7 research outputs found

    Interpolatory Catmull-Clark volumetric subdivision over unstructured hexahedral meshes for modeling and simulation applications

    Get PDF
    International audienceVolumetric modeling is an important topic for material modeling and isogeometric simulation. In this paper, two kinds of interpolatory Catmull-Clark volumetric subdivision approaches over unstructured hexahedral meshes are proposed based on the limit point formula of Catmull-Clark subdivision volume. The basic idea of the first method is to construct a new control lattice, whose limit volume by the CatmullClark subdivision scheme interpolates vertices of the original hexahedral mesh. The new control lattice is derived by the local push-back operation from one CatmullClark subdivision step with modified geometric rules. This interpolating method is simple and efficient, and several shape parameters are involved in adjusting the shape of the limit volume. The second method is based on progressive-iterative approximation using limit point formula. At each iteration step, we progressively modify vertices of an original hexahedral mesh to generate a new control lattice whose limit volume interpolates all vertices in the original hexahedral mesh. The convergence proof of the iterative process is also given. The interpolatory subdivision volume has C 2-smoothness at the regular region except around extraordinary vertices and edges. Furthermore, the proposed interpolatory volumetric subdivision methods can be used not only for geometry interpolation, but also for material attribute interpolation in the field of volumetric material modeling. The application of the proposed volumetric subdivision approaches on isogeometric analysis is also given with several examples

    Solid NURBS Conforming Scaffolding for Isogeometric Analysis

    Get PDF
    This work introduces a scaffolding framework to compactly parametrise solid structures with conforming NURBS elements for isogeometric analysis. A novel formulation introduces a topological, geometrical and parametric subdivision of the space in a minimal plurality of conforming vectorial elements. These determine a multi-compartmental scaffolding for arbitrary branching patterns. A solid smoothing paradigm is devised for the conforming scaffolding achieving higher than positional geometrical and parametric continuity. Results are shown for synthetic shapes of varying complexity, for modular CAD geometries, for branching structures from tessellated meshes and for organic biological structures from imaging data. Representative simulations demonstrate the validity of the introduced scaffolding framework with scalable performance and groundbreaking applications for isogeometric analysis

    Incorporating curvature to the boundary of linear and highorder meshes when a target geometry is unavailable

    Get PDF
    Barcelona Supercomputing CenterIn this work, two new methods are presented: first, a given linear tetrahedral volume mesh is refined in such a way that its boundary tends to an almost everywhere C^2-continuous surface, and second, a curved high-order tetrahedral mesh which boundary approximates an almost everywhere C^2 surface is generated from a linear tetrahedral mesh. The aim of these curved meshes is to provide an almost everywhere C^2 smooth parametrization of curved boundaries suitable for finite element analysis with unstructured high-order methods. To illustrate the applicability of the methods, several curved high-order volume meshes have been generated from linear meshes obtained by digitizing real volumes

    Large-scale Geometric Data Decomposition, Processing and Structured Mesh Generation

    Get PDF
    Mesh generation is a fundamental and critical problem in geometric data modeling and processing. In most scientific and engineering tasks that involve numerical computations and simulations on 2D/3D regions or on curved geometric objects, discretizing or approximating the geometric data using a polygonal or polyhedral meshes is always the first step of the procedure. The quality of this tessellation often dictates the subsequent computation accuracy, efficiency, and numerical stability. When compared with unstructured meshes, the structured meshes are favored in many scientific/engineering tasks due to their good properties. However, generating high-quality structured mesh remains challenging, especially for complex or large-scale geometric data. In industrial Computer-aided Design/Engineering (CAD/CAE) pipelines, the geometry processing to create a desirable structural mesh of the complex model is the most costly step. This step is semi-manual, and often takes up to several weeks to finish. Several technical challenges remains unsolved in existing structured mesh generation techniques. This dissertation studies the effective generation of structural mesh on large and complex geometric data. We study a general geometric computation paradigm to solve this problem via model partitioning and divide-and-conquer. To apply effective divide-and-conquer, we study two key technical components: the shape decomposition in the divide stage, and the structured meshing in the conquer stage. We test our algorithm on vairous data set, the results demonstrate the efficiency and effectiveness of our framework. The comparisons also show our algorithm outperforms existing partitioning methods in final meshing quality. We also show our pipeline scales up efficiently on HPC environment

    Unifying Geometry and Mesh Adaptive Refinement Using Loop Subdivision

    Get PDF
    RÉSUMÉ Cette thèse présente une nouvelle approche pour le raffinement de trois types de maillages : courbes, surfaces triangulaires et maillages tétraédriques tridimensionnels. Cette approche utilise des représentations par subdivisions afin de définir, modifier, analyser et visualiser des modèles géométriques de topologie arbitraire pour les applications de simulation numérique. Les représentations par subdivisions sont générées à l’aide des subdivisions de Loop. Après avoir étudié les inconvénients du manque de flexibilité dans le contrôle des niveaux de détails et du manque de précision dans les représentations de modèles géométriques utilisant les subdivisions itératives, approximatives et non-uniformes pour se rapprocher des modèles simulés, nous introduisons une nouvelle méthode de subdivision adaptative pour le raffinement de maillages. Cette méthode de raffinement à un seul niveau a été développée afin de supporter les subdivisions adaptatives pour les trois types de maillages. Cette méthode évite le stockage par hiérarchie et les problèmes d’assemblage rencontrés durant la génération des maillages multi-résolutions par subdivisions, surtout pour les maillages tétraédriques. La mise en œuvre de subdivisions pour les maillages adaptatifs tétraédriques amène deux innovations : la configuration de forme de fractionnement des tétraèdres et l’amélioration de la paramétrisation des surfaces de subdivision. La combinaison naturelle de ces deux innovations permet la génération par subdivision de maillages multi-résolutions tétraédriques dont les surfaces frontières sont exactement sur les limites de subdivision. Notre recherche contient cinq parties. Premièrement, nous développons un schéma de Loop pour la subdivision des solides, lequel permet d’intégrer le fractionnement topologique des arêtes avec le lissage géométrique des surfaces frontières. Deuxièmement, nous fusionnons les raffinements adaptatifs avec les techniques de subdivision, ce qui permet la subdivision adaptive complète du maillage tout en ayant les surfaces frontières projetées sur les limites de subdivision. Troisièmement, nous étudions et comparons des techniques existantes de paramétrisation des surfaces de subdivision, ce qui permet d’obtenir directement la limite de subdivision de toutes positions arbitraires sur les surfaces de subdivision de Loop. Quatrièmement, nous construisons les règles de création des sommets fixes et des arêtes vives du schéma de subdivision de Loop pour les modèles solides, ce qui permet de préserver les caractéristiques anguleuses des surfaces frontières des maillages tétraédriques. Finalement, nous utilisons un critère de qualité des maillages pour valider nos résultats et nous présentons la performance des calculs en ce qui a trait à la modélisation des solides.----------ABSTRACT In this thesis, we present a new refinement approach on three types of meshes: curves, triangular surfaces and 3D tetrahedral meshes. This approach utilizes subdivision-based representations to create, modify, analyze and visualize geometric models with arbitrary topology for numerical simulation applications. The subdivision-based representations are generated by utilizing Loop subdivisions. After studying the disadvantage of lack of flexibility in controlling LODs (Level Of Details) and accuracy in representing geometric models by using the non-uniform approximating subdivision iterations to approach simulated models, we introduce adaptive subdivisions in our refinement work. We develop a single-level refinement method to support adaptive subdivisions on the three types of meshes. This single-level method eliminates the hierarchy storage and the stitching issues encountered during the generation of multi-resolution subdivision meshes, especially 3D tetrahedral meshes. The implementation of adaptive tetrahedral mesh subdivisions brings up two innovations: the configuration of tetrahedron split patterns and the improvement in subdivision surface parameterizations. The natural combination of these two innovations fulfills generating multi-resolution subdivision tetrahedral meshes, whose boundary surfaces lie exactly on their subdivision limits. Our research work includes five parts. Firstly, we develop the Loop-based solid subdivision scheme, which permits integrating edge-based topological splits with geometrical smoothing on boundary surfaces. Secondly, we merge subdivision techniques with adaptive refinements with, which permits whole meshes to be adaptively subdivided and boundary meshes to be projected to their subdivision limits. Thirdly, we study and compare the existing subdivision surface parameterization techniques, which eventually permits obtaining the limit subdivision of any arbitrary position on Loop subdivision surfaces. Fourthly, we complete vertex and edge crease creation rules of the Loop-based solid subdivision scheme, which permits preserving sharp features on boundary surfaces of 3D tetrahedral meshes. Finally, we use a mesh quality evaluator to validate our results and we evaluate system performance in the context of solid modeling
    corecore