
of the estimation procedure.
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Lemma 13 (Monotonicity and sublinearity of F ∗MCKP ).
F ∗MCKP is a non-decreasing and sublinear function of Pmax.
That is, for any P1 < P2, F ∗MCKP (P1) ≤ F ∗MCKP (P2) and
F ∗MCKP (P1 + P2) ≤ F ∗MCKP (P1) + F ∗MCKP (P2).

Proof: We first prove the monotonicity of F ∗MCKP . Let
F ′1 and F ′2 be two feasible sets of P ′MC with power budget
P1 and P2 respectively. Assuming P1 < P2, then any solution
of F ′1 is also a solution of F ′2, i.e., F ′1 ⊂ F ′2. Since P ′MC

is a maximization problem over F ′, we have F ∗MCKP (P1) ≤
F ∗MCKP (P2). This proves that F ∗MCKP is non-decreasing.

Now, let us tackle the sublinearity of F ∗MCKP . We first
prove that the fnj,i are sublinears. If j = 1 or wπn(i) ≥
wπn(j−1), then fnj,i is concave according to Lemma 2. There-
fore, it is also sublinear. Otherwise, fnj,i is concave before c2
and decreasing after c1 ≤ c2. In this case, fnj,i is thus also
sublinear. Secondly, for any subcarrier n and user selection
U ′n, P ′SCPC(n) consists in maximizing a sum of separable
sublinear functions fnj,i subject to a budget constraint P̄n.
Hence, Fn

(
U ′n, P̄n

)
is sublinear in P̄n. Thirdly, the optimal

of P ′SC(n) can be seen as the best allocation over all possible
user selections, i.e., Fn(P̄n) = maxU ′n{Fn

(
U ′n, P̄n

)
}. The

max operator preserves sublinearity. Therefore, Fn(P̄n) is
sublinear in P̄n. Finally, F ∗MCKP is sublinear in Pmax,
since P ′MC is a separable sum maximization of Fn subject
to budget constraint Pmax.

Let us introduce a variant of MCKP, denoted by MCKP’.
The differences are as follows. Its cellular power budget is
2Pmax. The item’s weights can only take value of the form
an,l = lbJ/Ncδ for n ∈ N , l ∈ {0, . . . , 2N}. The profits
values are defined similarly as cn,l = Fn(an,l). Consequently,
MCKP’ only contains 2N + 1 items per class. The idea
of the proof is to show that a greedy solution of MCKP’
is a constant factor approximation of MCKP optimal value.
The value of U is then easily obtained using the greedy
Dyer-Zemel algorithm [20, Section 11.2]. In this case, the
complexity is independent of J and negligible compared to
the rest of the algorithm. One could also get an estimation
by applying the Dyer-Zemel algorithm directly to MCKP.
However, the complexity would be proportional to O(J) which
is against the idea of polynomial-time approximation.

Let y∗n,l, for n ∈ N , l ∈ {0, . . . , 2N}, be an optimal
solution of this problem. In addition, we denote by y′n,l for
n ∈ N , l ∈ {0, . . . , 2N}, a 1/2-approximation given by the
Dyer-Zemel algorithm. On the one hand, we have:

∑

n∈N

2N∑

l=1

cn,ly
′
n,l ≥

1

2

∑

n∈N

2N∑

l=1

cn,ly
∗
n,l, (19)

≥ 1

2

∑

n∈N
Fn

(⌈
P̄n∗

bJ/Ncδ

⌉⌊
J

N

⌋
δ

)
, (20)

≥ 1

2

∑

n∈N
Fn
(
P̄n∗

)
=

1

2
F ∗MCKP (Pmax) , (21)

where P̄n∗ is the power allocated to subcarrier n in
F ∗MCKP (Pmax). The 1/2-approximation of y′n,l translates into
Eqn. (19). The right term of Eqn. (20) corresponds to a
valid allocation of MCKP’, with item l = dP̄n∗/(bJ/Ncδ)e

allocated in class n. Indeed, by definition of the ceiling and
floor functions, we have:

P̄n∗
(e)
≤
⌈

P̄n∗

bJ/Ncδ

⌉⌊
J

N

⌋
δ < P̄n∗ +

⌊
J

N

⌋
δ ≤ P̄n∗ +

Pmax
N

.

Therefore,

∑

n∈N

⌈
P̄n∗

bJ/Ncδ

⌉⌊
J

N

⌋
δ <

∑

n∈N

(
P̄n∗ +

Pmax
N

)
= 2Pmax.

In other words, the power budget is also satisfied. As it is a
valid allocation for MCKP’, it must have a total profit not
greater than the optimal profit

∑
n∈N

∑2N
l=1 cn,ly

∗
n,l, which

proves inequality (20). We derive Eqn. (21) from inequality (e)
and the monotonicity of Fn (see Lemma 13).

We have, on the other hand:

∑

n∈N

2N∑

l=1

cn,ly
′
n,l ≤

∑

n∈N

2N∑

l=1

cn,ly
∗
n,l, (22)

≤ F ∗MCKP (2Pmax) , (23)
≤ 2F ∗MCKP (Pmax) . (24)

The optimality of y∗n,l implies Eqn. (22). Eqn. (23) comes from
the fact that the items of MCKP’ is a subset of MCKP items,
given a budget 2Pmax. Eqn. (24) follows from the sublinearity
of F ∗MCKP (see Lemma 13).

Let U , 2
∑
n∈N

∑2N
l=1 cn,ly

′
n,l. We derive from inequali-

ties (21) and (24) the desired approximation bound:

U ≥ F ∗MCKP (Pmax) ≥ U/4.

K. Proof of Theorem 11

Complexity analysis: We divide the complexity analysis of
Algorithm 8 in four parts as follows. The overall complexity
can be obtained by summing the complexity of each part.
i. Precomputation: The precomputation required for setting
up i-SCUS on each subcarrier has complexity O

(
NMK2

)
.

ii. Line 1: The estimation procedure presented in Appendix J,
consists in O

(
N2
)

function evaluations and O
(
N2
)

iterations
of the Dyer-Zemel algorithm. Each function evaluation is
computed by i-SCUS, therefore the complexity of this part
is O

(
N2MK

)
.

iii. Lines 2-4: Each Ln, for n ∈ N , is obtained by multi-
key binary search [25]. For each Ln, we need to find
4N/ε keys in an array {cn,1, . . . , cn,J} of length J . Since
repetition is not allowed, the binary search returns at most
min{4N/ε, J} items. More precisely, it computes each of
the 4N/ε keys in time log(J), with at most J function
evaluations in total. Therefore, the binary search performs
O(min{log(J)N/ε, J}) function evaluations. Multiplied by
the complexity of each function evaluation on each subcarrier,
we obtain O

(
min{log(J)N2MK/ε, JNMK}

)
.

iv. Lines 5-6: Let us first briefly explain the dynamic program-
ming by profits [20]. Let Y be the DP array such that Y [n, q]
denotes the minimal weight, i.e., minimal power budget,
required to achieve WSR q · εU/4N when problem MCKP is
restricted to the first n classes. It is initialized as Y [0, 0] = 0



17

and Y [0, q] = +∞, for q = 1, . . . , b4N/εc. For n ∈ N and
q = 0, . . . , b4N/εc, the recurrence relation is:

Y [n, q] = min
l∈Ln





Y
[
n− 1, q −

⌊
4cn,lN
εU

⌋]
+ an,l,

if q·εU
4N ≥ cn,l,

+∞, otherwise.

(25)

This recursion has complexity O
(
min{N3/ε2, J2N}

)
, which

is the number of all considered items
∑
n∈N |Ln| =

min{4N2/ε, JN} multiplied by the number of comparisons
in Eqn. (25), |Ln| = min{4N/ε, J}.

Approximation analysis: As proved in [20, Section 11.9],
the optimal solution obtained by dynamic programming by
profits considering only items in Ln, differs from F ∗MCKP by
at most a factor 1− ε.

In summary, ε-JSPA achieves ε-approximation with poly-
nomial complexity in 1/ε and N , M , K. Therefore, ε-JSPA
is a FPTAS, which concludes the proof.


