5 research outputs found

    Adaptive Parameter Control Strategy for Ant-Miner Classification Algorithm

    Get PDF
    Pruning is the popular framework for preventing the dilemma of overfitting noisy data. This paper presents a new hybrid Ant-Miner classification algorithm and ant colony system (ACS), called ACS-AntMiner. A key aspect of this algorithm is the selection of an appropriate number of terms to be included in the classification rule. ACS-AntMiner introduces a new parameter called importance rate (IR) which is a pre-pruning criterion based on the probability (heuristic and pheromone) amount. This criterion is responsible for adding only the important terms to each rule, thus discarding noisy data. The ACS algorithm is designed to optimize the IR parameter during the learning process of the Ant-Miner algorithm. The performance of the proposed classifier is compared with related ant-mining classifiers, namely, Ant-Miner, CAnt-Miner, TACO-Miner, and Ant-Miner with a hybrid pruner across several datasets. Experimental results show that the proposed classifier significantly outperforms the other ant-mining classifiers

    Hybrid ant colony optimization and genetic algorithm for rule induction

    Get PDF
    In this study, a hybrid rule-based classifier namely, ant colony optimization/genetic algorithm ACO/GA is introduced to improve the classification accuracy of Ant-Miner classifier by using GA. The AntMiner classifier is efficient, useful and commonly used for solving rulebased classification problems in data mining. Ant-Miner, which is an ACO variant, suffers from local optimization problem which affects its performance. In our proposed hybrid ACO/GA algorithm, the ACO is responsible for generating classification rules and the GA improves the classification rules iteratively using the principles of multi-neighborhood structure (i.e., mutation and crossover) procedures to overcome the local optima problem. The performance of the proposed classifier was tested against other existing hybrid ant-mining classification algorithms namely, ACO/SA and ACO/PSO2 using classification accuracy, the number of discovered rules and model complexity. For the experiment, the 10-fold cross-validation procedure was used on 12 benchmark datasets from the University California Irwine machine learning repository. Experimental results show that the proposed hybridization was able to produce impressive results in all evaluation criteria

    Adaptive parameter control strategy for ant-miner classification algorithm

    Get PDF
    Pruning is the popular framework for preventing the dilemma of over fitting noisy data. This paper presents a new hybrid Ant-Miner classification algorithm and ant colony system (ACS), called ACS-Ant Miner. A key aspect of this algorithm is the selection of an appropriate number of terms to be included in the classification rule. ACS-AntMiner introduces a new parameter called importance rate (IR) which is a pre-pruning criterion based on the probability (heuristic and pheromone) amount. This criterion is responsible for adding only the important terms to each rule, thus discarding noisy data. The ACS algorithm is designed to optimize the IR parameter during the learning process of the Ant-Miner algorithm. The performance of the proposed classifier is compared with related ant-mining classifiers, namely, Ant-Miner, CAnt-Miner, TACO-Miner, and Ant-Miner with a hybrid pruner across several datasets. Experimental results show that the proposed classifier significantly outperforms the other ant-mining classifiers

    Ant colony optimization algorithm for rule based classification: Issues and potential

    Get PDF
    Classification rule discovery using ant colony optimization (ACO) imitates the foraging behavior of real ant colonies. It is considered as one of the successful swarm intelligence metaheuristics for data classification. ACO has gained importance because of its stochastic feature and iterative adaptation procedure based on positive feedback, both of which allow for the exploration of a large area of the search space. Nevertheless, ACO also has several drawbacks that may reduce the classification accuracy and the computational time of the algorithm. This paper presents a review of related work of ACO rule classification which emphasizes the types of ACO algorithms and issues. Potential solutions that may be considered to improve the performance of ACO algorithms in the classification domain were also presented. Furthermore, this review can be used as a source of reference to other researchers in developing new ACO algorithms for rule classification

    An adaptive ant colony optimization algorithm for rule-based classification

    Get PDF
    Classification is an important data mining task with different applications in many fields. Various classification algorithms have been developed to produce classification models with high accuracy. Differing from other complex and difficult classification models, rules-based classification algorithms produce models which are understandable for users. Ant-Miner is a variant of ant colony optimisation and a prominent intelligent algorithm widely use in rules-based classification. However, the Ant-Miner has overfitting and easily falls into local optima problems which resulted in low classification accuracy and complex classification rules. In this study, a new Ant-Miner classifier is developed, named Adaptive Genetic Iterated-AntMiner (AGI-AntMiner) that aims to avoid local optima and overfitting problems. The components of AGI-AntMiner includes: i) an Adaptive AntMiner which is a prepruning technique to dynamically select the appropriate threshold based on the quality of the rules; ii) Genetic AntMiner that improves the post-pruning by adding/removing terms in a dual manner; and, iii) an Iterated Local Search-AntMiner that improves exploitation based on multiple-neighbourhood structure. The proposed AGI-AntMiner algorithm is evaluated on 16 benchmark datasets of medical, financial, gaming and social domains obtained from the University California Irvine repository. The algorithm’s performance was compared with other variants of Ant-Miner and state-of-the-art rules-based classification algorithms based on classification accuracy and model complexity. Experimental results proved that the proposed AGI-AntMiner algorithm is superior in two (2) aspects. Hybridization of local search in AGI-AntMiner has improved the exploitation mechanism which leads to the discovery of more accurate classification rules. The new pre-pruning and postpruning techniques have improved the pruning ability to produce shorter classification rules which are easier to interpret by the users. Thus, the proposed AGI-AntMiner algorithm is capable in conducting an efficient search in finding the best classification rules that balance the classification accuracy and model complexity to overcome overfitting and local optima problems
    corecore